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Abstract

Over the past decade, dramatic increases in computational power and improvement in image
analysis algorithms have allowed the development of powerful computer-assisted analytical
approaches to radiological data. With the recent advent of whole slide digital scanners, tissue
histopathology slides can now be digitized and stored in digital image form. Consequently,
digitized tissue histopathology has now become amenable to the application of computerized
image analysis and machine learning techniques. Analogous to the role of computer-assisted
diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD
algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction
to complement to the opinion of the pathologist. In this paper, we review the recent state of the art
CAD technology for digitized histopathology. This paper also briefly describes the development
and application of novel image analysis technology for a few specific histopathology related
problems being pursued in the United States and Europe.
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[. Introduction and motivation

The widespread use of Computer-assisted diagnosis (CAD) can be traced back to the
emergence of digital mammography in the early 1990's [1]. Recently, CAD has become a
part of routine clinical detection of breast cancer on mammograms at many screening sites
and hospitals [2] in the United States. In fact, CAD has become one of the major research
subjects in medical imaging and diagnostic radiology. Given recent advances in high-
throughput tissue bank and archiving of digitized histological studies, it is now possible to
use histological tissue patterns with computer-aided image analysis to facilitate disease
classification. There is also a pressing need for CAD to relieve the workload on pathologists
by sieving out obviously benign areas, so that pathologist can focus on the more difficult-to-
diagnose suspicious cases. For example, approximately 80% of the 1 million prostate
biopsies performed in the US every year are benign; this suggests that prostate pathologists
are spending 80% of their time sieving through benign tissue.

Researchers both in the image analysis and pathology fields have recognized the importance
of quantitative analysis of pathology images. Since most current pathology diagnosis is
based on the subjective (but educated) opinion of pathologists, there is clearly a need for
quantitative image-based assessment of digital pathology slides. This quantitative analysis of
digital pathology is important not only from a diagnostic perspective, but also in order to
understand the underlying reasons for a specific diagnosis being rendered (e.g., specific
chromatin texture in the cancerous nuclei which may indicate certain genetic abnormalities).
In addition, quantitative characterization of pathology imagery is important not only for
clinical applications (e.g., to reduce/eliminate inter- and intra-observer variations in
diagnosis) but also for research applications (e.g., to understand the biological mechanisms
of the disease process).

A large focus of pathological image analysis has been on the automated analysis of cytology
imagery. Since cytology imagery often results from the least invasive biopsies (e.g., the
cervical Pap smear), they are some of the most commonly encountered imagery for both
disease screening and biopsy purposes. Additionally, the characteristics of cytology
imagery, namely the presence of isolated cells and cell clusters in the images and the
absence of more complicated structures such as glands make it easier to analyze these
specimens compared to histopathology. For example, the segmentation of individual cells or
nuclei is a relatively easier process in such imagery since most of the cells are inherently
separated from each other.

Histopathology slides, on the other hand, provide a more comprehensive view of disease and
its effect on tissues, since the preparation process preserves the underlying tissue
architecture. As such, some disease characteristics, e.g., lymphocytic infiltration of cancer,
may be deduced only from a histopathology image. Additionally, the diagnosis from a
histopathology image remains the ‘gold standard” in diagnosing considerable number of
diseases including almost all types of cancer [3]. The additional structure in these images,
while providing a wealth of information, also presents a new set of challenges from an
automated image analysis perspective. It is expected that the proper leverage of this spatial
information will allow for more specific characterizations of the imagery from a diagnostic
perspective. The analysis of histopathology imagery has generally followed directly from
techniques used to analyze cytology imagery. In particular, certain characteristics of nuclei
are hallmarks of cancerous conditions. Thus, quantitative metrics for cancerous nuclei were
developed to appropriately encompass the general observations of the experienced
pathologist, and were tested on cytology imagery. These same metrics can also be applied to
histopathological imagery, provided histological structures such as cell nuclei, glands, and
lymphocytes have been adequately segmented (a complication due to the complex structure
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of histopathological imagery). The analysis of the spatial structure of histopathology
imagery can be traced back to the works of Wiend et al. [4], Bartels [5] and Hamilton [6]
but has largely been overlooked perhaps due to the lack of computational resources and the
relatively high cost of digital imaging equipment for pathology. However, spatial analysis of
histopathology imagery has recently become the backbone of most automated
histopathology image analysis techniques. Despite the progress made in this area thus far,
this is still a large area of open research due to the variety of imaging methods and disease-
specific characteristics.

1.1. Need for Quantitative Image Analysis for Disease Grading

Currently, histopathological tissue analysis by a pathologist represents the only definitive
method (a) for confirmation of presence or absence of disease, and (b) disease grading, or
the measurement of disease progression. The need for quantitative image analysis in the
context of one specific disease (prostate cancer) is described below. Similar conclusions
hold for quantitative analysis of other disease imagery.

Higher Gleason scores are given to prostate cancers, which are more aggressive, and the
grading scheme is used to predict cancer prognosis and help guide therapy. The Gleason
grading system is based solely on architectural patterns; cytological features are not
evaluated. The standard schematic diagram created by Gleason and his group (see Figure
1.1) separated architectural features into 1 of 5 histological patterns of decreasing
differentiation, pattern 1 being most differentiated and pattern 5 being least differentiated.
The second unique feature of Gleason grading is that grade is not based on the highest (least
differentiated) pattern within the tumor. Recently several researchers have reported
discrepancies with the Gleason grading system for grading prostate cancer histopathology.
Many researchers have found grading errors (both under- and over-grading) in prostate
cancer studies [7-11]. Similar issues with cancer grading have been reported for other
diseases such as breast cancer [12].

In light of the above, Luthringer et al [13] have discussed the need for changes to be made to
Gleason grading system. In late 2005, the International Society of Urologic Pathologists in
conjunction with the WHO made a series of recommendations for modifications to the
Gleason grading system, including reporting any higher grade cancer, no matter how small
quantitatively.

Luthringer et al. [13] have also suggested the need for reevaluation of original biopsy
material by a highly experienced pathologist which could help guide patient management.
Stamey et al. [14] discussed need for developing methods to accurately measure cancer
volume and better estimate prostate cancer to better predict progression of cancer. King et
al. [8] has similarly called for developing a methodology to help reduce pathologic
interpretation bias which would likely result in significantly improved accuracy of prostate
cancer Gleason grading.

1.2. Differences in CAD approaches between radiology and histopathology

While CAD is now being used in radiology in conjunction with a wide range of body
regions and a variety of imaging modalities, the preponderant question has been: can CAD
enable disease detection? Note that this question, as opposed to more diagnostic questions, is
motivated by the inherent limitation in spatial resolution of radiological data. For instance,
in mammography, CAD methods have been developed to automatically identify or classify
mammographic lesions. In histopathology, on the other hand, simply identifying presence or
absence of cancer or even the precise spatial extent of cancer may not hold as much interest
as more sophisticated questions such as: what is the grade of cancer? Further, at the
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histological (microscopic) scale one can begin to distinguish between different histological
subtypes of cancer, which is quite impossible (or at the very least difficult) at the coarser
radiological scale.

It is fair to say that since CAD in histopathology is still evolving, the questions that
researchers have started to ask of pathology data are not as well articulated as some of the
problems being investigated in radiology. A possible reason for this is that image analysis
scientists are still trying to come to terms with the enormous density of data that
histopathology holds compared to radiology. For instance, the largest radiological datasets
obtained on a routine basis are high resolution chest CT scans comprising approximately
512 x 512 x 512 spatial elements or ~ 134 million voxels. A single core of prostate biopsy
tissue digitized at 40x resolution is approximately 15,000 x 15,000 elements or ~ 225
million pixels. To put this in context, a single prostate biopsy procedure can comprise
anywhere between 12-20 biopsy samples or approximately 2.5 — 4 billion pixels of data
generated per patient study. Due to their relatively large size and the content, these images
frequently need to be processed in a multi-resolution framework.

Also, while radiological CAD systems mostly deal with gray-scale images, histological
CAD systems often need to process color images. Furthermore, with the recent advent of
multi-spectral and hyper-spectral imaging, each pixel in a histopathology section could
potentially be associated with several hundred sub-bands and wavelengths.

These fundamental differences in radiology and histopathology data have resulted in
specialized CAD schemes for histopathology. While several similar reviews have been
published for CAD in medical imaging and diagnostic radiology [15-23], to the best of our
knowledge no related review has been undertaken for digitized histopathology imagery. A
survey for CAD histopathology is particularly relevant given that the approaches and
questions being asked of histological data are different from radiological data. The
motivation of this paper is to present a comprehensive review of the state-of-the-art CAD
methods and the techniques employed for automated image analysis of digitized
histopathology imagery.

1.5 Organization of this Paper

We have organized this paper to follow the general image analysis procedures for
histopathology imagery. These analysis procedures are generally applicable to all imaging
modalities. In Section 2, we describe digital pathology imaging modalities including
immunofluorescence and spectral imaging and explain the difference between cytopathology
and histopathology. In Section 3, image preprocessing steps such as color normalization and
tissue autofluorescence compensation are reviewed. In Section 4, we discuss recent
advances in detection and segmentation in histopathological images. Section 5 is dedicated
to feature extraction and selection at different levels, with real-world examples. In Section 6,
we review classification and subcellular quantification. Finally, in Section 7 we discuss
some of the potential issues that image analysis of histopathology could be used to address
in the future and possible directions for the field in general.

While there are a large number of applicable methods for preprocessing (Section 3),
detection and segmentation (Section 4), feature extraction and selection (Section 5), and
classification and subcellular quantification (Section 6), we will present here only some
common examples. We refer the interested reader to the references contained within the
various sections for further reading.
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Il. Digital pathology imaging modalities

2.1 Histopathology and Cytopathology

Histopathology is the study of the signs of the disease using the microscopic examination of
a biopsy or surgical specimen that is processed and fixed onto glass slides. To visualize
different components of the tissue under a microscope, the sections are dyed with one or
more stains. The aim of staining is to reveal cellular components; counter-stains are used to
provide contrast. Hematoxylin-Eosin (H&E) staining has been used by pathologists for over
a hundred years. Hematoxylin stains cell nuclei blue, while Eosin stains cytoplasm and
connective tissue pink. Due to the long history of H&E, well-established methods, and a
tremendous amount of data and publications, there is a strong belief among many
pathologists that H&E will continue to be the common practice over the next 50 years [24].

Cytology, on the other hand, is related to the study of cells in terms of structure, function
and chemistry. Resulting from the least invasive biopsies (e.g., the cervical Pap smear),
cytology imagery is the most commonly encountered for both disease screening and biopsy
purposes. Additionally, the characteristics of cytology imagery, namely the presence of
isolated cells and cell clusters in the images, and the absence of more complicated structures
such as glands make it easier to analyze these specimens compared to histopathology.

2.2 Immuno-fluorecence imaging and multiple imaging modalities

Recently, immuno-fluorescent labeling-based image analysis algorithms have been
presented to quantify localization of proteins in tissue [25-27]. Commonly used molecular
markers are based on chromogenic dyes (such as DAB), or fluorescent dyes (such as Cy
dyes or Alexa dyes). Fluorescent dyes have the advantage of multiplexing the dyes to
acquire images of multiple proteins. A general overview of molecular labeling, high
throughput imaging, and pattern recognition techniques is presented by Price et al. [28].

With current imaging techniques, it is not possible to simultaneously image H&E dyes and
immuno-fluorescent molecular biomarkers due to fluorescent characteristics of the H&E
dyes, and due to chemical interactions of H&E dyes with the fluorescently labeled
antibodies. Recently, methods have been developed to facilitate sequential imaging and
registration techniques that enable different modalities presented digitally from the same
histological tissue section. Additionally, sequential imaging and registration enables imaging
of multiple immuno-fluorescent stains acquired in multiple steps rather than conventional
simultaneous multiplexing techniques. This allows an order of magnitude increase in the
number of molecular markers to be imaged for the same tissue section. These techniques
make it possible to explore un-examined relationships between morphology, subcellular
spatial distribution of proteins, and protein-protein interactions. An example of these
techniques is shown in Figure 2.1. For brightfield images, hematoxylin stains the nuclei blue
(Figure 2.1a), and for fluorescent images DAPI can be used to stain nuclei (blue channel in
Figure 2.1a). The first nuclei image is set as the reference image and each of the subsequent
nuclei images are registered to the reference. Once the transformation parameters are
estimated, then all the channels at a sequential step are mapped onto the reference coordinate
system. Figures 2.3b-d show superimposed b-catenin, pan-keratin and smooth muscle a-
actin markers superimposed on the H&E with green pseudo-color [29]. Another recently
developed sequential imaging method known as MELC [30] has the ability to produce
images of the same specimen with up to 100 proteins by utilizing the photo-bleaching
characteristics of the fluorescent dyes.

One of the major problems with such ‘multi-channel’ imaging methods is the registration of
the multiplexed images, since physical displacements can easily occur during sequential
imaging of the same specimen. In [29], the authors used mutual information based error
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metrics to register the nuclei images from sequential staining steps. While the fluorescent
images include dedicated nuclei channels (such as DAPI), the nuclei images from the H&E
images can be computed using decomposition techniques [31,32], or using simple ratio or
differencing methods that utilize the fact that blue wavelengths are absorbed less than green
and red channels by the hematoxylin dye.

2.3 Spectroscopic Imaging Modalities for Histopathology

In recent years, several spectral data acquisition methods have been employed to aid the
diagnosis process with additional information about the biochemical makeup of cells and
other tissue constituents. Generally, computerized histopathology image analysis takes as its
input a 3-channel (red, green and blue or RGB) color image captured by digital imaging
equipment (normally a CCD camera) and attempts to emulate the manual analysis and/or
provide additional quantitative information to aid in the diagnosis. While analysis of
ordinary color images has been shown to be useful, one of the major drawbacks is that only
three color channels of the light spectrum are used, potentially limiting the amount of
information required for characterizing different kinds of tissue constituents. On the other
hand, recently proposed immuno-histochemistry (IHC) methods are not sufficiently well
developed for their use in quantitative pathology [33].

Spectral methods offer a relatively inexpensive way of providing a deeper insight into tissue
composition. Most of these methods can be categorized into three broad classes: point
spectroscopy, spectral imaging, and spectroscopic imaging. Point spectroscopy is a well-
established area of study whereby, in the context of histopathology, the chemical
composition of a tissue sample is ascertained with the help of the spectrum emitted or
absorbed at a specific point on the biopsy. Point spectroscopy methods can employ both
visible light and beyond. Spectral imaging, also known as multi-spectral or hyper-spectral
imaging, measures intensity of light from the entire optical field after exciting the sample
with visible light of varying wavelengths. Spectroscopic imaging combines the strengths of
both of the above two methods, building spatial imaging of the human tissue in a multitude
of wavelength regimes.

2.3.1 Point Spectroscopy—Vibrational spectroscopy is the most widely researched
point spectroscopy method for characterization of normal and diseased tissue. It measures
molecular vibrations, induced by incident light, corresponding to the chemical makeup at the
molecular level in two different ways: absorption of electromagnetic radiation or frequency
shifts between incident and scattered light — the so-called Raman scattering effect.

In case of infrared (IR) absorption spectroscopy, the sample is irradiated with a mid-IR
beam and the transmitted light is examined for absorption of energy. The absorption
spectrum, a plot of absorption versus different wavelengths, can reveal the biochemical
makeup of the molecules. IR spectroscopy has been used to analyze tissue constituents at a
molecular level for almost 60 years [34,35]. Indeed, IR spectra was investigated for
characterization of normal and neoplastic tissue as far back as 1952 by Woernley [36], who
also showed that the absorption at certain frequencies can be correlated with the
concentrations of nucleic acids in tissues. Recent advances in machine learning and pattern
recognition algorithms and the development of the IR spectroscopic imaging modality have
renewed interest in this technique for studying the biochemical makeup of healthy and
diseased tissue.

In Raman spectroscopy, the sample is illuminated with a monochromatic visible or near-IR
(NIR) light from a laser source and frequency shifts in the scattered light are measured. The
Raman spectrum is a plot of intensity of the scattered photon versus shifts in its frequency,
often measured in terms of wave numbers in cm~1. NIR-Raman spectroscopy is often used
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as an alternative to IR spectroscopy since NIR light has higher energy than mid-IR light and
can penetrate much farther into the sample.

Fourier-transform (FT) spectroscopy, known as FT-IR when IR light is used, allows a faster
acquisition of the IR spectra by using an interferometer followed by the Fourier transform
(FT). FT-IR spectroscopy is the most commonly used form of IR spectroscopy.

2.3.2 Spectral Imaging—Spectral imaging is carried out by building an image cube with
slices corresponding to images of the same scene obtained by incident light at differing
wavelengths. This technique is referred to as multi-spectral (MS) or hyper-spectral (HS)
imaging depending on the number Ny, of spectral bands, individual slices of the image cube
in the spectral direction (generally with Ny, < 40 for MS and Ny, > 40 for HS).

2.3.3 Spectroscopic Imaging—Spectroscopic imaging is similar to spectral imaging in
that a volumetric cube is obtained with a spectrum per pixel in the optical field. The main
difference is that spectroscopic imaging builds the image cube by dividing the image scene
into a uniform Cartesian grid, raster scanning the scene according to the grid, and collecting
point spectra for each of the grid points.

Fernandez et al. [33] have proposed an IR spectroscopic imaging method based on a
Michelson interferometer and all-reflecting microscope equipped with a 16-element linear
array detector with a narrow aperture size of 6.25um x 6.25um. A massive 1,641-
dimensional point spectrum was obtained for each pixel spanning a spectral range of 4,000-
720cm™~1 at an effective spectral resolution of 2cm™ and at a spatial resolution of 6.25um.
Tissue sections were also stained with H&E and imaged with a digital light microscope for
manual histopathology analysis.

While most of the above methods are generally invasive for internal body organs, magnetic
resonance spectroscopy (MRS) is a completely non-invasive way of probing the biochemical
makeup of tissue. By this virtue, it is a particularly attractive prospect for the imaging of
brain tumors, along with magnetic resonance (MR) imaging which has become a mainstay
in the diagnosis of suspicious brain lesions [37]. The main principle behind MRS imaging is
the chemical shift process, the process whereby different metabolites in the tissue respond at
different resonating frequencies, with the chemical shift often measured in parts per million
(ppm). One particular advantage of MRS is that it can be tuned to specific nuclei in the
tissue; with hydrogen (XH, also known as proton) being the most commonly studied one.
Studies have shown clear differences between 1H MRS spectra of brain tumors and normal
brain [38].

2.3.4. Spectral Analysis for Histopathology—In IR spectroscopy, Mcintosh et al.
[39] investigated the use of infrared spectroscopy for the characterization of in vitro basal
cell carcinoma (BCC) specimens, exploiting the fact that mid-IR light is absorbed by a
variety of skin components. Point spectroscopy was performed using an IR spectrometer and
an aperture of 20um x 20um from carefully selected regions containing only one type of skin
lesion. Their analysis of the normalized spectra employing linear discriminant analysis
(LDA) identified absorption bands that arise mainly from CH2 and CH3 absorptions in
dermal spectra that are similar to those seen in samples rich in protein and collagen in
particular. H&E staining for standard histological examination was carried out after the
spectra had been obtained. In a more recent paper, Mclntosh et al. [40] utilized LDA to
analyze the near-IR (NIR) absorption spectrum for non-invasive, in vivo characterization of
skin neoplasms. Their rationale for using NIR light was that the mid-IR light could be
completely absorbed by samples greater than 10-15xm in thickness, therefore limiting the
utility of mid-IR spectroscopy to in vitro analysis.
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In Raman spectroscopy, Frank et al. [41] examined Raman spectra from breast and observed
that visible laser excitation could be used to reveal Raman features for lipids and
carotenoids. Huang et al. [42] explored the use of a rapid acquisition NIR Raman
spectroscopy system for in vitro diagnosis of lung cancer. Student's t-test was performed to
discriminate between normal and malignant bronchial tissues using the ratio of Raman
intensity at two specific wavelengths. Chowdary et al. [43] showed that the Raman spectra
could be useful for discriminating between normal and diseased breast tissues, although a
simple Principle Component Analysis (PCA) of spectra was employed for discrimination
purposes. Analyzing the Raman spectra of malignant breast tissues, they concluded that
malignant tissues had an excess of lipids and proteins. Robichaux-Viehoever et al. [44]
investigated the use of NIR Raman spectra for the detection of cervical dysplasia and
achieved high correlation between the results of their spectral analysis and the
histopathology diagnosis.

Recently, Wang et al. [45] have shown that FT-IR spectroscopy can be effectively used for
detecting pre-malignant (dysplastic) mucosa and leads to better inter-observer agreement, in
terms of the x-statistic. Oliveira et al. [46] have explored a setup involving a fixed-
wavelength (1064nm) laser line as an excitation source and FT-Raman for generating the
spectra. Spectral analysis using principal component analysis (PCA) and Mahalanobis
distance were used to detect dysplastic and malignant oral lesions. Their results using LDA
showed effective separation of spectra of benign lesions from those of pre-malignant and
malignant lesions. Over the years, multi-spectral (MS) and hyper-spectral (HS) imaging
have demonstrated an enormous potential in remote-sensing applications, leading many
researchers to expect promise about their usefulness in histopathology [47]. This promise
has been demonstrated by [48] and [49] in their work on the diagnosis of colon
adenocarcinoma. However, two recent studies [50,51] have found that the additional spectral
information does not significantly improve the classification results. This may be due to the
fact that most MS and HS imaging methods employ the visible part of light spectrum which
may not be very useful in terms of highlighting important biochemical characteristics, as
opposed to the near-IR or mid-IR spectrum. The number of stains present in the sample, as
well as the characteristics of the stains themselves will also directly affect the performance
of MS and HS image analysis methods.

In MR Spectroscopy, several studies, such as [52], can be found in the literature that report
high correlation between automatic grading of in vivo tumors and their corresponding post-
operative histopathology findings. However, MRS spectral analysis has traditionally been
limited to rather simplistic ratio tests. Tiwari et al. [53] recently proposed an unsupervised
spectral clustering based algorithm for diagnosis of prostate cancer from the MRS spectra,
reporting higher specificity compared to the popular z-score scheme, routinely used for the
analysis of MRS data.

Spectral analysis using different modalities discussed above has demonstrated its potential
for diagnosis and grading of cancer in tissue samples. However, as outlined above, most of
the proposed algorithms in the literature make use of linear subspace projection methods
(PCA, LDA etc) for analysis of the spectral data despite the fact that spectral signatures of
different types of tissue in the high-dimensional space may not be linearly separable.
Furthermore, a few challenges are limiting the success of such methods in the realm of
optical diagnostics. These include, but are not limited to, storage and transmission,
registration, processing and analysis of large amounts of data generated by spectral data
acquisition methods. The problem is further compounded when gathering spectral imaging
data for whole slides. However, the availability of powerful computational resources at
increasingly low prices and recent advances in image analysis have meant that more
sophisticated methods can now be applied for analyzing large amounts of spectral data.
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lll. Image pre-processing: color and illumination normalization

3.1. Color Normalization

One of the first steps essential for both fluorescent and bright field microscopy image
analysis is color and illumination normalization. This process reduces the differences in
tissue samples due to variation in staining and scanning conditions. The illumination can be
corrected either using calibration targets or estimating the illumination pattern from a series
of images by fitting polynomial surfaces [29]. Another approach is to match the histograms
of the images. Software that corrects for spectral and spatial illumination variations is
becoming a standard package provided by most bright field manufacturers. This is an
essential step for algorithms that heavily depend on color space computations. Yang and
Foran [54] presented a robust color based segmentation algorithm for histological structures
that used image gradients estimated in the LUV color space to deal with issues of stain
variability. In the next section, we give detailed description of correcting another artifact,
tissue autofluorescence, in fluorescent images.

3.2. Compensating for Tissue auto-fluorescence

Tissue auto-fluorescence (AF) is a fundamental problem in microscopy applications,
particularly in retrospective studies that use formalin fixed paraffin embedded tissue
sections. AF reduces the signal detection sensitivity, and in some cases even causes failure
in the detection of fluorescent biomarker signals. In [29] a two-step technique was used to
remove the AF from fluorescent microscopy images. Rather than acquiring images of all the
dyes at once using a set of optimum filter cubes tuned to specific dyes, the acquisition is
done in two steps. In the first step, tissue is stained with only the low AF dyes (e.g. ultra-
violet or infra-red), and images are acquired using all the filter cubes. Images of these cubes,
except the low AF dyes, represent the tissue AF at their specific spectra. In the second step,
all the remaining dyes are added, and images of all the cubes are acquired again. Then the
first set of images is aligned with the second set using a transformation estimated by
registering the low-AF images that are common in both steps.

The first step before any AF removal is the correction of the excitation light pattern. The
observed image, I(x, y) can be modeled as a product of the excitation pattern, and the
emission pattern. While the emission pattern captures the tissue dependent fluorescent
staining, the excitation pattern captures the excitation light. In the logarithm domain, the
multiplicative relation can be transformed into a linear form. The excitation pattern can be
estimated using the mean of the brightest set of pixels from an ordered set of N images;

K
’ 1
EAVE (x,y) :Ezl()g I (x,y)),
n= 3.1)

where I,(x, y) denote the ordered pixels (I1(X, ¥) = Io(X, y) = L I,(x, y) L = Iy(X, y)) and K
represents the set of brightest pixels. Assuming that a certain percentage of the image
occupies stained tissue (non-zero backgound), K is set to an integer to represent this
percentage (10% in our experiments). This approximation holds if a large number of images
are used in the averaging process. However, a large percentage of pixels are already
excluded to eliminate the non-tissue pixels in the images. To overcome the limited sampling
size, the log of the excitation pattern estimated in equation (3.1) can be approximated with
polynomials. The surface generated by the polynomial coefficients are then used to correct
individual images [55].
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After the images are corrected for their light excitation pattern, the images between the two
sequential steps are aligned. From the two common images, one being the reference image
from the first step, F(x, y), and the second being from the subsequent step, S(x, y) a rigid
transformation Tgg is obtained, such that the image similarity measure, between F(x, y) and
S(Tgs(X, y)) is maximized,

arg maxS imilarity (F (x,y),S (T, (x,)))
T (3.2)

Due to its robustness in registering multi modality images, a mutual information based
image similarity measure is used to deal with tissue loss and folding. Additional robustness
is achieved by incorporating the mutual information estimation in a multi-resolution
framework [56].

Once Tksg is estimated, all the channels are transformed with this transformation to represent
all the images in both acquisitions in the same coordinate system. Then the first set of
images is subtracted from the second set of images. To achieve the highest dynamic range,
the first set of AF images can be acquired in longer exposure times than the second set of
AF-dye mixture images. Figures 3.1 shows the acquisition of the Cy3 channel before and
after the tissue is stained with Cy3 dye directly conjugated with Estrogen Receptor (ER).
The tissue is also stained with a low AF ultraviolet nuclear stain, DAPI (not shown in the
figure), which is acquired in both steps and used for aligning the images. The AF removed
image is shown in Fig 3.1c. The arrows point to successfully removed high-AF regions, such
as red blood cells. Removing the AF using the proposed two-step approach enables accurate
image analysis and quantitation for low abundance proteins and directly conjugated
antibodies.

IV. automated detection and segmentation of histopathology images

One of the pre-requisites to grading or diagnosis of disease in histopathology images is often
the identification of certain histological structures such as lymphocytes, cancer nuclei, and
glands. The presence, extent, size, shape and other morphological appearance of these
structures are important indicators for presence or severity of disease. For instance, the size
of the glands in prostate cancer tend to reduce with higher Gleason patterns [57]. Similarly
the presence of a large number of lymphocytes in breast cancer histopathology is strongly
suggestive of poor disease outcome and survival [58]. Consequently, a pre-requisite to
identification and classification of disease is the ability to automatically identify these
structures. These approaches can either be global, in which they attempt to simultaneously
segment all the structures in the image scene or local approaches which target specific
structures.

Another motivation for detecting and segmenting histological structures has to do with the
need for counting of objects, generally cells or cell nuclei. Cell counts can have diagnostic
significance for some cancerous conditions. Bibbo et al. [59] reported 1.1%-4.7% error in
cell counts compared to manual counts for Feulgen-stained prostate specimens. Belien et al.
[60] found 19-42% error in counting mitoses in Feulgen-stained breast tissue sections. In
immunohistochemically stained bone marrow biopsies, Markiewicz et al. [61] reported
2.8-10.0% difference in counts between manual and automatic methods, while Kim et al.
[62] found a correlation of 0.98 between manual and automatic counts of immunostained
slides of meningiomas. Sont et al. [63] found a correlation of 0.98 between automated and
semi-automated methods for inflammatory cell counts in immunostained bronchial tissue.
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4.1. Local, structural Segmentation

4.1.1 Nuclear Segmentation—Numerous works have been conducted [64-66] on
segmentation of various structures in breast histopathology images using methodologies
such as thresholding, fuzzy c-means clustering and adaptive thresholding [66]. Thresholding
tends to work only on uniform images and does not produce consistent results if there is
considerable variability within image sets. Watershed algorithms tend to pose the same
problem [65] due to variability in image sets. Active contours are widely used in image
segmentation; however, contours enclosing multiple overlapping objects pose a major
limitation. In addition, inclusion of other irrelevant objects from the background further
complicates the possibility of obtaining a viable segmentation.

The pixel-level analysis of unstained prostate slides by Fourier transform infrared
spectroscopy resulted in 94%-100% accuracy in the pixel-level classification of 10
histologic classes as reported by Fernandez et al. in [67]. The pixel-level classification of
nuclear material by Boucheron et al. [68] resulted in performances (equal tradeoff between
detection and false alarm rates) of 88-90% for H&E stained breast tissue. The use of
automated methods for pixel-level analysis is perhaps more common for immunostained or
fluorescently stained specimens. Singh et al. [69] reported 98% accuracy in the detection of
positive and negative prostate nuclei immunostained for androgen receptor protein
expression. Analysis of cytokeratin-stained lymph node sections yielded 95% detection of
stained cells as reported by Weaver et al. in [70]. However, these studies focus only on
finding individual nuclei.

In H&E stained imagery of astrocytomas and bladder tissue, Glotsos et al. [71] reported that
94% of nuclei were correctly delineated. Latson et al. found 25% poorly segmented nuclei,
4.5%-16.7% clumped nuclei, and 0.4%-1.5% missed nuclei in H&E stained breast biopsies.
Fluorescently stained imagery of cervical and prostate carcinomas allowed for 91%-96%
accuracy in cell segmentation by Wahlby et al. [72], where the accuracy here is calculated
based on manual cell counts (i.e., not taking into account the accuracy of the actual nuclear
delineation). Korde et al. used image intensity thresholding to segment nuclei in the bladder
and in skin tissue [73]. Gurcan et al. leveraged gray level morphology followed by
hysteresis thresholding to achieve cell nuclei segmentation in digitized H&E stained slides
[74,75]. Other algorithms have been proposed using more complex techniques, such an
active contour scheme for pap-stained cervical cell images by Bamford and Lovell [76] and
a fuzzy logic engine proposed by Begelman, et al. [77] for prostate tissue that uses both
color and shape based constraints.

In [64,78] nuclear segmentation from breast and prostate cancer histopathology was
achieved by integrating a Bayesian classifier driven by image color and image texture and a
shape-based template matching algorithm (Figure 4.1). Figure 4.1(a) shows a DCIS study
with a number of nuclei closely packed together. The likelihood image representing the
probability of each pixel corresponding to a nuclear region is shown in Figure 4.1(b). Note
that several nuclei lie adjacent to each other and hence template matching is used to extricate
the individual nuclei. Figure 4.1(c) shows the result of thresholding the Bayesian likelihood
scene (95% confidence level). Template matching is then done at every location in 4.1(c).
Only those image locations where correspondence between the binary segmentation (Figure
4.1(c)) and the template was found are shown as bright. The final nuclear boundary
detection (green dots) is displayed in Figure 4.1(d). 4.1.2. Gland segmentation: In a recently
presented scheme for extracting glandular boundaries from histopathology scenes [64], the
algorithm consists of three distinct components: In the first stage a Bayesian classifier is
trained based on color and textural information to automatically identify nuclei, cytoplasm,
and lumen regions in the scene. This information is used to train a supervised classifier to
identify candidate nuclear, cytoplasmic, and lumen regions within the histological scene.
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Following low-level Bayesian classification, structural constraints are incorporated to
constrain the segmentation by using image Information regarding the specific order of
arrangement of glandular structures (central lumen, surrounding cytoplasm and nuclear
periphery) in order to reduce number of false positive gland regions. Finally, a shape-based
segmentation method in the form of level sets [79] is initialized within candidate lumen
regions as determined from the Bayesian classifier. Hence the level set surface evolution is
controlled by the Bayesian probability scene derived via use of the low-level image
information. The level set evolution is stopped at the interface between lumen and
cytoplasm and thus a segmentation of the inner gland boundary is obtained. A second level
set is then initialized within the cytoplasm area and used to capture the outer gland margin.
Once the possible gland lumens are found, boundary segmentation is performed using level-
sets. A boundary B evolving in time t and in the 2D space defined by the grid of pixels C is
represented by the zero level set B = {(x, y)|f(t, X, y) = 0} of a level set function f, where x
and y are 2D Cartesian coordinates of ¢ T C. The evolution of f is then described by a level-
set formulation adopted from [79]:

¢
—+F|V¢|=0
6t+ Vel (4.1)

where the function F defines the speed of the evolution. The curve evolution is driven by the
nuclei likelihood image. The initial contour ¢y = ¢ (0, X, y) is initialized automatically using
the detected lumen area from the candidate gland regions. The curve is evolved outward
from the detected lumen regions in the combined nuclei likelihood image to avoid noise and
allow smoother evolution relative to the original image. The intensities of the nuclei
likelihood image form the stopping gradient. The algorithm is run until the difference in the
contours in two consecutive iterations is below an empirically determined threshold. During
training, size distributions similar to those used to calculate object likelihood are created
using the final contours. These nuclear boundary based distributions are used to remove
regions that are too large to be true glands. Finally, the lumen and nuclear boundaries
extracted from true gland regions are passed on to the next step for feature extraction.
Sample results from the automated gland segmentation algorithm are shown in Figure 4.2.
The lumen boundaries are displayed in a solid blue contour and the interior nuclear
boundaries are displayed as dashed black lines. Results of our gland segmentation algorithm
are shown for sample images from benign epithelium, intermediate, and high-grade prostate
cancer (from left to right).

4.2 Global Scene Segmentation Approaches

In [26], a unified segmentation algorithm for subcellular compartmentalization was
presented. Quantitation of biomarkers at sub-cellular resolution requires segmentation of
sub-cellular compartments such as nuclei, membranes, and cytoplasm. While different
segmentation algorithms can be used for each of the sub-cellular compartments, an
alternative is to use the same algorithm in different modes. The algorithm in [26] captured a
set of bright pixels sharing a common shape distribution. The algorithm used a set of three
features, one is the fluorescent emission intensity, and the other two are based on curvature
descriptors that are computed from the eigenvalues of the Hessian matrix.

For an image, I(x, y) the eigenvalues (11(x, y) < »(x, y)) of the Hessian matrix encode the
curvature information of the image, and provide useful cues for detecting ridge-like
membrane structures, or blob-like nuclei structures. However, the eigenvalues are dependent
on image brightness. The following two curvature-based features are independent of image
brightness:
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0 (x,y) =atan2 (41 (x,y), A2 (x,¥)), (4.2)

- (P in?)
X, =tan 5
Y 7(x.y) (4.3

and referred to as shape index, and normalized-curvature index, respectively. This is
essentially the same as defining the eigenvalues in a polar coordinate system. This
transformation also results in bounded features, —3z/4 < 6(x, y) < /4 and 0 < ¢(X, y) < #/2.

The estimation process starts with the expected distributions of the shape index for the
structures to be segmented. For example, for bright membrane and vessel like structures the
shape index is close to —z/2, because the smaller eigenvalue is negative and the larger
eigenvalue approaches to zero. On the other hand, for the blob-like nuclei structures, the
shape index is close to —3x/4, because both eigenvalues are negative and close in value. For
both structures, positive values indicate a pixel being more like a background. These
constraints are used to compute the initial foreground and background sets for membrane
and nuclei structures. An initial segmentation based on the shape index and the normalized-
curvature index separates the image pixels into three subsets: background, foreground, and
indeterminate. The indeterminate subset comprises all the pixels that are not included in the
background or foreground subsets. From these subsets, the background and foreground
intensity distributions, as well as the intensity log-likelihood functions are estimated. The
algorithm keeps iterating by using two out of the three features at a time to estimate the
distribution of the feature that is left out. In the final step, these log-likelihood functions are
combined to determine the overall likelihood function. A probability map that represents the
probability of a pixel being a foreground is calculated.

Cytoplasm can be detected either by using a specific cytoplasmic marker, or can be detected
using computational methods using the fact that the cytoplasmic areas are between nuclear
and membrane areas. For most cancer tissue types, it is very important to differentiate the
epithelial tissue from the stromal and connective tissue, so that for IFC studies the
expression levels of most markers in the epithelial regions can be quantified. Computational
methods that use the high connectivity of membrane meshes can be used to differentiate the
epithelial regions. For the sample images, any connected component larger than 800 pixels
is accepted as a part of the epithelial mask. The nuclei set is then separated into epithelial
nuclei and stromal nuclei using the epithelial mask. Figure 7.3.b shows the separated
epithelial nuclei (bright blue) from the stromal nuclei (dark blue).

EMLDA is an image segmentation method, which uses the Fisher-Rao criterion as the
kernel of the expectation maximization (EM) algorithm [80]. Typically, the EM-algorithm is
used to estimate the parameters of some parameterized distributions, such as the popular
Gaussian mixture models, and assign labels to data in an iterative way. Instead, the EMLDA
algorithm uses the Linear Discriminant Analysis (LDA), a supervised classification
technique, as the kernel of EM-algorithm and iteratively group data points projected to a
reduced dimensional feature space in such a way that the separability across all classes is
maximized. In [63], authors successfully applied this approach in the context of
histopathological image analysis to achieve the segmentation of digitized H&E stained
whole-slide tissue samples.
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V. Feature extraction

Research on useful features for disease classification has often been inspired by visual
attributes defined by clinicians as particularly important for disease grading and diagnosis.
The vast majority of these features are nuclear features, and many have been established as
useful in analysis of both cytopathology and histopathology imagery. Other features that
assume discriminatory importance include the margin and boundary appearance of ductal,
stromal, tubular and glandular structures. While there is a compilation of features for
cytopathology imagery [81], there is relatively little such work for histopathology imagery.

Humans’ concept of the world is inherently object-based, as opposed to the largely pixel-
based representation of computer vision. As such, human experts describe and understand
images in terms of such objects. For pathologists, diagnosis criteria are inevitably described
using terms such as “nucleus” and “cell.” It is thus important to develop computer vision
methods capable of such object-level analysis.

5.1 Object Level Features

Fundamentally, object-level analysis depends greatly on some underlying segmentation
mechanism. It is the segmentation methodology that determines what constitutes an object.
Commonly, an object is defined as a connected group of pixels satisfying some similarity
criterion. The main focus is often on the segmentation of nuclei; there exists little work that
explicitly uses features of cytoplasm and stroma, although some researchers have hinted at
the need for such features [82,83]. Preliminary work [84] has demonstrated the feasibility of
other histologic features for image classification in H&E stained breast cancer. Madabhushi
et al. [64] used cytoplasmic and stromal features to automatically segment glands in prostate
histopathology. Moreover, it appears that histologic objects may not need to be perfectly
segmented to be properly classified when a list of comprehensive features is used in a
feature selection framework [84]. Classification performance in distinguishing between
different grades of prostate cancer was found to be comparable using manual and automated
gland and nuclear segmentation [64]. These results suggest that perfect segmentation is not a
prerequisite for good classification.

Obiject-level features can be categorized as belonging to one of four categories: size and
shape, radiometric and densitometric, texture, and chromatin-specific. While the radiometric
and densitometric, texture, and chromatin-specific features could be considered low-level
features that can be extracted from local neighborhoods, the size and shape metrics are true
object-level metrics. A summary of object-level features is listed in Table 5.1; definitions for
all listed features can be found in reference [84]. These features were compiled from a
comprehensive literature search on cytopathology and histopathology image analysis. In
addition, various statistics measures for any of the vector quantities are also commonly
calculated. Thus, the mean, median, minimum, maximum, standard deviation, skewness, and
kurtosis can be calculated for all vector features. For an RGB image, all relevant features are
extracted for each individual color channel; hence the total number of object-level features
can easily exceed 1000 for the list of features in Table 5.1. It should be noted that these
features are most commonly extracted from high-resolution imagery (see next section), but
are relevant for any resolution.

An approach that semantically describes histopathology images using model based
intermediate representation (MBIR) and incorporates low-level color texture analysis was
presented in [85]. In this approach, basic cytological components in the image are first
identified using an unsupervised clustering in the La*b* color space. The connected
components of nuclei and cytoplasm regions were modeled using ellipses. An extensive set
of features can be constructed from this intermediate representation to characterize the tissue
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morphology as well as tissue topology. Using this representation, the relative amount and
spatial distribution of these cytological components can be measured. In the application of
follicular lymphoma grading, where the spatial distribution of these regions varies
considerably between different histological grades, MBIR provides a convenient way to
quantify the corresponding observations. Additionally, low-level color texture features are
extracted using the co-occurrence statistics of the color information. Due to the staining of
the tissue samples, the resulting digitized images have considerably limited dynamic ranges
in the color spectrum. Taking this fact into account, a non-linear color quantization using
self-organizing maps (SOM) is used to adaptively model the color content of microscopic
tissue images. The quantized image is used to construct the co-occurrence matrix from
which low-level color texture features are extracted. By combining the statistical features
constructed from the MBIR with the low-level color texture features, the classification
performance of the system can be improved significantly.

Figure 5.1 shows some of the textural image features for discriminating between benign
breast epithelial tissue [78] (DCIS, Figure 5.1a) and DCIS (Figure 5.1d). Figures 5.1b, e
show the corresponding Gabor filter responses while Figures 5.1c, f show the corresponding
Haralick feature images.

5. 2: Spatially Related Features

Graphs are efficient data structures to represent spatial data and an effective way to
represent structural information by defining a large set of topological features. Formally, a
simple graph G = (V, E) is an undirected and un-weighted graph without self-loops, with V
and E being the node and edge set of graph G, respectively.

Application of graph theory to other problem domains is impressive. Real-world graphs of
varying types and scales have been extensively investigated in technological [86], social
[87] and biological systems [88]. In spite of their different domains, such self-organizing
structures unexpectedly exhibit common classes of descriptive spatial (topological) features.
These features are quantified by definition of computable metrics.

The use of spatial-relation features for quantifying cellular arrangement was proposed in the
early 1990's [89], but didn't find application to clinical imagery until recently. Graphs have
now been constructed for modeling different tissue states and to distinguish one state from
another by computing metrics on these graphs and classifying their values. Overall,
however, the use of spatial arrangement of histological entities (generally at low resolutions)
is relatively new, especially in comparison to the wealth of research on nuclear features (at
higher resolutions) that has occurred during the same timeframe. A compilation of all the
spatial-relation features published in the literature is summarized in Table 5.2. Definitions
for all graph structures and features can be found in reference [84]. The total number of
spatial-relation features extracted is approximately 150 for all graph structures.

Graph theoretical metrics that can be defined and computed on a cell-graph induce a rich set
of descriptive features that can be used for tissue classification. These features provide
structural information to describe the tissue organization such as: (i) the distribution of local
information around a single cell cluster (e.g., degree, clustering coefficient, etc), (ii) the
distribution of global information around a single cell cluster (e.g., eccentricity, closeness,
between-ness, etc.), (iii) the global connectivity information of a graph (e.g., ratio of the
giant connected component over the graph size, percentage of the isolated and end data
points in the graph, etc), (iv) the properties extracted from the spectral graph theory (e.g.,
spectral radius, eigen exponent, number of connected components, sum of the eigenvalues in
the spectrum, etc). Refer to Table 5.2 for a list of commonly extracted graph features.
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5.2.1 2D Cell-graph construction—In cell-graph generation as proposed in [90], there
are three steps: (i) color quantization, (ii) node identification, and (iii) edge establishment. In
the first step, the pixels belonging to cells from those of the others are distinguished. These
steps are explained in the next sub-sections.

i. Node identification:

The class information of the pixels is translated to the node information of a cell-
graph. At the end of this step, the spatial information of the cells is translated to
their locations in the two-dimensional grid. After computing the probabilities, these
are compared against a threshold value.

ii. Edge establishment:

This step aims to model pair-wise relationships between cells by assigning an edge
between them. Cells that are in physical contact are considered to be in
communication, thus edges can be established between them deterministically. For
other node pairs, a probability function is used to establish edges between a pair of
nodes randomly. Since structural properties of different tissues (e.g., breast, bone
and brain) are quite different from each other, edge establishment must be guided
by biological hypothesis.

5.2.2. 3D Cell-graphs—The first step in 3D cell-graph construction is to define the
distance between a pair of nodes, which is simply the 3D Euclidean distance between a pair
of nodes. Based on this distance definition, edges can be established between a pair of
nodes. In addition to the simple spatial distance metrics, a multi-dimensional distance
measure can be defined using the cell-level attributes that can be provided by sophisticated
image analysis and segmentation. Cell-level attributes include: x, y, z physical contact,
volume with respect to number of pixels, peripheral (i.e., surface area), shared border as
percentage of shared voxels relative to total, and polarity. Then each node of the 3D cell-
graph can be represented by a vector of v-dimensions, each dimension corresponding to an
attribute. The Lp norm can be used to compute the multidimensional distance between them.
Once the notion of distance is determined, edge functions of cell-graphs can be applied to
construct 3D cell-graphs. The mathematical properties of cell-graphs in 3D can be calculated
as the feature set. Although most of the features defined on 2D cell-graphs can be extended
to the 3D case, their calculation is not trivial.

5.2.3 Application of Graph based modeling for different histopathology related
applications

A. Graph based Modeling of Extra Cellular Matrix: The Extra Cellular Matrix (ECM) is
composed of a complex network of proteins and oligosaccharides that play important roles
in cellular activities such as division, motility, adhesion, and differentiation. Recently, a new
technique was introduced for constructing ECM-aware cell-graphs that incorporates the
ECM information surrounding the cells [91]. ECM-aware cell-graphs aim to preserve the
interaction between cells and their surrounding ECM while modeling and classifying the
tissues. The ECM-aware cell-graphs successfully distinguish between different types of cells
that co-exist in the same tissue sample. For example, in bone tissue samples there are usually
several cell types, including blood cells, normal cells, and sometimes fracture cells (e.g.,
chondrocytes and osteoblasts) and cancerous cells. Since these cells are functionally
different from each other, the hypothesis is that they would exhibit different spatial
organization and structural relationships in the same tissue. This hypothesis has been
validated by showing that ECM-aware cell-graphs yield better classification results for
different states of bone tissues than the current state of art. In the construction a color value
is assigned to each cell (i.e., vertex) based on the RGB values of its surrounding ECM. This
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is done by examining the k neighboring pixels in each direction, and computing a dominant
color for the ECM surrounding each cell using the RGB values of nearly 4k? neighboring
pixels.

B. Application to Discriminating Different States of Brain Tissue: Figure 5.3 shows the

cell-graphs of brain tissues exhibiting distinctive graph properties that enable discrimination
between the different states of brain tissue.

C. Application to Studying Temporal Activity of Adult Human Mesenchymal Stems

Cells in a 3D Collagen Matrix: Figure 5.4 shows relationships between adult human
mesenchymal stem cells in a 3D collagen protein matrix over time in culture [91]. The
graphs are generated from 3D sections of tissue (900x900%80 um) imaged using confocal
microscopy. The nuclei of stem cells in the constructs were stained and imaged at the time
points indicated (0 — 24 hours).

D. Application of Graph Theory to Modeling Cancer Grade: In [93], the VVoronoi
diagram is constructed from a set of seed-like points that denote the centers of each structure
of interest (nuclei). From the VVoronoi diagram, two more graphs of interest can be
constructed: the Delaunay triangulation, which is created by connecting points that share an
edge in the VVoronoi diagram, and the minimum spanning tree, which is the series of lines
that spans the set of points such that the Euclidean sum of the lengths of the lines is smaller
than any other spanning tree. From each of these three graphs, a series of features are
calculated that captures the size, shape, and arrangement of the structures of the nuclei. The
graph based representations of a Gleason grade 4 prostate histopathology image are shown
in Figure 5.5.

5.3. Multi-scale feature extraction

Owing to the density of the data and the fact that pathologists tend to employ a multi-
resolution approach to analyzing pathology data, feature values are related to the viewing
scale or resolution. For instance at low or coarse scales color or texture cues are commonly
used and at medium scales architectural arrangement of individual histological structures
(glands and nuclei) start to become resolvable. It is only at higher resolutions that
morphology of specific histological structures can be discerned.

In [94,95], a multi-resolution approach has been used for the classification of high-
resolution whole-slide histopathology images. The proposed multi-resolution approach
mimics the evaluation of a pathologist such that image analysis starts from the lowest
resolution, which corresponds to the lower magnification levels in a microscope and uses the
higher resolution representations for the regions requiring more detailed information for a
classification decision. To achieve this, images were decomposed into multi-resolution
representations using the Gaussian pyramid approach [96]. This is followed by color space
conversion and feature construction followed by feature extraction and feature selection at
each resolution level. Once the classifier is confident enough at a particular resolution level,
the system assigns a classification label (e.g., stroma-rich, stroma-poor or undifferentiated,
poorly differentiating, differentiating) to the image tile. The resulting classification map
from all image tiles forms the final classification map. The classification of a whole-slide
image is achieved by dividing into smaller image tiles and processing each image tile
independently in parallel on a cluster of computer nodes.

As an example, refer to Figure 5.6, showing a hierarchical cascaded scheme for detecting
suspicious areas on digitized prostate histopathology slides as presented in [97].
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Figure 5.7 shows the results of a hierarchical classifier for detection of prostate cancer from
digitized histopathology. Figure 5.7(a) shows the original images with tumor outlined in
black. The next 3 columns show the classifier results at increasing analysis scales. Pixels
classified as “non-tumor” at a lower magnification (scale) are discarded at the subsequent
higher scale, reducing the number of pixels needed for analysis at higher scales.
Additionally, the presence of more discriminating information at higher scales allows the
classifier to better distinguish between tumor and non-tumor pixels.

At lower resolutions of histological imagery, textural analysis is commonly used to capture
tissue architecture, i.e. the overall pattern of glands, stroma and organ organization. For each
digitized histological image several hundred corresponding feature scenes can be generated.
Texture feature values are assigned to every pixel in the corresponding image. 3D statistical,
gradient, and Gabor filters can be extracted in order to analyze the scale, orientation, and
anisotropic information of the region of interest. Filter operators are applied in order to
extract features within local neighborhoods centered at every spatial location. At medium
resolution, architectural arrangement of nuclei within each cancer grade can be described via
several graph-based algorithms. At higher resolutions, nuclei and the margin and boundary
appearance of ductal and glandular structures have proved to be of discriminatory
importance. Many of these features are summarized in Tables 5.1 and 5.2.

5.4. Feature Selection, Dimensionality Reduction, and Manifold Learning

A. Feature Selection—While humans have innate abilities to process and understand
imagery, they do not tend to excel at explaining how they reach their decisions. As such,
large feature sets are generated in the hopes that some subset of features incorporates the
information used by the human expert for analysis. Therefore, many of the generated
features could be redundant or irrelevant. Actually, a large set of features may possibly be
detrimental to the classification performance, a phenomenon known as “the curse of
dimensionality.” Feature selection is a means to select the relevant and important features
from a large set of features. This is an increasingly important area of research now that
automated quantitative image analysis techniques are becoming more mainstream.

Feature selection in histopathological image analysis provides several benefits in addition to
improving accuracy. Since images tend to be relatively large, a smaller subset of features
needs to be calculated, reducing the computational complexity of classification algorithms.
In some applications, it may be preferable to sacrifice the overall performance slightly if this
sacrifice greatly reduces the number of selected features. A smaller number of features
would also make it easier to explain the underlying model and improve the chances of
generalization of the developed system. Additionally, in a multi-resolution framework, a set
of features proven useful at a given resolution may not be relevant at another resolution,
even within the same image. A feature selection algorithm helps determine which features
should be used at a given resolution.

An optimal feature selection method would require an exhaustive search, which is not
practical for a large set of features generated from a large dataset. Therefore, several
heuristic algorithms have been developed, which use classification accuracy as the
optimality criterion. Well-known feature selection methods include the sequential search
methods, namely sequential forward selection (SFS) and sequential backward selection
(SBS) [98]. SFS works by sequentially adding the feature that most improves the
classification performance; similarly, SBS begins with the entire feature set and sequentially
removes the feature that most improves the classification performance. Both SFS and SBS
suffer from the “nesting effect” whereby features that are selected (SFS) or discarded (SBS)
cannot be revisited in a later step and are thus suboptimal [98]. The use of floating search
methods, sequential floating forward search (SFFS) and sequential floating backward search
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(SFBS), in which previously selected or discarded features can be re-evaluated at later steps
avoids the nesting problem [98]. While these methods still cannot guarantee optimality of
the selected feature subset, they have been shown to perform very well compared to other
feature selection methods [99] and are, furthermore, much more computationally efficient
[98]. SFFS is one of the most commonly encountered feature selection methods in pathology
image analysis literature.

More recent feature selection research has focused on such methods as genetic algorithms,
simulated annealing, boosting [100] and grafting [101]. A taxonomy of feature selection
algorithms is presented in [99]. Genetic algorithms and simulated annealing are applications
of traditional optimization techniques to feature selection. Boosting, which will be explained
in Section 6.c, basically acts as a greedy feature selection process. Grafting (from “gradient
feature testing™) [101] is based on an elegant formulation of the feature selection problem,
whereby the classification of the underlying data and the feature selection process are not
separated. Within the grafting framework, a loss function is used that shows preference for
classifiers that separate the data with larger margins. Grafting also provides an efficient
framework for selection of relevant features. Feature selection based on a measure of
discriminatory power was proposed in [102], whereby the authors compute the
discriminatory power of each of the wavelet packet sub-bands (features) using a
dissimilarity measure between approximated probability density functions for different
classes. Derived features are then sorted according to the discriminatory power values
associated with the corresponding features.

B. Dimensionality Reduction—While feature selection aims to select features (and
reduce the feature dimensionality) that best optimize some criterion related to the class
labels of the data (e.g., classification performance), dimensionality reduction techniques aim
to reduce dimensionality based on some other criterion. Three well-known and commonly
used methods of linear dimensionality reduction are Principal Component Analysis (PCA),
Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA).

Principal Component Analysis (PCA) [103] looks to find a new orthogonal coordinate
system whereby the maximum variance of the data is incorporated in the first few
dimensions. Projection of the data onto the individual coordinates encompasses varying
degrees of variance; the first coordinate encompasses the largest variance in the data, the
second coordinate the next largest variance, and so forth.

On the other hand, the LDA is a supervised method; it thus requires class labels for each
data sample, mapping the data onto a lower dimensional subspace that best discriminates
data. The goal is to find the mapping, where the sum of distances between samples in
different classes is maximized; while the sum of distances between samples in same classes
is minimized. LDA can also be formulated in terms of eigenanalysis. A comprehensive
discussion of PCA and LDA can be found in [104].

Independent Component Analysis [105], looks to find some mixing matrix such that a
mixture of the observations (features) are statistically independent. This provides a stronger
constraint on the resulting components than PCA, which only requires that the components
be uncorrelated. This is why it is particularly well suited for decorrelating independent
components from hyperspectral data. Rajpoot & Rajpoot [48] have shown ICA to perform
well for extracting three independent components corresponding to three tissue types for
segmentation of hyperspectral images of colon histology samples. ICA, however, provides
no ranking of the resulting independent components, as does PCA. There are a variety of
methods for calculating the independent components (refer to [105]), which are generally
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very computationally intensive. ICA is a higher order method that seeks linear projections,
not necessarily orthogonal to each other, as in the case of PCA.

C. Manifold Learning—Recently, non-linear dimensionality reduction methods have
become popular in learning applications. These methods overcome a major limitation of
summarized linear dimensionality reduction methods, which assume that geometrical
structure of the high-dimensional feature space is linearized. In reality, high-dimensional
feature spaces comprise of highly nonlinear structures and locality preserving
dimensionality reduction methods are highly sought after. Manifold learning is a method of
reducing a data set from M to N dimensions, where N < M while preserving inter- and intra-
class relationships between the data. This is done by projecting the data into a low-
dimensional feature space in such a way to preserve high dimensional object adjacency.
Many manifold learning algorithms have been constructed over the years to deal with
different types of data.

Graph Embedding constructs a confusion matrix Y describing the similarity between any

two images C,, and C,, with feature vectors Fy and Fg, respectively, where p, g €{1, 2, ....,
k} and k is the total number of images in the data set

I, -Fyll ¢ kxk

Y(p,q)=e (5.1)

The embedding vector X is obtained from the maximization of the function:

XTI - VX
XTDX

Ey (X):

’

(5.2)

where D is the so-called degree matrix, with non-zero values being along the diagonal D(p,
p) = Zq Y(p, ) and n = k — 1. The k dimensional embedding space is defined by the
eigenvectors corresponding to the smallest N eigenvalues of (D — Y)X = ADX. The value of N
is generally optimized by obtaining classification accuracies for N €{1, 2, - - -, 10} and
selecting the N that provided the highest accuracy for each classification task. For image C,
the feature vector F given as input to the Graph Embedding algorithm produces an N-

dimensional eigenvector X (C) = [ej ©ljefl,2,... ,N}], where ¢; (C) is the principal
eigenvalue associated with C.

In [93], a Graph Embedding algorithm employing the normalized cuts algorithm was used to
reconstruct the underlying manifold on which different breast cancer grades were
distributed. Figure 5.8 shows the embedding of different grades of breast cancer
histopathology (low, intermediate, high) on the reconstructed manifold; low grades (yellow
triangles), intermediate grades (green squares and blue circles), and high grades (red
triangles). The manifold captures the biological transformation of the disease in its transition
from low to high-grade cancer.

Manifold learning has also been shown to be useful for shape-based classification of prostate
nuclei [106]. Rajpoot et al. [106] employ Diffusion Maps [107] in order to reduce the
dimensionality of shape descriptors down to two dimensions and a fast classification
algorithm is derived based on a simple thresholding of the diffusion coordinates.
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VI. Classification and subcellular quantification

For histopathology imagery, unlike some other applications of image analysis, one of the
primary considerations in the choice of a classifier is its ability to deal with large, highly
dense datasets. Also due to multiple image scales at which relevant information may be
extracted from histological imagery, use of an ensemble of classifiers as opposed to a single
classifier has been proposed.

6.1. Multi-classifier Ensemble Schemes

Theoretical and empirical results alike have established that, in terms of accuracy,
ensembles of classifiers generally outperform monolithic solutions. Learning ensembles or
Multiple Classifier systems are methods for improving classification accuracy through
aggregation of several similar classifiers’ predictions and thereby reducing either the bias or
variance of the individual classifiers [108].

6.1.A Support Vector Machines (SVM)—SVMs project a set of training data E
representing two different classes into a high-dimensional space by means of a kernel
function K. The algorithm then generates a discriminating hyper-plane to separate out the
classes in such a way to maximize a cost function. Testing data is then projected into the
high-dimensional space via K, and the test data is classified based on where it falls with
respect to the hyper-plane. The kernel function K(:, -) defines the method in which data is
projected into the high-dimensional space. A commonly used kernel known as the radial
basis function has been employed to distinguish between 3 different prostate tissue classes
[109]. Radial basis functions with a grid search for their parameters have also been used to
differentiate colon adenocarcinoma histopathology images from benign histopathology
images [110] and to classify four different subtypes of meningioma [102].

6.1.B Adaboost—The AdaBoost is an adaptive algorithm in the sense it combines a
number of weak classifiers to generate a strong classifier. Image pixels determined as
diseased by a pathologist during the training stage are used to generate probability density
functions (pdfs) for each of the individual texture features @, for j € { 1, ..., K} which are
considered as weak classifiers [111]. Bayes Theorem is then used to generate likelihood
scenes Lj = (Cj, 1j €41, ..., K} ) for each @; which constitute the weak learners. These are

. T .o
combined by the AdaBoost algorithm into a strong classifier H]:Zizl"flf where for every

pixel ¢l € CI, 17 (cJ) is the combined likelihood that pixel ¢i belongs to cancer class o, @ is
the weight determined during training for feature ®;, and T is the number of iterations.

In [111] a hierarchical boosted cascade scheme for detecting suspicious areas on digitized
prostate histopathology, inspired by the work of Viola and Jones [112] was presented.
Efficient and accurate analysis is performed by first only detecting those areas that are found
to be suspicious at lower scales. Analysis at subsequent higher magnifications is limited to
those regions deemed to be suspicious at lower scales. Pixels classified as “non-tumor” at a
lower magnification (scale) are discarded at the subsequent higher scale, reducing the
number of pixels needed for analysis at higher scales. The process is repeated using an
increasingly larger number of image features and an increasing classification threshold at
each iteration. Qualitative results with a hierarchical Boosted classifier at three different
image resolutions are shown in Figure 6.1.

6.2. Disease discrimination based on graph based features

Table 6.1 shows the average accuracy and corresponding standard deviation over 20 runs of
randomized cross validation based classification of the diseased-healthy-damaged studies by
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using five different approaches: (1) the cell graph approach, (2) The cell-distribution
approach in which features are extracted from the spatial distribution of cells without
considering their pair-wise spatial relations (i.e., without considering the edge information)
(3) The textural approach in which features are derived from the gray-level interdependency
of pixels in a tissue image, (4) The intensity-based approach in which features are derived
from the intensity values of pixels in a tissue image, and (5) The VVoronoi diagram-based
approach in which features are extracted by making use of the spatial interrelationships of
adjacent cells [113, 114].

6.3. Grade based classification of Histopathology imagery

The classification of histopathology imagery is often the ultimate goal in image analysis,
particularly in cancer applications. Features derived from segmented nuclei and glands from
histopathology are usually a pre-requisite to extracting higher level information regarding
the state of the disease. For instance, the grading of prostate cancer by Jafari-Khouzani and
Soltanian-Zadeh [115] yielded 97% accuracy for H&E stained imagery based on features
derived from nuclear structures in histopathology. Weyn et al. [116] reported 87.1%-96.8%
accuracy in the correct diagnosis (3 diagnoses) of Feulgen-stained lung cancer specimens,
79.5%-92.3% accuracy in typing (3 types) malignant mesothelioma, and 74.3%-82.9%
accuracy in the prognosis (3 classes of survival time) of malignant mesothelioma cases.
Analysis of Feulgen-stained breast tissue sections by van de Wouwer et al. [117] found
67.1% accuracy in clasifying nuclei as benign or malignant, but 100% classification on a
patient level. Tabesh et al. [118] found 96.7% accuracy in discriminating between prostate
tissue slides with cancer and no cancer, and 81% accuracy in the discrimination between low
and high Gleason grades in the same imagery. Immunohistochemically stained colon
mucosa allowed for an accuracy of 92% in classification of benign and malignant images by
Esgiar et al. [119].

The classification of histopathology imagery using spatial architecture information as
presented in Weyn et al. [116] resulted in 88.7%-96.8% accuracy in the diagnosis of lung
cancer, 94.9% accuracy in the typing of malignant mesothelioma, and 80.0%-82.9%
accuracy in the prognosis of malignant mesothelioma for Feulgen-stained lung sections. The
analysis of H&E stained brain tissue by Demir et al. [113] gave 95.5%-97.1% accuracy in
the discrimination between benign and cancerous tissue. Keenan et al. [120] reported
accuracies of 62.3%-76.5% in the grading of H&E stained cervical tissue.

Figure 6.2 (a) shows the low dimensional embedding of the high dimensional attribute space
via locally linear embedding of 20 images representing prostate cancer grades 3 (green
circles) and 4 (blue squares). Each image is displayed as a point in 3D eigenspace. The
clustering clearly shows very good discrimination between these 2 classes which clinically
is the most challenging problem in terms of Gleason grading. Figure 6.2 (b) shows bar plots
reflecting the classification accuracy obtained via a supervised classifier in distinguishing
between pairs of tissue classes — grade 3\4, grade 3 vs. benign epithelium, and grade 4 vs.
benign epithelium via a SVM classifier. Note that in every case the classification accuracy is
over 90%.

6.4. Sub-cellular Quantification

Quantifying expression levels of proteins with subcellular resolution is critical to many
applications ranging from biomarker discovery, pharmaceutical research, and systems
biology to treatment planning. In this section, a fully automated method to quantify the
expression levels of target proteins in immunofluorescently stained samples in tissue micro
arrays (TMAS) is presented. Kolmogorov-Smirnov (KS) statistics, a well-known method in
statistics to test if two distributions are different from each other, can be used to compute the
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relative expression levels in each of the epithelial and non-epithelial tissue regions. After the
sub-cellular compartments are determined using membrane and nuclear markers, the
distribution of target proteins in each of these compartments are calculated. The estimated
distribution comprises target distribution from the expressed regions as well as nonspecific
background binding and tissue autofluorescence that may have left out after the AF removal
step. A signed KS distance (sKS) can be defined as the product of the standard KS distance
and a sign function (£1) to indicate which compartment is expressed. For example if sign
function is computed between the nuclear and the membrane expression levels, a negative
sKS distance will indicate a nuclear expression, and a positive sign will indicate membrane
expression. While the magnitude of the sKS distance indicates how strong the expression
level difference is between these compartments, its sign indicates in which compartment the
protein is expressed.

The standard KS distance is defined as the maximum separation between the cumulative
distribution functions (CDF) of two data sets. The CDF of a target protein in any
compartment can be calculated by integrating its intensity distribution estimated using a
Parzen window approach with Gaussian kernels. Figure 6.3 (c) shows the CDF of the target
distributions shown in Figure 6.3 (a) (green color), on each of the segmented sub-cellular
regions; nuclei (blue), membrane (red), and cytoplasm (green) shown in Figure 6.3 (b). The
CDF's clearly indicates the over-expression of the nuclear region (blue plot) where
approximately 10% of the nuclear pixels express intensity values more than 50, as opposed
to a very small percentage for other compartments. The sign of the sKS is determined based
on sign of the difference between the CDF of the first compartment and the CDF of the
second compartment at the protein expression level with highest CDF separation.

The sKS metric on 123 TMA images from 55 patients (some patients are represented as
multiple tissue cores) stained with DAPI (nuclei), pan-cadherin (membrane), keratin (tumor/
epithelial mask), and ER markers were tested. DAPI and pan-cadherin are used to segment
the sub-cellular compartments, and keratin to segment the epithelial mask. Then the
distribution of the ER protein is calculated on each of the epithelial sub-cellular regions. ER
is expected to partially or fully express in the nuclear region for ER positive patients. A
target distribution is usually observed mixed with nonspecific expression and auto-
fluorescence (AF). The sKS based metric was compared to the majority decision of a group
of 19 observers scoring estrogen receptor (ER) status, and achieved 96% detection rate with
90% specificity. The presented methods have applications from diagnostics to biomarker
discovery and pharmaceutical research.

VIl. looking Ahead: Future trends, open problems

Since histopathological image analysis is inherently a cross-disciplinary area, there are
unique challenges to the dissemination of research results. One of these is the wide range of
publications in which research is published. While there are a few journals that focus on the
automated analysis of medical imagery, the majority of histopathological image analysis
tends to be published in the leading journals of the researchers’ field (pathology, computer
vision, etc.). Additionally, there is a need for more evidence regarding the clinical
applicability and importance of automated histopathology image analysis methods. We have
mentioned areas throughout this paper for which we anticipate ongoing research to have a
clear and tangible affect on clinical and pathology workflow.

Comparison of the various methods presented in the literature is difficult, since each
research team uses their own dataset and presents their results with different metrics. There
is a great need for standard datasets and ground truth for validation of methods. As an
example, researchers at the University of South Florida have put together a database of
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digital mammogramsl. While the variety of conditions studied in histopathology image
analysis is greater, it is still important that standard datasets be compiled as well as a
standard metric of performance. This will allow for direct comparison of the variety of
analysis methods being reported in the literature. An additional complication is the variety
of analyses performed on the histopathology imagery. Thus, there is a need for a dataset
with ground truth pertaining to all the analyses described in this paper.

Going forward, clinical annotation of histopathology data will be a large bottleneck in the
evaluation of histopathology related CAD algorithms. Apart from the time constraints on the
pathologist to generate this data, the process should be streamlined with active
communication between the image analysis scientists and the clinicians with regard to the
sort of annotation required, the format and scale at which the annotation is generated, and
the ease with which the data can be shared (since histopathology files typically tend to be
very large). For instance the sophistication of annotation required to train a CAD system to
distinguish cancerous versus non-cancerous regions on pathology images may be very
different than the annotation detail required to train a classifier to distinguish grades of
cancer. While for the former problem the annotation could be done on a coarser scale (lower
resolution), the latter annotation may require explicit segmentation of glands and nuclei, a
far more laborious and time consuming process. Due to the large size of pathological
images, usually it is not possible to process the whole image on a single-core processor.
Therefore, the whole image may be divided into tiles and each tile is processed
independently. As a consequence, automatic load balancing in the distribution of the cases to
different processors need to be handled carefully [121]. Additionally, the processing can be
accelerated even further by the use of graphical processing units (GPUs), cell blades or any
other emerging high performance architecture [122].

Histopathological image analysis system evaluation needs to be carried out in a statistical
framework. Depending on whether it is a problem of detection (e.g. nuclei detection) or
characterization (e.g. grading), some commonly accepted evaluation methodologies need to
be followed. Some of these methods, e.g. receiver operating characteristics (ROC) and free
response operating characteristics (FROC) have been successfully used for many years in
radiology [123]. These techniques could be adopted or adapted accordingly. The level and
detailed of quantitative evaluation will vary as a function of the specific problem being
addressed. For instance in order to evaluate a nuclear segmentation algorithm on a digitized
histological section containing several tens of thousands of nuclei, it is unreasonable to
expect that a human reader will be able to manually annotate all nuclei. Evaluation of the
scheme may have to be performed on randomly chosen segments of the image. Similarly, if
the ultimate objective of the CAD algorithm is, for instance, cancer grading, perfect
segmentation of histological structures may not guarantee perfect grade based classification.
Evaluation should hence be tailored towards the ultimate objective that the CAD algorithm
is being employed for. Additionally, special attention needs to be paid to clearly separate
training and testing datasets and explain the evaluation methodology.

Multi-modal Data Fusion/Registration

While digital pathology offers very interesting, highly dense data, one of the exciting
challenges will be in the area of multi-modal data fusion. One of the big open questions,
especially as it pertains to personalized medicine will be the use of multi-modal data
classifiers to be able to make therapy recommendations. This will require solving questions
both in terms of data alignment and in terms of knowledge representation for fusion of

1http://marathon.csee.usf.edu/Mammography/Database.htmI
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heterogeneous sources of data, in order to answer questions that go beyond just diagnosis,
such as theragnosis (therapy prediction) and prognosis.

H&E staining is traditionally used for histopathology imaging. Several other modalities exist
for imaging of the tissue, each offering its own advantages and limitations. Combining
images from different modalities, therefore, may seem to be an attractive proposition,
although it does not come without its own challenges, most importantly registration, not to
mention the extra cost associated with imaging, storage, and computational time.
Registration of image data across the different modalities and fusion of the information
contained therein result in a powerful resource of information for diagnosis and prognosis
purposes. Fusion methods have been developed for images from different microscopy
imaging methods [26] and micro-scale histopathology and large-scale MR images
[124-126].

Madabhushi et al. [127] have been developing computerized detection methods for prostate
cancer from high resolution multi-modal MRI. A pre-requisite to training a supervised
classifier to identify prostate cancer (CaP) on MRI is the ability to precisely determine
spatial extent of CaP on the radiological imaging modality. CaP can be precisely determined
on whole mount histopathology specimens (Fig. 7.1 (a)) which can then be mapped onto
MRI (Fig. 7.1 (b)). Figure 7.1 (c) shows the result of registering (Figure 7.1 (b)) the 2D MRI
slice to the histological section (Figure 7.1 (a)). This requires the use of sophisticated and
robust multi-modal deformable registration methods to account for (a) deformations and
tissue loss in the whole mount histological specimens during acquisition, and (b) ability to
overcome intensity and feature differences between the two modalities (histopathology and
MRI). In [124,125] a rigid registration scheme called combined feature ensemble based
mutual information (COFEMI) was presented that used alternate feature representations of
the target and source images to be registered to facilitate the alignment.

Correlating histological signatures with protein and gene expression

Multiplexing, imaging of a tissue sample with several antibodies simultaneously, allows
correlation of characteristic patterns in histopathology images to expression of proteins.
Teverovskiy et al. [128] recently proposed a novel scheme for automated localization and
quantification of the expression of protein biomarkers using a DAPI counter-stain and three
other biomarkers. They showed it to be useful for predicting recurrence of prostate cancer in
patients undergoing prostatectomy. Recently, it has become clear that information regarding
expression of certain proteins related to the onset of cancer is not sufficient. Analyzing
multiple-stained histopathology images can help identify oncogenesis-induced changes in
sub-cellular location patterns of proteins. Glory et al. [129] proposed a novel approach to
compare the sub-cellular location of proteins between normal and cancerous tissues. Such a
method can also be used for identification of proteins to be used as potential biomarkers.

Exploratory histopathology image analysis

Exploratory analysis of histopathology images can help in finding salient diagnostic features
used by humans, associating them with the computed features, and visualizing relationships
between different features in high-dimensional spaces. Lessmann et al. [130] have proposed
the use of self-organizing maps (SOMs) for exploratory analysis of their wavelet-based
feature space. The SOM-based visualization of the feature space allowed the authors of
[130]to establish a correlation between single features and histologically relevant image
structures, making the selection of a subset of clinically important features possible.
Iglesias-Rozas and Hopf [131] showed that SOMs can be effectively employed to correctly
classify different subtypes of human Glioblastomas (GB) and also to select significant
histological and clinical or genetic variables. Alternatively, dimensionality reduction
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methods may offer a way of looking at trends and patterns in the data in a reduced
dimensional space [132-134].

Computer-aided Prognosis

The use of computer-aided diagnosis for digitized histopathology could begin to be
employed for disease prognostics, allowing physicians to predict which patients may be
susceptible to a particular disease and also predicting disease outcome and survival. For
instance, since grade is known to be correlated to outcome (high grade correlates to worse
outcome), image based predictors could be used to predict disease recurrence and survival
based on analysis of biopsy specimens alone. This would have significant translational
implications in that; more expensive molecular assays may not be required for predicting
disease.

While there may be a small minority of researchers who are experts in both computer vision
and pathology, the vast majority of histopathology image analysis researchers are computer
vision researchers. As such, it is important to maintain a constant collaboration with clinical
and research pathologists throughout the research process. There are unique challenges to
analysis of medical imagery, particularly in the performances required for eventual use of
the technique in a clinical setting. It is the pathologist who can best provide the feedback on
the performance of the system, as well as suggesting new avenues of research that would
provide beneficial information to the pathologist community. Additionally, it is the
pathologist that is best equipped to interpret the analysis results in light of underlying
biological mechanisms which, in turn, may lead to new research ideas. Similarly, where
appropriate it might be pertinent to include the oncologist and radiologist within the
algorithmic development and evaluation loop as well.
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Figure 1.1.
Schema showing different cancer grades prevalent in prostate cancer.
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Figure 2.1.

(a) H&E image of a breast tumor tissue. Fluorescently labeled markers superimposed as
green color on the H&E image, (b) B-catenin, (c) pan-keratin, and (d) smooth muscle a-
actin, markers.
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(e) U]

Figure 3.1.

(a,b) Images from the first step acquisition. (c,d) Images from the second acquisition. (e,f)
AF-free corrected images. Cy5 dye (a, ¢, e) is directly conjugated to Pan-Cadherin, a
membrane protein. Cy3 dye (b,d,f) is directly conjugated to Estrogen Receptor. The arrows
point to successfully removed the high-AF regions, such as blood cells and fat
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Figure 4.1.

(a) Original DCIS image with corresponding (b) likelihood scene obtained via a Bayesian
classifier driven by color and texture, (c) Thresholded version of likelihood scene (95%
confidence), (d) The final nuclear segmentation obtained by integrating the Bayesian
classifier with the template matching scheme.
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Figure 4.2.

Results of the automatic segmentation algorithm (blue contours — lumen boundary, black
contours -- inner boundary of the nuclei of the epithelial cells surrounding the gland). Shown
from left to right are example images of benign epithelium, intermediate-, and high grade
cancer.
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Figure 5.1.

Supervised extraction of histological features to describe tissue appearance of (a) benign
epithelium, and (b) DCIS. Feature images for the 2 tissue classes (benign epithelium, DCIS)
corresponding to Gabor wavelet features (b, €) and Haralick second order features (c, f) are
shown.
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Figure 5.2.
Bone fracture and its corresponding ECM-aware cell-graph representation. Note the

presence of a link between a pair of nodes in an ECM-aware cell-graph indicates not only
topological closeness but also it implies the similarity in the surrounding ECM [91].
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Figure 5.3.

Illustrating the differences between cell-graphs for cancerous, healthy, and inflamed brain
tissues. Panels (a)-(c) show brain tissue samples that are (a) cancerous (gliomas), (b)
healthy, and (c) inflamed, but non-cancerous. Panels (d)-(f) show the cell-graphs
corresponding to each tissue image. While the number of cancerous and inflamed tissue
samples appear to have similar numbers and distributions of cells, the structure of their
resulting cell-graphs shown in (d) and (f) are dramatically different. (Figure is taken from

[92])
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Figure 5.4.

Cell graphs produced from human MSC embedded in 3D collagen matrices. Graphs show
nuclei and development of edges (relationships) between them over time [91]. There is a
phase transition sometime between hour 10 and hour 16 and the graph becomes connected.
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Figure 5.5.

(a) A digitized histopathology image of Grade 4 CaP and different graph based

representations of tissue architecture via Delaunay Triangulation, Voronoi Diagram, and

Minimum Spanning tree.
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Figure 5.6.
Digitized histological image at successively higher scales (magnifications) yields
incrementally more discriminatory information in order to detect suspicious regions.
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(b)

Figure 5.7.

Results from the hierarchical machine learning classifier. (a) Original image with the tumor
region (ground truth) in black contour, (b) results at scale 1, (c) results at scale 2, and (d)
results at scale 3. Note that only areas determined as suspicious at lower scales are
considered for further analysis at higher scales.
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(b) High Grade {(Red Triangles) x1o*

Figure 5.8.

Low dimensional embedding reveals innate structure in textural features of invasive breast
cancers, with clear separation of high grade tumors from low and intermediate grade tumors
as assessed by Nottingham score. Combined Nottingham score 5 (yellow triangle), 6 (green
squares), 7 (blue circles), and 8 (red triangles). The score of 8 corresponds to high grade
tumors.
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Figure 6.1.

From left to right, (a) A digitized histopathology image, (b) cancer extent delineated in black
by an expert pathologist, and cancer probability images generated by an Adaboost classifier
at (c) low-, (d) intermediate, and (e) high image resolutions.
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Figure 6.2.
(@) (left panel) Low dimensional representation (via non-linear dimensionality reduction) of
prostate cancer histopathology images (green circles are Grade 3 images and blue squares
represent Grade 4 prostate cancer images). A non-linear SVM is used to classify objects in
the reduced dimensional space. (b) Right panel shows a classification accuracy of over 90%
in distinguishing between Grade 3, Grade 4 images and comparable accuracy in
distinguishing between benign stromal, epithelial and prostate cancer tissue.
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(c)

(a) A histological section stained with nuclear (DAPI-Blue), membrane (Pan-cadherin, red),

and a target protein (Estrogen Receptor (ER), green). (b) Automatically segmented

subcellular regions; membrane(red), nuclei(blue), cytoplasm(green). Dark colors show the
non-epithelial regions. (c) CDF of the ER distributions (nuclei in blue, membrane in red and

cytoplasm in green plots).
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(a)

Figure 7.1.

(a) Histology section of prostate gland with CaP extent stained in purple (upper right) and
corresponding mapping of CaP extent via COFEMI onto (b) MRI (CaP extent shown in
green). (c) Overlay of histological and MRI prostate sections following registration.
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Table 5.1

Summary of object-level features used in histopathology image analysis.

Category

Features

Size and Shape

Area

Elliptical Features: Major and minor axis length, eccentricity, orientation, elliptical deviation

Convex Hull Features: Convex area, convex deficiency, solidity

Filled Image Features: Filled area, Euler number

Bounding Box Features: Extent, aspect ratio

Boundary Features: Perimeter, radii, perimeter Fourier energies, perimeter curvature, bending energy,
perimeter fractal dimension

Other Shape Features: Equivalent diameter, sphericity, compactness, inertia shape

Center of Mass

Reflection Symmetry

Radiometric and Densitometric

Image Bands, Intensity

Optical density, integrated optical density, and mean optical

Hue

Texture

Co-occurrence Matrix Features: Inertia, energy, entropy, homogeneity, maximum probability, cluster
shade, cluster

Fractal Dimension

Run-length Features: Short runs emphasis, long runs emphasis, gray-level non-uniformity, run-length non-

uniformity, runs percentage, low gray-level runs emphasis, high gray-level runs

Wavelet Features: Energies of detail and low resolution images

Entropy

Chromatin-Specific

Area, integrated optical density, mean optical density, number of regions, compactness, distance, center of

mass
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Table 5.2

Summary of spatial-arrangement features used in histopathology image analysis.

Graph Structure

Features

Voronoi Tesselation

Number of nodes, number of edges, cyclomatic number, number of triangles, number of k-walks,
spectral radius, eigenexponent, Randic index, area, roundness factor, area disorder, roundness factor
homogeneity

Delaunay Triangulation

Number of nodes, edge length, degree, number of edges, cyclomatic number, number of triangles,
number of k-walks, spectral radius, eigenexponent, Wiener index, eccentricity, Randic index, fractal
dimension

Minimum Spanning Tree

Number of nodes, edge length, degree, number of neighbors, Wiener index, eccentricity, Randic index,
Balaban index, fractal dimension

O'Callaghan Neighborhood Graph

Number of nodes, number of edges, cyclomatic number, number of neighbors, number of triangles,
number of k-walks, spectral radius, eigenexponent, Randic index, fractal dimension

Connected Graph

Number of nodes, edge length, number of triangles, number of k-walks, spectral radius, eigenexponent,
Wiener index, eccentricity, Randic index, fractal dimension

Relative Neighbor Graph

Number of nodes, number of edges, cyclomatic number, number of neighbors, number of triangles,
number of k-walks, spectral radius, eigenexponent, Randic index, fractal dimension

k-NN Graph

Number of nodes, edge length, degree, number of triangles, number of k-walks, spectral radius,
eigenexponent, Wiener index, eccentricity, Randic index, fractal dimension
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