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OBJECTIVE—Based on its role as an energy storage compart-
ment and endocrine organ, white adipose tissue (WAT) fulfills
a critical function in the maintenance of whole-body energy
homeostasis. Indeed, WAT dysfunction is connected to obesity-
related type 2 diabetes triggered at least partly by an inflamma-
tory response in adipocytes. The pseudokinase tribbles (TRB) 3
has been identified by us and others as a critical regulator of
hepatic glucose homeostasis in type 2 diabetes and WAT lipid
homeostasis. Therefore, this study aimed to test the hypothesis
that the TRB gene family fulfills broader functions in the integra-
tion of metabolic and inflammatory pathways in various tissues.

RESEARCH DESIGN AND METHODS—To determine the
role of TRB family members for WAT function, we profiled the
expression patterns of TRB13 under healthy and metabolic stress
conditions. The differentially expressed TRB1 was functionally
characterized in loss-of-function animal and primary adipocyte
models.

RESULTS—Here, we show that the expression of TRB1 was
specifically upregulated during acute and chronic inflammation
in WAT of mice. Deficiency of TRB1 was found to impair
cytokine gene expression in white adipocytes and to protect
against high-fat diet–induced obesity. In adipocytes, TRB1 served
as a nuclear transcriptional coactivator for the nuclear factor �B
subunit RelA, thereby promoting the induction of proinflamma-
tory cytokines in these cells.

CONCLUSIONS—As inflammation is typically seen in sepsis,
insulin resistance, and obesity-related type 2 diabetes, the dual
role of TRB1 as both a target and a (co) activator of inflammatory
signaling might provide a molecular rationale for the amplifica-
tion of proinflammatory responses in WAT in these subjects.
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A
dipose tissue can be subdivided into two dis-
tinct categories, white and brown. Whereas
brown adipose tissue (BAT) dissipates energy
as heat, white adipose tissue (WAT) is special-

ized in the storage of chemical energy such as triglycerides
(1), thereby providing a reserve storage compartment for
excess nutrients as a protective measure against starva-
tion (2). In addition, white adipocytes also serve as critical

endocrine cells, secreting a variety of adipokines to con-
trol energy intake and expenditure at the systemic level
(3). Importantly, under both acute and chronic metabolic
stress, as exemplified by sepsis and obesity-related type 2
diabetes, respectively, impaired WAT function is charac-
terized by WAT tissue inflammation and an increased
release of proinflammatory cytokines from this tissue as
well as dysregulation of the energy balance (4). Indeed,
sepsis induces the metabolic rate by 30–60% in humans
(5), and obesity has been linked to enhanced macrophage
recruitment and T-cell receptor rearrangements in WAT
(6,7). Additionally, proinflammatory cytokine expression
is activated in adipocytes, per se, in response to inflam-
matory cues, including bacterial lipopolysaccharide (LPS)
(8). Interestingly, recent evidence suggests that chroni-
cally elevated levels of LPS resulting from alterations in
the gut microbiota during obesity contribute to obesity-
related insulin resistance (9), promoting the idea that
common molecular pathways may underlie the proinflam-
matory responses in adipocytes and WAT under both
acute and chronic metabolic disturbances (10).

The tribbles (TRB) protein family consists of three
related serine/threonine kinase-like proteins, TRB1, -2, and
-3, which have been highly conserved throughout evolu-
tion and serve as critical regulators of cell-cycle progres-
sion during development in Drosophila and Xenopus (11).
In mammals, TRB3 was originally identified as a critical
checkpoint in hepatic glucose homeostasis during fasting
and type 2 diabetes, mediated through its regulatory
function on Akt/protein kinase B in the insulin signaling
pathway (12). Consistently, subsequent studies have pro-
posed TRB3 as a determinant of insulin sensitivity in liver,
skeletal muscle, and WAT (13–15) and of lipolysis in WAT
by triggering the degradation of acetyl-CoA carboxylase
via association with an E3 ubiquitin ligase (16). Interest-
ingly, both TRB2 and TRB3 were found to suppress white
adipocyte differentiation in an insulin-/peroxisome prolif-
erator–activated receptor (PPAR) �–dependent manner
(17,18). Apart from hormonal pathway control, all three
tribbles family members have been implicated in the
activation of macrophages and, particularly, TRB3 in the
cellular endoplasmatic reticulum stress response (19–22),
overall supporting the hypothesis that the TRB family may
fulfill broader but largely unexplored functions in the
integration of metabolic and inflammatory pathways in
various tissues.

RESEARCH DESIGN AND METHODS

Recombinant adenoviruses. Adenoviruses expressing a TRB1-specific or
-nonspecific short-hairpin RNA (shRNA) under the control of the U6 promoter
were cloned as described previously (23,24). Viruses were purified by the
caesium chloride method and dialyzed against PBS containing 10% glycerol
prior to use. TRB1 shRNA forward 5�-CACCGGGCTATGTTGACTCAGAAATC
GAAATTTCTGAGTCAACATAGCCC-3�; TRB1 shRNA reverse 5�-AAAAGGGC
TATGTTGACTCAGAAATTTCGATTTCTGAGTCAACATAGCCC-3�.
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Animal experiments. Male 8- to 12-week-old C57BL6, db/db, ob/ob, toll-like
receptor (TLR) 4, tumor necrosis factor (TNF) receptor (TNFR)1/2, jun
NH2-terminal kinase (JNK), p50, and TNFR1/interleukin (IL)-1� receptor
knockout mice were obtained from Charles River Laboratories (Brussels,
Belgium). Mice with TRB1 haploinsufficiency have been described previously
(19). All animals were maintained on a 12-h light-dark cycle with regular
unrestricted diet. For LPS experiments, animals were fasted for 18 h with free
access to water and injected with 20 mg/kg body weight LPS. In each
experiment, three to seven animals received identical treatments and were
analyzed 2.5 h after LPS administration. For tumor induction in the cachexia
model, 1.5 � 106 colon 26 (C26) cells (25) in PBS were injected subcutane-
ously into 10-week-old CD2F1 mice (Charles River Laboratories). Control
mice were injected with heat-inactivated C26 cells. Subcutaneous implanta-
tion of C26 cells promoted severe reduction of body weight, as well as skeletal
muscle and adipose tissue mass. In addition, C26 mice displayed reduced
levels of serum triglycerides and substantial hepatic steatosis as described
(26). In high-fat diet experiments, TRB1�/� mice and wild-type littermates
were either fed a standard diet (D12450B, 10% energy from fat; Research Diets,
New Brunswick, NJ) or a high-fat diet (D12492, 60% energy from fat; Research
Diets) for a period of 13 weeks. Insulin and glucose tolerance tests were
performed as described previously (27). Organs including liver, epididymal fat
pads, and gastrocnemius muscles were collected after the corresponding time
period, snap frozen, and used for further analysis. Total body fat content was
determined by an Echo magnetic resonance imaging body composition
analyzer (Echo Medical Systems, Houston, TX). Animal handling and experi-
mentation was done in accordance with National Institutes of Health guide-
lines and approved by local authorities.
Blood metabolites. Serum levels of glucose, insulin, triglycerides, choles-
terol, and cytokines were determined using an automatic glucose monitor
(One Touch; Lifescan, Neckargemünd, Germany) or commercial kits (MP
Biomedicals, Orangeburg, NY; Mercodia, Uppsala, Sweden; Sigma, Munich,
Germany; Randox, Wako, Neuss, Germany; Millipore, Schwalbach, Germany).
Cell culture and transient transfection assays. 3T3-L1 preadipocytes and
HEK293 cells were transfected using lipofectamine (Invitrogen, Karlsruhe,
Germany) reagent according to the manufacturer’s instructions. Cell extracts
were prepared 48 h after transfection, and luciferase assays were performed
as described (23), normalizing to the activity from cotransfected �-galactosi-
dase expression plasmid. Primary stromal-vascular fractions (SVFs) were
isolated from mouse epididymal fat depots, cultured, and differentiated into
mature primary adipocytes (essentially) as described (28). Cells were infected
with recombinant adenoviruses at a multiplicity of infection of 1,000 and
stimulated with 1.5 ng/ml TNF-� (Biomol, Hamburg, Germany). Cytokine-
conditioned medium was obtained by stimulating RAW264.7 mouse macro-
phages with 100 ng/ml LPS for 3.5 h and collecting the medium. Medium
harvested from RAW264.7 cells not exposed to LPS was used as the control 	
in all experiments.

Analysis of the macrophage-derived conditioned medium and control was
done by the Milliplex MAP Kit against mouse cytokines and chemokines
(Millipore, Schwalbach, Germany). 3T3-L1 and primary adipocytes were
treated with pharmacological inhibitors (50 	mol/l parthenolide, 50 	mol/l
SP600125, 50 	mol/l PD98059, 10 	mol/l SB202190; Calbiochem, Darmstadt,
Germany) 30 min prior to stimulation with conditioned medium or control.
Cells were lysed in QIAzol (QIAgen, Hilden, Germany), and RNA was isolated
according to standard procedures.

Cell separation studies of adipose tissue macrophages (ATMs) from
epididymal fat pads of LPS- or PBS-injected mice were done by magnetic
immunoaffinity isolation using anti-CD11b antibodies, conjugated to magnetic
beads (MACS Cell Separation System; Miltenyi Biotec). Following isolation of
ATMs from the SVFs using positive selection columns (MS columns; Miltenyi
Biotec), the remaining cells were eluted as the SVFs. For the analysis of
mRNA expression levels, eluted cells (CD11b-positive [�] and SVFs) and the
floating adipocyte fraction were resuspended in QIAzol reagent.
Quantitative Taqman RT-PCR. Total RNA was extracted from homoge-
nized mouse WAT or cell lysates using QIAzol and the RNeasy (Qiagen,
Hilden, Germany) kit. cDNA was prepared by reverse transcription using
Superscript II (Invitrogen) and Oligo dT primer (Fermentas, St. Leon-Rot,
Germany). cDNAs were amplified using assay-on-demand kits and an ABI
Prism 7300 sequence detector (Applied Biosystems, Darmstadt, Germany).
RNA expression data were quantified according to the 
Ct method as
described (29) and normalized to levels of TATA-box binding protein RNA.
Protein analysis. Protein was extracted from frozen organ samples or
cultured adipocytes in 2 � SDS-8 mol/l urea cell lysis buffer, and 20–30 	g of
protein were loaded onto 10% SDS–polyacrylamide gels and blotted onto
nitrocellulose membranes. Western blot assays were performed as described
(23) using antibodies specific for TRB1 (30), RelA, P300, �-actin (Santa Cruz,
Heidelberg, Germany), or valosin-containing protein (VCP) (Abcam, Cam-
bridge, U.K.).

Chromatin immunoprecipitation assay. 3T3-L1 preadipocytes were trans-
fected with a plasmid encoding Flag-tagged TRB1, stimulated with condi-
tioned medium or control for 6 h and fixed with formaldehyde 48 h after
transfection, and chromatin immunoprecipitation assays were performed as
described (31) using Flag-specific antibodies (Upstate, Lake Placid, NY) or
nonspecific anti-HA antibody (Santa Cruz). Precipitated DNA fragments were
analyzed by PCR amplification, as described above, using primers directed
against the IL-6, IL-1�, and TNF-� promoters. Primers against cytokine
promoter regions lacking a RelA recognition site were used as negative
controls as described (32). Primer sequences were mIL-6_forward TGTGT
GTCGTCTGTCATGCG; mIL-6_reverse AGCTACAGACATCCCCAGTCTC;
mIL-6_A forward (without nuclear factor [NF]-�B) CCTACTTTCAAGCCTG
GAATC; mIL-6_A reverse (without NF-�B) TCAAGTCTTCTAGGCTGGGTC;
mIL-1�_forward TGCCCATTTCCACCACG; mIL-1b_reverse TGCTACCCTGAA
ATAATTTCTAATCCC; mIL-1b_forward (without NF-�B) CCCAAGGGAAAATT
TCACAGC; mIL-1� _reverse (without NF-�B) ACCACTGCAGGGTTTGTTGTC;
mTNF-�_forward CCCCCGCGATGGAGAAGAAACCGAGA; mTNF-�_reverse
GCTAGTCCCTTGCTGTCCTCGCTGA.
Plasmids. Wild-type or mutated NF-�B reporter plasmids have been de-
scribed previously (32). Flag-TRB1 expression vector was generated by
PCR-based standard procedures and cloned into pcDNA3.1 (Invitrogen) using
standard protocols.
Glutathione-S-transferase pulldown assay. Glutathione-S-transferase
(GST) fusion proteins (pGEX5.1, pGEX5.1_GST_p65, pGEX5.1_GST_p65
RHD_1-305, and pGEX5.1_GST_p65_TA_441-551) (32) were produced in BL21
cells and affinity purified using glutathione Sepharose (Amersham Bio-
sciences, Darmstadt, Germany). In vitro transcription/translation was per-
formed using the TNT T7/T3 quick-coupled transcription/translation system
(Promega, Mannheim, Germany), according to the manufacturer’s instruc-
tions, and GST and in vitro translated proteins were incubated at 4°C
overnight. After extensive washing, GST-precipitated proteins were separated
by SDS-PAGE and detected by autoradiography.
Immunoprecipitation. HEK293 cells were cotransfected with a RelA expres-
sion vector plus Flag-TRB1 or an empty Flag vector. Subsequently, cells were
lysed, centrifuged, and the supernatant was incubated with anti-FLAG M2
agarose (Sigma) for 2 h. The immunoprecipitates were subsequently analyzed
by Western blot as described.
Statistical analysis. Statistical analyses were performed using a two-way
ANOVA with Bonferroni-adjusted posttests or Student t test in one-factorial
designs, respectively. The significance level was at P � 0.05.

RESULTS

TRB1 expression in WAT is elevated in acute and
chronic inflammation. To initially explore the expres-
sion profiles of TRB family members under conditions of
metabolic and, particularly, WAT dysfunction, we ex-
tracted total RNA from various tissues of wild-type or
db/db mice, the latter representing a standard model for
obesity and the metabolic syndrome (33). Quantitative
PCR analysis confirmed the previously reported upregula-
tion of TRB3 expression in livers of obese mice (12),
thereby verifying the experimental system (data not
shown). In contrast, hepatic mRNA levels of TRB1 and
TRB2 remained unchanged under these conditions (data
not shown).

Intriguingly, TRB1 mRNA expression was found to be
significantly elevated in WAT of db/db animals compared
with wild-type controls (Fig. 1A). In contrast, TRB2 and
TRB3 showed no difference in their WAT expression levels
(Fig. 1A), suggesting a specific impact of obesity-related
conditions on TRB1 adipose tissue expression. Indeed,
correlating with increasing, age-dependent overweight
condition a higher expression of WAT TRB1 levels was
also observed in a second, early-onset obesity mouse
model (supplemental Fig. 1A, available at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-1537/DC1). Ex-
pression was, however, not affected by late-onset obesity
as associated with high-fat diet feeding of adult wild-type
mice (supplemental Fig. 1C). Furthermore, TRB1 mRNA
levels were found to be elevated in WAT of tumor-bearing
cachectic mice, while TRB2 and TRB3 again remained
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unchanged (Fig. 1B). Despite contrary states of energy
availability, obesity actually shares many phenotypic fea-
tures with severe wasting conditions such as cancer
cachexia, including insulin resistance, hepatic steatosis,
and particularly chronic inflammation (34). To test the
hypothesis that proinflammatory conditions represent a
common trigger for TRB1 expression in WAT, we pro-
voked extensive proinflammatory cytokine production and
signaling in mice by injecting sublethal doses of LPS. As
shown in Fig. 1C and D, LPS treatment stimulated TRB1
mRNA and protein expression in WAT compared with
controls (Fig. 1C and D), demonstrating that the expres-
sion of TRB1 in WAT is specifically induced by proinflam-
matory conditions, thereby representing a distinguishing
feature from other TRB family members.
TRB1 expression is under the control of cytokine
signaling in an adipocyte-autonomous manner. WAT
is composed of a variety of different cell types, including
mature adipocytes and the so-called SVF, comprising
macrophages, endothelial cells, and corresponding pro-
genitors (1). Cell separation studies using WAT explants
from LPS-treated or nontreated wild-type mice demon-
strated that TRB1 mRNA expression was specifically in-
duced by LPS in whole WAT depots, mature adipocytes,
and in the SVF, but not in CD11b� macrophage-enriched
cellular fractions (Fig. 2A), indicating that adipocytes
indeed represent the major site of TRB1 regulation in
response to proinflammatory signaling in WAT. To specif-
ically explore potential signaling pathways involved in
TRB1 induction under proinflammatory conditions in adi-

pocytes, we isolated the SVFs from WAT depots of
wild-type and TLR4 knockout mice, the latter deficient
in the cellular LPS receptor (35). Isolated SVFs were
differentiated into mature and primary adipocytes (data
not shown) and treated either with cytokine-enriched
conditioned medium from LPS-treated macrophages or
LPS (supplementary Fig. 2A). Whereas conditioned me-
dium efficiently stimulated TRB1 expression in both
primary wild-type and TLR4 knockout adipocytes, heat-
inactivated conditioned medium (supplementary Fig.
2B) and LPS treatment had no effect in either cell type
(Fig. 2B), supporting the hypothesis that LPS/TLR4
signaling, per se, is not responsible for the induction of
TRB1 under proinflammatory conditions but most likely
LPS-triggered cytokines such as TNF-� and ILs. Inter-
estingly, ablation of either TNFR1 and -2 or TNFR1 and
IL-1� receptor in primary adipocytes had no effect on
TRB1 mRNA induction in response to conditioned me-
dium treatment (supplementary Fig. 2C), arguing that
the induction of TRB1 expression in WAT is driven by
multiple proinflammatory mediators in a combinatorial
manner.

In this respect, the activator protein (AP) 1 and NF-�B
transcriptional complexes represent common integration
sites for divergent upstream proinflammatory signaling
pathways in various cell types (10). Whereas the condi-
tioned medium-dependent TRB1 induction in primary adi-
pocytes was not affected by genetic deficiency for the AP1
upstream kinase JNK1 (supplemental Fig. 1D), knockout
of the NF-�B subunit p50 significantly but incompletely
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FIG. 1. TRB1 expression in WAT is elevated in acute and chronic inflammation. A–C: Quantitative PCR analysis of TRB1, TRB2, or TRB3 mRNA
levels in abdominal WAT of wild-type (wt) and obese db/db mice (A), healthy control and tumor-bearing cachectic (C26) CD2F1 mice (B), and
control (PBS)- and LPS-injected C57BL6 mice (means � SE, n � 5). *P < 0.05; **P < 0.01; ***P < 0.001. D: Western blot of WAT extracts from
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amounts of TRB1 protein levels normalized to VCP protein levels shown. AU, arbitrary units.
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impaired TRB1 gene expression upon cytokine stimulation
in primary adipocytes (Fig. 2C), suggesting that the NF-�B
transcriptional complex may represent a critical check-
point for TRB1 gene regulation in these cells and that
other NF-�B components apart from p50 are essential in
this context. To test this hypothesis directly, we treated
mature adipocytes derived from differentiated 3T3-L1
preadipocytes with various inhibitors for specific intracel-
lular signaling pathways upon conditioned medium expo-
sure. Inhibitors of p38 (SB202190), extracellular signal–
regulated kinase (ERK) (PD98059), and protein kinase A
pathways elicited no effect on conditioned medium–trig-
gered TRB1 mRNA levels (Fig. 2D and data not shown).
However, specific pharmacological inhibition of the NF-�B
signaling axis by parthenolide as well as the non–isoform-
specific JNK inhibitor SP600125 (36) completely elimi-
nated the effect of conditioned medium on TRB1 mRNA
levels in differentiated 3T3-L1 adipocytes as well as in
SVF-derived primary adipocytes from wild-type mice (Fig.
2D and E; supplementary Fig. 2E), thereby demonstrating
that the cell autonomous induction of TRB1 in white
adipocytes under proinflammatory conditions is deter-
mined in a combinatorial fashion by distinct proinflamma-
tory axes, including NF-�B and JNK signaling.
TRB1 controls cytokine gene expression in WAT. The
data thus far established TRB1 as a novel output gene of

the proinflammatory pathway in WAT, prompting us to
investigate the functional relevance of these findings in an
in vivo setting. Due to the high perinatal mortality of
homozygous TRB1 knockout mice on the C57BL6 back-
ground strain (unpublished data, obtained from T. Satoh,
Japan), we studied mice with haploinsufficiency for TRB1
(19), displaying an �50% reduction in whole-body TRB1
mRNA levels (supplementary Fig. 3A). Notably, both TRB2
and TRB3 mRNA levels in WAT of these mice were
substantially lower compared with TRB1 and not affected
by TRB1 deficiency (supplmentary Fig. 3A). Under basal
conditions, TRB1 haploinsufficiency slightly increased food
consumption (supplementary Fig. 3B) but had no effect on
body weight; total body fat content, as determined by
magnetic resonance technology (Fig. 4A and B); blood
glucose levels (supplementary Fig. 3C); serum insulin
levels (supplementary Fig. 3D); or serum cholesterol
(supplementary Fig. 3E), as well as nonesterified fatty
acid (supplementary Fig. 3F) and triglyceride (supple-
mentary Fig. 3G) levels as compared with wild-type
littermates. In WAT, key genes in glucose and lipid
regulatory pathways, including GLUT4, acetyl-carbox-
ylase-2, fatty acid synthase, and fatty acid– binding
protein-4, were not different when comparing wild-type and
TRB1 haploinsufficient animals (supplementary Fig. 3H).

In contrast, WAT mRNA expression of IL-1�, TNF-�, and
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plasminogen activator inhibitor (PAI)-1 was significantly
reduced in TRB1 haploinsufficient mice under basal and/or
LPS-stimulated conditions (Fig. 3A), supporting the hy-
pothesis that TRB1 is specifically required for the execu-
tion of the proinflammatory program in WAT.

Given the variable impact of TRB1 haploinsufficiency on

WAT cytokine gene expression (Fig. 3A), which can most
likely be explained by differential effects of TRB1 on gene
expression in different WAT cell types including macro-
phages (19), we next sought to determine the cell auton-
omous role of TRB1 in proinflammatory responses
specifically in adipocytes. To this end, we infected 3T3-
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PCR analysis of IL-1�, TNF-�, and PAI-1 mRNA levels in WAT of
wild-type (wt) or TRB1 heterozygous knockout mice (TRB1�/�) under
basal or LPS-injected (20 mg/kg) conditions (means � SE, n � 6–7). B:
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immunosorbent assay (means � SEM, n � 3). *P < 0.05; **P < 0.01; ***P < 0.001.
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L1–derived mature adipocytes with an adenovirus carry-
ing a TRB1-specific or a nonspecific control shRNA. TRB1-
specific shRNA treatment substantially reduced TRB1
protein and mRNA expression in these cells (supplemen-
tary Fig. 4A and B) but had no influence on TRB2 and

TRB3 expression levels (supplementary Fig. 4B), demon-
strating the specificity of the shRNA knockdown strategy.
Consistent with the results from TRB1 haploinsufficient
mice (supplementary Fig. 3A), TRB1 deficiency impaired
IL-6 and IL-1� gene expression (supplementary Fig. 4C)
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and release from these cells in response to proinflamma-
tory stimulation (supplementary Fig. 4D) but exerted no
discernable effect on metabolic gene expression (supple-
mentary Fig. 4E).

To verify these findings in a primary cell system, we
utilized differentiated SVF-derived mature adipocytes from
wild-type mice infected with an adenovirus carrying a
TRB1-specific or a nonspecific control shRNA as above.
Adenoviral shRNA delivery substantially impaired TRB1
but not TRB2 and TRB3 expression in these primary cells
(Fig. 3B and supplementary Fig. 4F). Recapitulating the
results in TRB1 deficient mice and 3T3-L1–derived adipo-
cytes, loss of TRB1 in fully differentiated mature adipo-
cytes had no major influence on the expression of genes
involved in either glucose metabolism, lipogenesis, or fatty
acid oxidation, as demonstrated by quantitative PCR anal-
ysis (supplementary Fig. 4G). However, TRB1 deficiency
substantially blunted the cytokine-triggered induction of
proinflammatory genes, including IL-6, IL-1�, interferon-�,
TNF-�, and PAI-1 (Fig. 3C), also reflected by a signifi-
cantly impaired release of individual proinflammatory
cytokines from these primary cells upon cytokine expo-
sure as determined by enzyme-linked immunosorbent as-
say (Fig. 3D). Together with the in vivo data, these results
demonstrated that TRB1 action is specifically required for
the cell-autonomous cytokine production and release by
white adipocytes during inflammation.
TRB1 haploinsufficiency protects against high-fat
diet–induced obesity. The critical role of TRB1 in the
execution of WAT cytokine gene expression during acute
inflammation prompted us to assess the potential impact
of TRB1 on chronic, low-grade inflammatory conditions as
those associated with adiposity and other components of
the metabolic syndrome. To this end, heterozygous TRB1
knockout mice and wild-type littermates were placed on a
high-fat diet or a control diet, with 60 or 10% of calories
from fat, respectively, for 13 weeks. Wild-type mice on the
high-fat diet showed a significant body weight as well as
fat mass gain throughout the experimental period (Fig. 4A
and B), associated with the increased expression of proin-
flammatory markers in WAT as reported (Fig. 4E) (37).
Under the high-fat diet conditions, TRB1 heterozygosity
had no effect on plasma glucose (supplementary Fig. 3C),
serum insulin (supplementary Fig. 3D), or serum triglyc-
eride (supplementary Fig. 3G) levels, as compared with
wild-type controls. In contrast, weight gain and adiposity
were almost completely prevented in TRB1�/� mice after
13 weeks on the high-fat diet, remaining at body weight
and body fat mass levels of wild-type mice on the control
diet (Fig. 4A and B). Consistent with the lean phenotype
and improvements in body composition, high-fat diet–
induced glucose intolerance tended to be improved in
TRB1�/� mice (Fig. 4C), and TRB1�/� mice exhibited a
trend toward increased blood glucose clearance after
exogenous insulin administration, indicative of improved
systemic insulin sensitivity (Fig. 4D). Moreover, TRB1
haploinsufficiency inhibited the HFD-mediated increase in
proinflammatory gene expression in WAT of these animals
(Fig. 4E), overall demonstrating the specific regulatory
function of TRB1 for obesity-induced proinflammatory and
metabolic programs under conditions of chronic energy
excess in vivo.
TRB1 controls cytokine gene expression in adipo-
cytes via direct promoter recruitment. Finally, we
sought to define the molecular mechanism of the regula-
tory function of TRB1 in adipocyte inflammation. To this

end, we performed cellular fractionation studies to deter-
mine the principal localization of TRB1 within primary
white adipocytes. In agreement with previous reports (38),
TRB1 protein was exclusively detected in the adipocyte
nuclear fraction (Fig. 5A), suggesting that TRB1 exerts its
proinflammatory role on cytokine gene expression mainly
through nuclear functions.

Consistent with this notion, in chromatin immunopre-
cipitation assays of 3T3-L1 preadipocytes TRB1, but not
negative-control precipitates, efficiently recovered endog-
enous IL-6, IL-1�, and TNF-� promoter fragments, carrying
critical inflammation-responsive regulatory DNA elements
(Fig. 5B, left). Interestingly, TRB1 was found to be further
enriched on these promoter sites upon conditioned me-
dium stimulation as compared with the basal state (Fig.
5B, left). On the contrary, no or reduced TRB1 promoter
association was observed with IL-6 and IL-1� promoter
regions, respectively, which lacked recognition elements
for proinflammatory activator complexes, including the
NF-�B subunit RelA (Fig. 5B, right), demonstrating the
specificity of the observed effects. Taken together, these
results showed that TRB1 is directly recruited to cytokine
gene promoters in the nucleus and particularly directed to
the NF-�B/RelA recognition site–containing promoter
regions.

To test whether TRB1 can indeed functionally modulate
RelA-dependent gene transcription, we utilized promoter
reporter constructs harboring isolated wild-type or mu-
tated RelA binding sites in transient transfection assays of
3T3-L1 preadipocytes. Cotransfection of a TRB1 cDNA
expression plasmid coactivated RelA-driven wild-type pro-
moter activity by 1.5-fold as compared with controls (Fig.
5C). Furthermore, shRNA-mediated knockdown of TRB1
in these preadipocytes significantly impaired RelA-depen-
dent promoter activity but had no effect on mutated
promoter function (Fig. 5D), demonstrating the require-
ment of endogenous TRB1 for full RelA transcriptional
activity in this context.

Overall, these data supported the hypothesis that TRB1
acts as a direct transcriptional coactivator for NF-�B/RelA
in the control of cytokine gene expression in white (pre-)
adipocytes. Indeed, GST-tagged RelA but not GST alone
recovered in vitro translated TRB1 in GST pulldown
assays via its transactivator domain (Fig. 5E), and TRB1
was found to bind to RelA in cellular coimmunoprecipita-
tion assays (Fig. 5F). Taken together, these results under-
line the notion that TRB1 can affect RelA transcriptional
activity via direct physical interaction upon promoter
recruitment.

DISCUSSION

Our results suggest a novel nuclear coactivator function of
TRB1 on proinflammatory cytokine promoters in white
adipocytes, mediated by its recruitment to NF-�B DNA
recognition sites. Also, given the discovery that TRB1 gene
expression is induced via proinflammatory pathways in
these cells, our data are consistent with a model in which
TRB1 acts as both a target and effector of proinflammatory
signaling in adipocytes via its direct physical interaction
with the RelA subunit of NF-�B.

A biological function for TRB1 has been reported only in
a very limited number of studies. Thus far, TRB1 has been
suggested to represent a biomarker for antibody-mediated
allograft failure, expressed mainly in antigen-presenting
cells and activated endothelial cells (39). In addition, TRB1
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controls vascular smooth muscle cell proliferation and
chemotaxis via regulation of mitogen-activated protein
kinase activity (40) and has been shown to control NF–IL-
6–mediated gene expression in macrophages in an NF-�B–
independent manner (19). By acting as a positive mediator

of inflammatory cues in adipocytes, the coactivator func-
tion of TRB1 for cytokine gene expression in these cells
may thereby reflect a specific “adipose” aspect of a
broader involvement of TRB1 in (pro-) inflammatory pro-
grams and pathologies at a systemic level. Interestingly,
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TRB1 haploinsufficiency resulted in no obvious metabolic
phenotype under basal conditions (supplementary Fig.
3A–G), and TRB1 haplodeficiency did not seem to influ-
ence adipocyte differentiation, per se, as the body fat
content was not different from wild-type animals under
standard diet–fed conditions (Fig. 4B), thereby contrasting
the essential requirements of both TRB2 and TRB3 for the
adipogenic program (17,18). However, TRB1 expression
has been found to be elevated in human atherosclerotic
arteries (40), and recent genome-wide association studies
have pinpointed variants of the TRB1 locus as risk factors
for hypertriglyceridemia and coronary artery disease (41–
43), conditions tightly linked to a chronic inflammatory
status (44). Indeed, during low-grade inflammatory condi-
tions TRB1 heterozygosity protected against high-fat diet–
induced obesity, glucose intolerance, as well as insulin
resistance and inhibited cytokine gene expression in WAT
(Fig. 4). Rather than controlling metabolic pathways di-
rectly, it is tempting to speculate that the proinflammatory
action of TRB1 in adipocytes contributes to the above-
mentioned (metabolic) pathologies by enhancing the re-
lease of circulating cytokines from WAT in response to a
primary, proinflammatory hit (e.g., macrophage-derived
cytokines). This notion is consistent with the induction of
TRB1 expression in synovial fibroblasts upon IL-1� expo-
sure (45) as well as with our data showing that the
transcriptional activation of TRB1 in adipocytes does not
rely on direct TLR4/LPS signaling (Fig. 2A) but rather on a
complex cytokine cocktail as produced by tissue macro-
phages or stressed adipocytes, per se (Fig. 2A). Given the
whole-body heterozygosity, the observed resistance against
diet-induced obesity could be further enhanced by nonadi-
pose tissue functions of TRB1, including increased uncou-
pled respiration in BAT, increased physical activity, and/or
differences in intestinal absorption, which will be addressed
in future studies.

Overall, TRB1 may serve as a functional receptor in
the communication between metabolic (adipocytes) and
immune cells (e.g., macrophages) in WAT, thereby ampli-
fying WAT inflammation in response to activated WAT-
associated immune reactions. As proinflammatory signaling
is typically increased in sepsis, insulin resistance, and obe-
sity-related type 2 diabetes (46), the cytokine-inducible TRB1
coactivator function in WAT might provide a molecular
rationale for the amplification of systemic inflammation in
these subjects.
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