
Gene- or Region-Based Analysis of Genome-Wide Association
Studies

Joseph Beyene1,2, David Tritchler1,3,4, Jennifer L. Asimit5, and Jemila S. Hamid2

1Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
2Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto,
Ontario, Canada
3Division of Epidemiology and Statistics, Ontario Cancer Institute, Toronto, Ontario, Canada
4Department of Biostatistics, State University of New York at Buffalo, Buffalo, NY
5Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada

Abstract
With rapid advances in genotyping technologies in recent years and the growing number of
available markers, genome-wide association studies are emerging as promising approaches for the
study of complex diseases and traits. However, there are several challenges with analysis and
interpretation of such data. First, there is a massive multiple testing problem due to the large
number of markers that need to be analyzed, leading to an increased risk of false positives and
decreased ability for association studies to detect truly associated markers. In particular, the ability
to detect modest genetic effects can be severely compromised. Second, a genetic association of a
given single-nucleotide polymorphism as determined by univariate statistical analyses does not
typically explain biologically interesting features and often requires subsequent interpretation
using a higher unit such as a gene or region, for example as defined by haplotype blocks. Third,
missing genotypes in the data set and other data quality issues can pose challenges when
comparisons across platforms and replications are planned. Finally, depending on the type of
univariate analysis, computational burden can arise as the number of markers continues to grow
into the millions. One way to deal with these and related challenges is to consider higher units for
the analysis such as genes or regions. This paper summarizes analytical methods and strategies
that have been proposed and applied by Group 16 to two genome-wide association data sets made
available through the Genetic Analysis Workshop 16.
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INTRODUCTION
It is believed that genetic factors play an important role in the etiology of common diseases
and traits. Over the last several decades, various molecular epidemiologic approaches have
been developed and used to dissect genetic contributions for a host of diseases. Most
notably, linkage and association studies that are based on candidate genes have been
extensively studied. With advances in high-throughput genotyping technologies in recent
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years, however, there has been a shift towards a genome-wide interrogation of common
polymorphisms in relation to possible links with clinical phenotypes. It is now possible to
study one million single-nucleotide polymorphisms (SNPs) on thousands of subjects; the
number of markers is expected to grow further.

Two study designs are commonly used in the context of genome-wide association studies
(GWAS). The most popular is the case-control design, which includes unrelated individuals.
Several case-control GWAS have recently been published reporting disease susceptibility
loci for a range of complex and chronic diseases [Hirschhorn and Daly, 2005; McCarthy and
Zeggini, 2009]. The other study design is family-based, in which related subjects are
included [Wilk et al., 2009]. Each study design has its own strengths and weaknesses. For
example, the case-control design is easier to carry out compared with family-based studies,
but it is prone to bias arising from population stratification.

Although GWAS are promising to be key tools in the investigation of complex diseases,
there are many analytic and interpretation challenges. It is customary to analyze the million
or so SNPs one at a time and declare significance at a pre-specified genome-wide p-value
threshold. Such univariate analyses are less than optimal for many reasons. First, a SNP-by-
SNP analysis leads to the well known multiplicity problem, resulting in highly inflated risk
of type I error and a decreased ability to detect modest effects. Second, the functional unit of
interest is often the gene, not a single SNP. For example, biologists typically think of a gene
when designing a replication study. Therefore, interpretation of results from a SNP analysis
may lack biological insight. Third, in high-throughput genome-wide data, there may be a
significant proportion of missing genotypes. This and other data-related issues can pose
difficulty when cross-platform comparisons and replications are planned. Finally, there is
computational burden due to the sheer volume of the data, which is expected to grow even
further as technology advances.

This paper summarizes contributions to Group 16, the “gene- or region-based association
tests” group of the Genetic Analysis Workshop 16 (GAW16). Authors in this group
contributed methods and strategies that can help alleviate some of the challenges described
above. Contributors were interested in statistical and computational techniques for the
analysis of high-dimensional SNP data using a gene or region as the primary unit of
analysis.

Two genome-wide association data sets were analyzed: a case-control study on rheumatoid
arthritis (RA) from the North American Rheumatoid Arthritis Consortium (NARAC) and a
data set on traits related to cardiovascular conditions using the family-based Framingham
Heart Study (FHS). Both data sets were made available through the GAW16.

METHODOLOGICAL APPROACHES AND ISSUES
Study focus

The scope of the analyses varied from candidate regions (e.g., HLA versus non-HLA region)
to genome-wide searches. Analyses to detect marginal effects of features were performed,
and some analyses included interactions. One study specifically focused on rare variants.

Pre-processing approaches and challenges
Eight groups analyzed the Problem 1 RA data and two groups analyzed the Problem 2 FHS
data. Although within each problem a single genotyping platform was used, one group
compared their results with the Wellcome Trust data, which raised the issue of combining
and comparing data from different platforms with differing coverage.
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Quality control approaches applied by the participants included removing SNPs that were
not in Hardy-Weinberg equilibrium had low call rates, or very small minor allele frequency
(MAF). Example criteria are Hardy-Weinberg equilibrium declared not to hold for p < 5.7 ×
10−7, 10−10, or 10 ×10−5; call rates at least 97% or 90%; and MAF of 0.01 or more.

When SNPs are combined to form region-based features, the handling of missing values
must be considered. It is undesirable to fail to define an entire region due to a few missing
member SNPs. Imputation of missing SNPs becomes very important. Imputation is also
important when combining different platforms.

Software used by members of our group includes R, Stata, C++, SAS, PLINK, GenABEL,
Haploview (allele frequency estimation), GADA (copy number variation), FastPhase,
MACH (missing value imputation), and Eigenstrat (outlier detection).

Defining regions and analytical strategies
The definition of “region” was very broad, to include a wide variety of multi-allelic
analyses. The minimum region was a single SNP analyzed in a model including known
effects (e.g., HLA) and interactions. In this case, the region is the selected SNP in
conjunction with the known effect. Haplotype was also used as a region. A common theme
was assembling SNPs to represent a gene. With multiple causal variants in the same gene,
we would expect several SNPs to be associated with disease, and hence to observe a strong
gene-based signal of association. For those applications, defining genes and mapping SNPs
to genes are important issues. The next level of complexity is the gene set, which also
requires biological knowledge to group genes by function or pathway. An alternative is to
simply group SNPs annotated with similar function, making mapping to genes unnecessary.
Another biologically motivated region definition used was interval of constant copy number.

Some groups defined regions based solely on statistical properties. Regions of significant
SNPs were identified by a scan statistic approach, which requires the SNP position and the
p-value for association at that position. Windows along the chromosome including varying
numbers of SNPs were tested for region-level significance, where the regional p-value is the
probability of observing the same number of significant markers over a distance as short as
or shorter than observed. The scan statistic is simply the distance spanned by the group of
markers of interest.

Another approach identified clusters of SNPs within a candidate region. The variation within
the cluster was summarized by principal components. Other authors clustered individuals
according to genotypic similarity. Cluster membership then represented a genotypic profile
analogous to a haplotype.

The definition of region has implications for what is found. A single variant with large effect
is more likely found by SNP-based analysis, while gene-based analysis is more likely to find
multiple causal SNPs. These SNPs might be related by membership in a common gene,
pathway, or function. They may share only rarity, and the need to be consolidated for
detection.

An important aspect of gene-based analysis is that biological knowledge (e.g., GO and
KEGG) can be used to interpret genes. For cross-platform comparisons, gene-based
interpretation is easier to generalize. An important consideration is different coverage of the
platforms. Imputation may help in some cases. A central issue in these analyses is the
mapping of SNPs to genes. A variety of databases are available for mapping, and there is
flexibility in defining the extent of genes. For example, up- and down-stream segments may
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be included to represent regulatory or other components. The databases used were NCBI,
UCSC, Illumina, and the CHIP Bioinformatics tools from the University of Florida.

Reducing the number of features was a common objective. Composites of SNPs can
potentially represent biological variation more appropriately for the goals and interpretation
of the study, so the true dimension is less than the number of SNPs. The association of the
derived feature with outcome may be readily detected and more directly related to existing
biological knowledge. The reduced number of features also reduces the adverse effect of
multiple testing corrections on power.

There are two aspects to defining composite features. The first is how SNPs are grouped and
the second is how the SNPs in a group are combined. The SNPs can be grouped by a priori
biological knowledge (e.g., mapping them to genes) or by statistical properties (e.g., cluster,
p-value, copy number segment). Types of biological knowledge employed included gene,
pathway, candidate gene selection, and selection for low allele frequency. The statistical
measures were intended to represent meaningful biological variation or to group effects for
greater power.

The effect of a group of SNPs comprising a feature can be represented by combining test
statistics for the SNPs (e.g., minimum, maximum, linear combinations of test statistics) or
combining p-values. Principal components were used to summarize the variation of a group
of SNPs. For that approach, the choice of the number of components is an important issue.
Which SNPs are captured by a principal component may be of interest if interpretation is at
a finer level than the gene. SNPs that are associated with disease as a result of linkage
disequilibrium (LD) with a single causal variant would be expected to appear in the same
principal component, while independent mutations would be expected to appear in different
components. Similarly, clusters of SNPs are expected to capture independent biological
effects. In some cases, a tagSNP represented the group.

Features were modeled in univariate analyses or jointly, possibly including interactions and
covariates. Statistical models used included logistic regression, penalized logistic regression,
and linear regression. Validation was based on replication of known genes and comparison
with Wellcome Trust data.

HIGHLIGHTS OF INDIVIDUAL CONTRIBUTIONS
In this section, we briefly highlight specific approaches and findings for the ten
contributions in our group. As is typically the case in genome-wide studies, some sort of
pre-processing or quality filtering techniques were used by all of the ten contributions. The
pre-processing steps included assessment of call rate, Hardy-Weinberg equilibrium, and
minor allele frequency. Table I shows a summary of data sets and methods used by various
authors. Some of the significant findings are also listed in the table.

Analyses of Problem 1 (case-control RA data)
It has been indicated that the RA data set considered in these studies is likely affected by
population stratification, which may lead to misleading association results if this is not taken
into account in the analyses. Two groups [Beyene et al., 2009; Morris et al., 2009] adjusted
for population stratification. Morris et al. [2009] also performed association studies with and
without adjustment for the effects of the HLA-DRB1 locus.

Unlike the traditional GWAS in which SNPs are the units of analysis, all contributions in
this group used higher units, and hence regions had to be defined before the association
analyses. Most groups that analyzed the RA data mapped each SNP to a gene according to
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the gene annotation attached with the data set. Black and Watanabe [2009], however, used
orthoblique principal-component analysis to define sets of SNPs representing the unit of
analysis.

After defining the unit, all groups implemented data reduction techniques with the aim of
aggregating summary measures over all the SNPs or units for a given gene. Yang et al.
[2009], for instance, combined marginal p-values from Armitage trend tests or logistic
regression models to examine gene effects. They used a truncated product p-value approach
in which p-values less than some pre-specified threshold were combined to evaluate the
effects of genes (or SNP clusters). Aporntewan et al. [2009] used rough set theory to
determine sets of SNPs that are informative and used this information in clustering
individuals. Association analysis between cluster membership and disease outcome was then
performed to determine significantly associated genes. Beyene et al. [2009] used the
maximum explained variation from a logistic regression as well as the maximum chi-square
statistic for evaluating the significance of pre-defined gene sets/path ways using gene set
enrichment analysis (GSEA). Black and Watanabe [2009] used logistic and linear models in
a likelihood-ratio framework to test whole-region association with RA status and RA-related
traits, and also for individual cluster association with these outcomes. This highlights the
main difference between their method and traditional PCA regression. Buil et al. [2009]
performed association between clusters of individuals, defined by genetic similarity in a
gene, and traits. Morris et al. [2009] carried out a logistic regression approach to identify
accumulations of rare variants within the same gene associated with disease susceptibility.
The log-odds of disease is modeled as a linear function of the proportion of rare SNPs
within a gene. On the other hand, Qiao et al. [2009] and Xiao et al. [2009] considered
interactions between genes and known RA-associated genes. Xiao et al. [2009] investigated
the interaction between a particular gene (KCNB1), previously shown to have a moderate
association with RA, with HLA-DRB1. They selected 15 SNPs from the KCNB1 gene and
fitted a logistic regression including interaction. Qiao et al. [2009] conducted genome-wide
searches for RA-associated interactions with two known genes (HLA-DRB1 and PTPN22).
They used a gene-based measure of interaction defined by aggregating SNP-level
information based on genotypetrait distortion statistics.

Some common genes, including genes in the HLA region, were consistently identified by
the different groups. Known RA-associated genes as well as novel genes/regions have also
been identified. Morris et al. [2009], for instance, identified novel putative RA susceptibility
genes that have not been previously identified in large-scale GWAS. Some of these findings
for both RA and FHS data sets are summarized in Table I.

Analyses of Problem 2 (family-based FHS data)
Only two contributions used the FHS data set. A scan statistic was used by Asimit et al.
[2009] to identify regions of association with the blood lipid phenotypes high-density
lipoprotein, low-density lipoprotein, and triglyceride. Markers from the 500k chip were
pruned for LD (R2 < 0.5), and the tagSNP positions and corresponding p-values for
association were then used as input to the scan statistic to identify regions and test for
regional significance. Permutations of the tagSNP p-values across positions were used to
obtain empirical genome-wide regional p-values. Among the genome-wide significant scan
statistic regions, there was overlap with a number of previously identified candidate lipid
genes. Results were compared with those of several multiple-SNP regression test statistics in
gene and inter-gene regions formed using the USCS database, using generalized estimating
equations to account for familial correlation. Approximately half of the genome-wide
significant scan statistic regions did not overlap with the SNP-database regions, and were
considered to be novel.
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Shtir et al. [2009] performed a gene-based approach to test association between diabetes and
copy number variation (CNV) using the 500k SNP data for the subset of individuals with
diabetes. Intensities were generated from .cel files via the Affymetrix Power Tools
(APTools) software, and copy number inference was done using two CNV-calling methods:
GADA and CNAM. The GADA analysis employs a median normalization step followed by
the normalization scheme within the APTools suite, while the CNAM analysis uses a
proprietary normalization scheme for which details are not available. Due to familial
structure, the points where changes in copy number occur are likely to be correlated across
individuals, so they partition the genome into intervals such that the copy number remains
constant for any individual in the sample within any interval. They found little evidence of
association, with no gene attaining genome-wide significance, which may be due to the
Affymetrix 500k product not being designed very well for CNVs. In addition, there is a lack
of agreement between the two CNV algorithms, which seems to be due to the different
normalization techniques for the SNP intensities.

DISCUSSION
A common thread among the region-based analyses is the issue of how to handle SNPs that
are not mapped to genes. One approach is simply to ignore such SNPs. This would be valid
when the focus is on coding variation because there would be no loss of information in
removing inter-gene SNPs [Buil et al., 2009; Morris et al., 2009; Qiao et al., 2009; Shtir et
al., 2009; Xiao et al., 2009]. Another approach is to map each SNP to a gene by an
approximation that assigns the gene that is physically the nearest or by LD with markers in
nearby genes [Aporntewan et al., 2009; Beyene et al., 2009]. Moreover, SNPs may be
stratified and classified as “gene” and “non-gene” [Asimit et al., 2009]. Upon stratification,
each “non-gene SNP” may then be analyzed separately [Yang et al., 2009], or inter-genic
SNPs may be grouped in conserved blocks to form post-transcription regulators. An
alternative approach is to identify non-gene regions statistically, which removes some
dependence on a gene database [Asimit et al., 2009; Black et al., 2009].

Groups met various issues in performing region-based analyses. In single-SNP analyses, for
instance, there is a clear difficulty in replication studies due to the lack of common SNPs
across platforms. Although this problem is reduced when the unit of analysis is a gene, it is
still encountered, as was the case for Aporntewan et al. [2009] when comparing their
GAW16 RA results with those of Wellcome Trust. In mapping SNPs to genes, there is the
possibility of misclassification caused by making an incorrect assignment of a gene. There
may also be disagreement between studies due to the way a gene is defined. Many groups
used a common gene database, but defined genes differently, stretching the gene boundaries
± L kb, where L was 0, 5, or 50. Different databases and different versions of databases may
assign different genes to a single SNP, adding a source of difficulty in comparing candidate
genes from multiple studies. For example, the same SNP effect was detected by Buil et al.
[2009] and Aporntwean et al. [2009], but the respective assigned gene was PHF19 and
TRAF1, likely due to the use of different databases (NCBI [Buil et al., 2009] versus Illumina
[Aporntwean et al., 2009]). Additional sources of ambiguity in gene assignment are that
multiple genes may code for a single SNP, SNPs in LD may be from several genes, and
regions may include multiple genes. Furthermore, statistically defined regions or SNP sets
may or may not overlap with genes. When performing a rare variant analysis, there is the
additional issue of platforms not having many rare variants; in particular, the Affymetrix
500k product is not designed very well for rare variants. In the case of the GAW16 RA data,
Morris et al. [2009] found a scarcity of variants with MAF < 2% in the chip, and relaxed the
definition of rare variants to those with MAF < 5%. The strongest association signal, from
the rare variant scan for RA adjusted for sex and HLA-DRB1, was in the class III region of
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the MHC, in two overlapping genes that share the same three rare variants, suggestive of RA
association with rare variants within the MHC, independent of the effect of HLA-DRB1.

In choosing an approach for analysis, the type of data needs to be considered, as well as the
feasibility of meeting certain assumptions. Originally, principal-components analysis was
developed for and applied mainly to quantitative variables, but it may also be used to
analyze discrete SNP data. Distributional assumptions are required in the variance-
components models and for the scan statistic. The high dimensionality of the SNP data leads
to the problems of intensive computation and multiple testing, both of which may be
alleviated by reducing the dimension, as done by using region-based methods. Additional
issues arise depending on whether the focus of the study is exploratory in nature and
involves model fitting. When model fitting, in addition to meeting various assumptions,
decisions need to be made regarding choice of marginal and/or interaction effects and
associations of single or multiple SNPs. Likewise, among the groups using the RA data in
exploratory analysis, the choice of investigating the MHC region and/or regions outside of
the MHC was an issue.

Biological knowledge is required at some stage, and is utilized either at the stages of
defining regions, modeling and interpretation, or for later follow-up upon identification of
candidate genes. Statistical and computational methods were combined with biological
domain knowledge (e.g., GO and KEGG) in the pathway-based analysis of Beyene et al.
[2009]. As indicated by several groups, after a list of candidate genes is obtained, further
exploration is needed to understand variant effects on issues such as transcriptional
regulation and protein production.

In comparisons between SNP-based tests and gene-based tests, it is apparent that the two
tests use genetic information in different ways, and will not necessarily produce compatible
results. Buil et al. [2009] found that SNP-based tests and gene-based tests gave different
results outside the HLA region; the P2PN22 gene was found by the SNP-based test, while
the PHF19 gene was found by the gene-based test. They conclude that the genetic
information is used differently by the two types of tests, and that the tests are
complementary. Different underlying genetic architectures may more easily be captured by
one strategy than by the other, and in choosing the most appropriate approach, the
hypothesis of interest must be considered. A SNP-based approach would be appropriate
when the focus is on genes with a single common functional variant, but for genes with
several common functional variants, a gene-based approach is a better choice. A specific test
for rare variants is best when the primary interest is in genes with several rare functional
variants. Clearly, all situations cannot be covered by a single type of test. However, one
strategy may give better results, depending on the genetic architecture of the trait under
consideration. The complication is that the underlying genetic architecture is often unknown.
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Table I

Highlights of methods used and selected significant association results

Dataset Contribution Methods Significant
associations

Rheumatoid
arthritis

Aporntewan et
al.

Rough set theory to determine sets of
SNPs representing a gene, clustering of
individuals, association between cluster
membership and disease status

TRAF1, PTPN22,
ADAM15, AGPAT2

Beyene et al. Measures of explained variation from
logistic regression are used, the
maximum summary measure over all
SNPs for a given gene is used for
association, gene set enrichment analysis
is used to determine significance of pre
defined sets of genes

Ten gene sets were
identified, the MHC
region was included in
one of these pathways

Black et al. Principal-components analysis with
orthoblique rotation is used to identify
subsets of SNPs in the MHC region;
principal-components-based clusters are
then tested for association studies

HLA-C, HLA-A, HLA
DQB2, HLA-DR
(DRA, DRB1 and
DRB5)

Buil et al. Clustering of individuals based on
genetic similarity, association tests
between the clusters and the traits are
performed

PHF19

Morris et al. Tests of association of RA with
accumulations of rare variants within a
gene are performed using logistic
regression in which the phenotype is
modeled as a function of the proportion
of rare SNPs at which an individual
carries minor alleles

FRY, PRPSlL1,
ARNTL1, and TRIM58
and HINT1 when
adjusted for HLA-
DRB1

Qiao et al. A statistic for measuring gene-gene
interaction is defined based on SNP-level
interactions using genotype-trait
distortion statistic; significance was
determined using permutation

MGC13017,
HSPCAL3, MIA,
PTPNSIL, IGLVI-70

Xiao et al. SNPs are selected from the KCNB1 gene,
logistic regression with interaction is then
used where an interaction term between
HLA-DRB1 and KCNB1 is included in
the model

Moderate interaction
between KCNB1 and
HLA-DRB1

Yang et al. p-Values from single-SNP analyses are
combined for a gene-based association
analysis

PTPN22, C5, IL2RB,
HLA-DRA, BTNL2,
C6orf10, NOTCH4,
TNXB

Framingham
Heart Study

Asimit et al. Based on the positions and association p-
values of tagSNPs, a scan statistic is used
to identify regions of significant SNPs.
Empirical genome-wide p-values are
obtained by permutation of the tagSNP p-
values across positions

ABCA1, CETP, LPL,
LIPG, ACAA2,
HERPUD1, LDLR,
APOB, BCAM

Shtir et al. A gene-based analysis is used to test for
association between copy number
variation and diabetes status. The
Wilcoxon rank-sum test is used to obtain
a p-value for each gene.

No gene attained
genome-wide
significance
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