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Abstract
Statistical methods for tomographic image reconstruction have improved noise and spatial
resolution properties that may improve image quality in X-ray CT. Penalized weighted least
squares (PWLS) methods using conventional quadratic regularization lead to nonuniform and
anisotropic spatial resolution due to interactions between the weighting, which is necessary for
good noise properties, and the regularizer. Previously, we addressed this problem for parallel-
beam emission tomography using matrix algebra methods to design data-dependent, shift-variant
regularizers that improve resolution uniformity. This paper develops a fast Angular Integral
Mostly Analytical, AIMA, regularization design method for 2D fan-beam X-ray CT imaging, for
which parallel-beam tomography is a special case. Simulation results demonstrate that the new
method for regularization design requires very modest computation and leads to nearly uniform
and isotropic spatial resolution in transmission tomography when using quadratic regularization.

Index Terms
Fan-Beam CT; Iterative Reconstruction; Regularization; Local Impulse Response; Spatial
Resolution

I. Introduction
Statistical image reconstruction methods for X-ray Computed Tomography (CT) imaging
have the potential to reduce patient dose, reduce artifacts from beam hardening and metal
objects, and accommodate scanning geometries that are poorly suited for conventional FBP
reconstruction. Unregularized image reconstruction leads to excessively noisy images,
which necessitates noise control such as a penalized weighted least squares1 (PWLS)
method, or a penalized-likelihood (PL) method [1].

Although PL and PWLS methods can control noise, interactions between a conventional
quadratic roughness penalty and the weighting that is explicit in PWLS methods [2], and is
implicit in PL methods, results in images with nonuniform and anisotropic spatial resolution,
even for idealized shift-invariant imaging systems [3]. Fan-beam geometries used in X-ray
CT are shift-variant and contain additional variations in spatial resolution over the field of
view (FOV) [4]. The resulting non-uniformities and anisotropy could be avoided in part by
using a conventional penalized unweighted least-squares (PULS) estimation method.
However without the weighting, PULS yields poor noise properties (akin to FBP).

Correspondence to: Hugo R. Shi, hugoshi@umich.eduhugoshi@eecs.umich.edu.
1In this paper we write PWLS and penalized unweighted least squares (PULS) because the techniques used in this paper can be
generalized for non-quadratic regularization. However, the scope of this paper is quadratic regularization and all regularizers used here
are quadratic.
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Much previous work on regularization design focuses on matrix-based approaches to fit the
local impulse response of the estimator to a target impulse response. A shift-variant
regularizer based on the aggregate certainty of measurement rays intersecting each pixel was
developed that yielded uniform but anisotropic spatial resolution [3]. Stayman parameterized
the quadratic regularizer to produce uniform and isotropic spatial resolution [5] and
generalized regularization design to other non-Poisson noise models [6]. [7] presents a
regularization design method for uniform and isotropic spatial resolution that is not based on
an explicit target point spread function (PSF), but rather focuses on circular symmetry and
uniformity. Extensions to 3D PET have also been proposed [8], [9].

We previously proposed an analytical approach to regularization design for 2D parallel-
beam emission reconstruction that uses continuous space analogs to simplify the
regularization design problem [10]. This paper extends [10] by developing a mostly
analytical approach to regularization design for fan-beam geometries [11]. §II reviews the
concept of a local impulse response (LIR) and discusses the design of regularizers that yield
approximately uniform and isotropic spatial resolution. §III uses the frequency domain to
gain some insight into the problem and derives a minimization problem to solve for the
appropriate regularization coefficients. §IV describes efficient techniques for computing the
regularization coefficients. §V presents the results of our simulations using simulated and
real X-ray CT data, and §VI analyzes them.

II. Local Impulse Reponse
Let y = (y1, …, yM) denote the vector of noisy transmission sinogram measurements
recorded in a CT system. For simplicity, we consider the following mono-energetic
formulation for the ensemble mean of the measured data:

(1)

where A is the system matrix, x = (x1, x2, …, xN) is a discretized version of the object being
imaged, bi denotes the blank scan, ri denotes the additive contribution of scatter, and

. The spatial resolution and therefore regularization design techniques are
applicable to PL methods when appropriate weightings are chosen [3]. We estimate x by
minimizing the following cost function:

(2)

(3)

where  using element-wise division, R(x) is a regularizer that controls
noise, ζ is a scalar that determines the resolution-noise tradeoff, and W = diag{wi} is a
statistical weighting matrix. For transmission tomography with the model in (1), usually we
have the plug-in weighting wi = yi corresponding to the PL estimator for (1) [12]. For
emission tomography, the plug-in weighting is wi = 1/yi; for low count levels alternative
weightings are preferable [13]. The regularization design methods in this paper apply to
other statistical models than (1) by simply changing the weighting matrix W.
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The goal of this work is to design R(x) so that the reconstructed image has approximately
uniform and isotropic spatial resolution. The tools developed for this purpose could be
modified to achieve other resolution design goals. Analyzing the local impulse response
(LIR) is an essential part of assessing the resolution. Here we use the following definition of
local impulse response for the jth pixel:

(4)

where δj is a Kronecker impulse at the jth pixel and the gradient operations are matrices

such that  and  (this definition depends on the mean
of the data, rather than the mean of x̂ and differs slightly from that used in [3], but yields the
same final expression without requiring further approximations). Evaluating (4) [3], the LIR
for the PWLS estimator (3) is

(5)

where R is the Hessian of the regularizer R(x).

As is evident from (5), the local impulse response depends on the regularizer through its
Hessian, R. We would like to design R such that the local impulse response lj best matches a
target response l0 at every pixel j. We could phrase this matrix optimization problem as:

(6)

where Sj is a shift operator that recenters lj to the center pixel. This matrix formulation of the
design problem seems intractable, so we turn to the frequency domain to simplify the
problem.

III. Frequency Domain Analysis
This section first reviews the use of discrete Fourier transforms for resolution analysis,
leading to a computationally intensive approach to regularization design. We then consider
continuous-space analogs that lead to simplified designs.

A. Discrete Fourier Analysis
An analytical expression for A′W Aδj is derived in Appendix §B, showing that A′W Aδj

changes slowly with j. Thus A′W A is approximately locally circulant. The R matrix in (5)
can be designed to be locally circulant as well. This allows us to factor out a Fourier
transform matrix in (5).

Let Q denote an orthonormal discrete Fourier transform matrix centered at pixel j (we
recenter the Fourier matrix to avoid the complex exponentials caused by non-centered

impulse responses). Then A′W A ≈ Q′ Λj Q, where  and λj ≜ F(A′W Aδj), and

R ≈ Q′ΓjQ, where  and γj ≜ F(Rδj), where F(·) denotes the 2D DFT [8], [14].
Then we can approximate the LIR in (5) as:
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(7)

(8)

where the matrices in the bracketed term are diagonal and the division operation is element-
wise on the diagonal. These approximations are accurate only for row and column indices
that are “sufficiently close” to pixel j. The terms in brackets in (8) correspond to the local
frequency response of our estimator. We would like to match these to the frequency
response L0 of a target PSF (that will be discussed in §III-B) as closely as possible, i.e., we
want

(9)

Based on (9), one might consider a DFT formulation of the regularization design using the
following minimization approach:

(10)

where L0 is the frequency response of l0 and  denotes the set of possible frequency
responses for the regularizer limited by its structure that will be enumerated in §III-B.
Alternatively, as a preview of the methods in §IV-A, we can cross multiply the terms in (9)
yielding the simpler design criterion:

(11)

This approach is similar to the formulation in [6]. Because Λj is the DFT of A′W Aδj,
calculating Λj requires one forward projection and backward projection per pixel. Thus,
regularization design based on (10) or (11) would be very slow.

Prior to [10], regularization design methods were based on discrete Fourier transforms. As
shown in Appendix B, the continuous-space analog of Λj in polar coordinates (ρ, Φ) is the

frequency response , where wj(Φ) is an expression that incorporates the Jacobian from
the change of coordinates from parallel-beam to fan-beam geometry, and weights from W
that correspond to rays that intersect pixel j at angle Φ. Substituting this into (9) and using
continuous space analogs of Γj yields the following expression for the continuous space
analog of Lj:

(12)
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where Rj(ρ, Φ) is the local frequency response of the regularizer near pixel j. The continuous
space analogs of Λj and Γj simplify (12) to provide a more efficient approach to
regularization design than (11), as detailed below in (27).

B. Regularization Structure
Regularizers control roughness by penalizing differences between neighboring pixels.
Indexing the image x as a 2D function x(n, m), we define a first-order differencing function
for a regularizer that penalizes the lth direction as

(13)

where typically (nl, ml) ∈ {(0, 1), (1, 0), (1, 1), (−1, 1)}, corresponding to horizontal,
vertical, and diagonal differences. A conventional quadratic regularizer can then be
expressed as

(14)

where ** denotes 2D convolution. This conventional regularizer assigns the same weight to
the differences between each neighbor. In this paper, we make the regularizer spatially

adaptive with the addition of weighting coefficients  as follows:

(15)

where j is the columnized pixel index which is a function of (n, m). The objective of this

paper is to design coefficients . To this end, we must analyze the local frequency
response Rj(ρ, Φ) of the Hessian R of the space-variant regularizer (15).

Taking the Fourier transform of (13) yields:

(16)

Combining (16) and (15) yields an accurate expression for the local frequency response of
our regularizer that leads to the slower but more accurate Full Integral Iterative NNLS, FIIN,
method, described in Appendix §A. Next we use an approximation to simplify (16) that will
lead to a fast, Angular Integral Mostly Analytical, AIMA method.
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C. Efficient Approximation for R
Using the approximation 2 − 2 cos(x) ≈ x2, which we will refer to as the AIMA
approximation, (16) simplifies to

(17)

One can think about isotropy intuitively in polar coordinates as eliminating angular
dependence. Therefore we convert (17) to polar frequency coordinates to simplify the
analysis. Using frequency and sampling relationships from the DFT, ω1 = 2πΔxρ cos(Φ)
and ω2 = 2πΔyρ sin(Φ), where Δx, Δy denotes pixel size and (ρ, Φ) are polar frequency
coordinates. For simplicity, we assume Δx = Δy = 1 for square pixels. Then:

(18)

where . Taking the Fourier transform of (15) and combining with (18), our final
expression for the local frequency response of the regularizer near the jth pixel is

(19)

For the usual choice of L = 4 and for (nl, ml) described below (13), Φl ∈ {0, π/2, π/4, 3π/
4}.

D. Target Local Frequency Response
Substituting (19) into (12) yields a simple expression for the local frequency response of a

PWLS estimator. We want to design each regularization coefficient vector 
such that our frequency response matches that of the target as closely as possible. We know
that the local frequency response associated with PULS is isotropic at the center of the field
of view so we select that to be our target.

Using (nl, ml) ∈ {(0, 1), (1, 0)}, the squared magnitude response of a conventional
regularizer in (14) using the AIMA approximation is,

(20)

and without the approximation is

2Practically speaking, the integral should be restricted to the field of view: , but this restriction would complicate
analysis by introducing a shift variance into the problem, so we ignore it.
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(21)

For an unweighted cost function and a parallel beam geometry, the continuous-space

frequency response that is analogous to F(A′ Aδj) is . As shown in (49) in Appendix §B,
for uniform weights (wi = 1) we have the following local frequency response for fan-beam
geometries

(22)

where J(sj(Φ)) is the Jacobian for the change of coordinates from parallel-beam to fan-beam
geometries as defined in (44), and sj(Φ) is an index into the sinogram based on pixel j and
angle Φ. Setting sj(Φ) = 0 to correspond with the center pixel in (49), the target local
frequency response is:

(23)

(24)

where 0 is the continuous-space analog of L0 in (9). Next we will use these continuous-
space analogs to solve for the regularization coefficients rj.

IV. The AIMA Approach
This section describes the Angular Integral Mostly Analytical, AIMA, approach. This
approach is appropriately named because the continuous space approximations removes all
dependence on ρ leaving a single integral over the angular coordinate Φ. This also results in
a very simple problem that can be solved mostly analytically.

A. Solving for regularization coefficients
We try to design regularization coefficients rj to match our designed local frequency
response (12) to the target local frequency response (24) as follows:

(25)

Cross multiplying and simplifying yields

(26)
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We design rj by minimizing the difference between both sides of (26):

(27)

We solve for L coefficients using the above minimization for each pixel j. We constrain the
L coefficients to be non-negative which ensures that the penalty function is convex. This
expression also applies to parallel-beam geometries, where J(0) = 1.

We can think of the minimization in (27) as a projection of w ̃j = (Φ) onto the space spanned
by {cos2(− Φl)}, which allows us to greatly simplify the problem and derive a
computationally efficient and mostly analytical solution to the regularization design
problem. Expanding these cosines in terms of a three term basis that is orthonormal with

respect to the inner product  yields

(28)

The three orthonormal basis functions are

Using (27), we write , where P is an operator whose columns are
p1, p2, and p3, and T is a 3 × L matrix of linear combination coefficients whose lth column is

. T is computed by taking the inner products of cos2(Φ − Φl) and p1,
p2, and p3, i.e., Tmn = ∫ cos2(Φ − Φm) pn(Φ)dΦ.

Using (28), the minimization problem (27) simplifies to the following expression:

(29)

where bj ≜ P*w̃j (·) and P* denotes the adjoint of P, i.e., , k = 1, 2, 3.

B. Zeros in the Hessian
If there are too many zeros in rj, there will be zeros in the Hessian, possibly degrading x̂.
This can cause elongated impulse responses that may contribute to streak artifacts in the
reconstructed image. This phenomenon occurred in [10] however we did not notice the
artifacts due to the coarser spatial resolution in PET. It is present when using AIMA with the
ring phantom in §V. The problem improves when using FIIN method of §A, thus we believe
this phenomenon is caused by the approximation error in (17) as well as the non-negativity
constraint. For AIMA, and to be safe using FIIN, we modify (29) to ensure that an adequate
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number of  values are greater than some . Requiring the penalty coefficients for the
vertical and horizontal directions be nonzero is sufficient to eliminate zeros in the Hessian.
(A similar constraint could be created using the 2 diagonals instead of the vertical and
horizontal neighbors; however the approximation in (17) is worse for diagonal neighbors).

We turn to previous work to select . In [3], we derived a certainty based weighting using a

spatially variant  that seeks to provide uniform spatial resolution. In terms of

the continuous space analogs used in this paper, . This regularization
design method can be implemented using the regularization structure presented in this paper

by setting  for (ml, nl) = (0, 1), (1, 0). This approach provides a convenient nominal
value for the regularization strength at each pixel. We define the lower constraint vector εj

such that  for vertical and horizontal neighbors, (ml, nl) = (0, 1), (1, 0), and 
for all other neighbors. Using a nonzero coefficient α improves noise at the expense of
isotropy. For the results presented in this paper, we used α = 0.1.

Now we formulate our problem so that non-negative least squares (NNLS) algorithms will
accommodate this new constraint. Let r̄j ≜ rj + εj. Solving with the constraint of rj ≥ 0
ensures that r̄j ≥ εj. Substituting r̄j into (29) yields Tr̄j − bj = T(rj + εj) − bj = Trj − (bj − Tεj).
So our final cost function for regularization design is

(30)

where b̄j ≜ bj − Tεj. We use coefficients r̄j = r̂j + εj in the regularizer (15). We next solve
(30) analytically. It is this analytical solution that makes the AIMA more efficient than the
FIIN method of Appendix §A.

C. A Mostly Analytical Solution
Using a second-order neighborhood (L = 4) we select (nl, ml) to be (1, 0), (0, 1), (1, 1), (1,
−1) leading to the following Φl: Φ1 = 0, Φ2 = π/2, Φ3 = π/4, Φ4 = −π/4. So the terms in (30)
are

(31)

Observe that Tεj = [α(κj)2 0 0]T, so εj affects only d1. Ignoring α, d1 is the continuous space
analog of the certainty-based regularization weighting in [3], d2 is related to the horizontal
and vertical directions, and d3 is related to the diagonal directions.

The system (31) is under-determined, which is somewhat intuitive since one can obtain
approximately isotropic smoothing using only the horizontal and vertical neighbors, or only
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the diagonal neighbors. For the purposes of regularization design, an under-determined
situation is desirable since it allows us to use the “extra” degrees of freedom to ensure non-
negativity even when anisotropic regularization is needed.

We could solve the minimization (30) using an iterative NNLS algorithm [15, p. 158].
However, using the properties of T and d, we can avoid iterations almost entirely by solving

(30) analytically using the KKT conditions. When α = 0, . as outlined in
Appendix C. This inequality is usually true for the values of α used (typically around 0.1),
however for pixels where it is not, the problem would have to be solved using a NNLS
algorithm rather than this analytical solution. To use NNLS, one must add Tikhonov
regularization to help (30) converge to a minimum norm solution which ensures that rj is a
continuous function of dj which is a continuous function of w̃j(Φ). For more details on using
NNLS to solve the regularization problem, see §IV-A in [9]. For the results presented in this

paper, all pixels of both simulations satisfie  for all pixels and NNLS was not
used. The structure of T leads to eight-fold symmetry that simplifies analysis. If d2 < 0 we
can solve for r using |d2| and then swap r1 with r2. If d3 < 0 we can solve for r using |d3| and
then swap r3 with r4. If d3 > d2 we can solve for r with d2 and d3 interchanged, and then
swap r1 with r3 and r2 with r4. Therefore, hereafter we focus on cases where 0 ≤ d3 ≤ d2 ≤
d1. Fig. 1 shows these first octant cases, numbered according to the number of nonzero
elements of r.

1.
If  and , then , r2 = r3 = r4 = 0.

2.

If  and , then , r2 = r4 = 0,

.

3.
If  and , then there are multiple non-negative r that exactly
solve ∇Ψ(r) = 0. The minimum-norm solution is r1 = 4d2, r2 = 0,

r3 = d1 − 2d2 + 2d3, .

4.
If , then there are multiple non-negative r that are exact solutions. The
natural choice is the minimum-norm r given by the pseudo-inverse solution r =

T†d, where , , , .

The analytical solution presented above is for the usual first-order differences (13). For
higher-order differences or neighborhoods, it would appear to become increasingly
cumbersome to solve (27) analytically, so an iterative NNLS approach may be more
appealing. This can still be practical since T is quite small. The analytical solution above is a
continuous function of d, which in turn is a continuous function of w̃j(Φ). This continuity
property would seem to be desirable for avoiding artifacts in the reconstructed images.

For practical implementation, we simply discretize the integrals in (31) [16]. This presents
interpolation issues in extracting a discretized version of w ̃j(Φ), from W. For the fan beam
case, we use the analytical formula for w̃j(Φ) presented in Appendix §B (48). Those
equations are presented with continuous space coordinates s that spans the length of the
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detector, and β, the angle of rotation of the system. In discrete implementation, we round
these off to the nearest neighbor to get indices into W. The analytical solution presented in
this section is very efficient over all values of j, and the bulk of the computation time is
spent computing w̃j(Φ) which has the compute time of approximately one back-projection.
For further speed optimizations, down-sampled back-projections could be explored. In
practice, w̃j(Φ) is fairly smooth and the basis functions that we use to approximate w̃j(Φ) are
even smoother. One can achieve good results by calculating w̃j(Φ) for fewer angles and
interpolating the rest. The performance and efficacy of such a scheme still needs to be
explored.

V. Results
We first investigated imaging a phantom consisting of two uniform rings that highlight the
effects of non-uniformities and anisotropy [7]. Afterwards, we studied real CT data.

We simulated a 2D 3rd-generation fan-beam CT system using distance-driven forward and
backprojections [17]. The rotation center is 40.8cm from the detector, and the source is
94.9cm from the detector. The axis of rotation is at the center of the object. The simulated
imaging system has 888 rays per view spaced 1mm apart, and 984 evenly spaced view
angles over a 2π rotation. The reconstructed images consisted of a 512 × 512 grid of 1 mm
pixels. We chose a ζ in (24) such that the target PSF has a full width half max (FWHM) of
3.18 mm.

We simulated a noiseless fan-beam sinogram without scatter using a phantom consisting of a
background disk and two rings each of thickness 1mm shown in Fig. 2. We generated the
noiseless sinogram by taking line-integrals through the analytical phantom with the same
system geometry. We used the plug-in weighting wi = yi for this experiment. Fig. 3 shows
penalty coefficients {rj} designed using the method of section IV-C that yielded the
following results. The top images show coefficients in the horizontal and vertical neighbors,
and the bottom images show coefficients for diagonal neighbors. There are substantial
spatial variations in these coefficients.

We reconstructed images x̂ using several methods. We first created an image uniformly
blurred by the target PSF. We then reconstructed images using (i) conventional
regularization, rj = 1, (ml, nl) = (0, 1), (1, 0), (ii) certainty based regularization [3], (iii)
AIMA method with α = 0.1, (iv) AIMA method with α = 0, and (v) FIIN method with α =
0. Fig. 4 is a closeup of the right-most ring reconstructed with the various methods listed
above and Fig. 5 is a closeup of the left-most ring.

Fig. 6 and Fig. 7 show profiles around the two rings of the reconstructed images using the
various regularization methods relative to the mean intensity of the rings from our target,
PULS reconstruction with conventional regularization. This verifies that AIMA and FIIN
improve resolution uniformity. Here, 0 radians corresponds to the rightmost point of that
ring and the angles are measured clockwise.

The second study used a similar imaging geometry using one slice of real CT data from a
GE scanner described in [18] with weightings W computed in the same way as [19]. ζ was
selected such that the target PSF had a FWHM of 1.51 mm.

Fig. 8 displays an image reconstructed by PWLS using conventional regularization. The
impulse response locations are denoted with crosses and a region is marked which will be
displayed in Fig. 9. Fig. 9 show windowed reconstructions using conventional
regularization, certainty based regularization, AIMA with α = 0.1 and α = 0, and FIIN with
α = 0.
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Fig. 10-13 show local impulse responses for the five regularization methods at several
locations calculated analytically using (5). These figures show from left to right, the target
impulse response, and local impulses responses for conventional regularization, certainty
based regularization [3], AIMA with α = 0.1, AIMA with α = 0, and FIIN with α = 0.
Contour plots of the LIR are displayed below at 0.9, 0.75, 0.5, 0.25, and 0.1 of the maximum
value of the target PSF. The LIR becomes more anisotropic near the edge of the FOV. Our
Fourier-based regularization scheme compensates for this anisotropy better than the
certainty-based approach of [3].

To quantify the performance of these regularizers on real CT data, we computed the PSF of
the regularizers at every 10 pixels within the body. Then we calculated the FWHM of the
PSFs at 181 evenly spaced angles, and computed the RMS error between the actual FWHM
and the FWHM of the target. Histograms of these errors are displayed in Fig. 14. The mean
of the RMS errors for conventional regularization, certainty based regularization, the AIMA
method with α = 0.1, the AIMA method with α = 0, and the FIIN method with α = 0 are
2.7, 2.7, 2.3, 2.5, and 2.0 respectively.

VI. Discussion
A. Spatial Resolution Properties

Fig. 4 and Fig. 5 provide a qualitative understanding of the spatial resolution properties of
various regularization methods for the ring phantom. The phantom used consists of rings of
uniform intensity and uniform width, thus images with uniform spatial resolution should
have rings with uniform width and uniform intensity. Conventional regularization creates
rings with sharper spatial resolution near the edge of the field of view. Certainty based
regularization improves ring uniformity but anisotropy remains. The last three
reconstructions using AIMA with α = 0.1, AIMA with α = 0 and FIIN provide rings that
look almost identical, and which have a more uniform ring width than conventional, and
certainty based regularization.

Fig. 6 and Fig. 7 show the amplitude of the rings traced clockwise. This confirms our initial
assessment, that certainty based regularization achieves more uniform spatial resolution than
conventional regularization, and that the AIMA and FIIN methods are all very similar and
outperform the previous approaches.

Fig. 9 display a quadrant of windowed reconstructions using real CT data to illustrate the
images produced using these regularization design methodologies. However, since we do
not know the “truth” for this data, these images provide only a qualitative illustration of the
effect of regularization design on spatial resolution. The impulse responses in Fig. 10-Fig.
13 illustrate the effect of regularization design on spatial resolution at various locations.
These figures confirm that AIMA and FIIN methods improved isotropy over conventional
and certainty-based regularization. The histogram plot of Fig. 14 and the mean of the PSF
errors mentioned previously confirm this. AIMA has lower FWHM RMS error both
certainty based regularization and conventional regularization. FIIN has the lowest FWHM
RMS error, however it is much slower than AIMA.

The resulting impulse responses from the AIMA and FIIN methods are not completely
isotropic. This may seem to contradict the dramatic improvement these regularization design
methods achieved with the ring phantom. However, recall that we are trying to approximate
w̃j(Φ) using 3 basis functions (see §IV-A) for the AIMA, and 4 basis functions (see §A) for
FIIN. With real data, w̃j(Φ) is a complicated function that cannot be parameterized using 3
or 4 basis functions. This aspect, along with the non-negativity constraint limits the
performance of any regularization design technique with a finite number of parameters.
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w̃j(Φ) is much simpler for simple phantoms like the ring phantom, so AIMA yields better
results there. Extensions of this regularization design to higher order penalties have the
potential for more basis functions, and better performance.

The analysis of this paper focuses on the resolution nonuniformities cased by statistical
weightings, not the resolution variation due to detector response and magnification. A more
general regularization design with similar parameterization is discussed in [6]. Using the
techniques in this paper to account for these effects is an open problem.

B. Computation Time
AIMA is quite efficient. Computing certainty based regularization takes the time of about 1
backprojection. In AIMA, we must first compute w̃j(Φ) which takes the time of about 1
backprojection, and then solve the analytical solution which is very fast. FIIN also requires 1
backprojection to compute w̃j(Φ), however it then has to run a non-negative least squares
problem for every pixel. Though this is a fairly small NNLS problem, T is 4 × 4, it adds
much compute time since it must be calculated for each pixel. In general, due to the faster
compute times, we recommend AIMA with α = 0.1. If accuracy is more important than
compute time, FIIN can be used instead.

VII. Conclusion and Future Work
The results presented indicate that we have a functional and efficient regularization design
structure that yields approximately uniform and isotropic spatial resolution for 2D fan-beam
systems. The methods also apply to the simpler case of 2D (parallel-beam) PET as described
in [10]. In the future, we will extend these methods to 3D PET [9] and cone-beam CT. We
will also study the noise properties. Another open question is how to design non-quadratic
regularization [20].
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Appendix A: Slower Regularization Design
This appendix describes the slower Double Integral Iterative NNLS, FIIN, method that does
not use the AIMA approximation 2 − 2 cos(x) ≈ x2 in (17) in the expression of the local
frequency response of R. This design method is appropriately named because it uses the full
integral over all frequency domain polar coordinates instead of just the angular coordinates.
The matrices involved in this method are slightly more complex than those in AIMA so an
iterative technique is needed. Converting (16) in §III-C into polar coordinates and
combining with (15) yields

where ul(ρ, Φ) = nl2πΔxρ cos(Φ) +ml2πΔyρ sin(Φ). The target we use in regularization is
the LIR associated with PULS at the center of the image, expressed in (23).
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Following (25), we try to match the LIR at each pixel j to the target:

where w̃j(Φ) = 0.5J(0)wj(Φ). To design R, we use a method similar to that of §IV-A and
project w̃j(Φ)R0(ρ, Φ)) onto the space spanned by {1 − cos(ul(ρ, Φ))} that can be
orthonormalized into L basis functions, {pl(ρ, Φ)} using Gramm-Schmidt. Then our
regularization design problem simplifies to

(32)

where bj is a vector of inner products between w̃j(Φ)R0(ρ, Φ)) and the L orthonormal basis

functions {pl(ρ, Φ)}, , and T is a L × L matrix whose
elements are the inner products between 2 − 2 cos(ul(ρ, Φ)) and {pl(ρ, Φ)}, Tmn = ∫ ∫ 2 −
2cos(um(ρ, Φ))pn(ρ, Φ)dρdΦ. We define P to be an operator whose columns are {p1, p2, …
pL} so R(ρ, Φ) = PTrj. This design problem is then solved with an NNLS algorithm. This
more accurate version is slower than that presented in §IV-A because there is no apparent
analytical solution similar to the one presented in §IV-C.

Appendix B: Analysis of Grammian Operator
This appendix considers fan-beam geometries and uses continuous-space analysis to analyze
the Fourier transform of the Grammian operator A′W A to simplify the regularization design
problem in (12). One can use polar coordinates Φ, ρ, and continuous-space analysis to
separate the angular and radial components of A′W A. Using this framework, isotropy can
be thought of as eliminating dependence on the angular component Φ.

A. Fan-Beam Geometry
Fig. 15 illustrates the fan-beam geometry that we consider. Let P be the rotation isocenter.
D0d denotes the distance from the point P to the detector, Ds0 denotes the distance from the
X-ray source to P, and Dfs denotes the distance from the X-ray source to the focal point of
the detector arc. Define Dsd ≜ D0d + Ds0 to be the total distance from the X-ray source to the
center of the detector, and Dfd ≜ Dsd + Dfs to be the total distance from the focal point to the
center of the detector. This formulation encompasses a variety of system configurations by
allowing the detector focal point to differ from the X-ray source location. For flat detectors,
Dfs = ∞. For third-generation X-ray CT systems, Dfs = 0. For fourth generation X-ray CT
systems, Dfs = −Ds0.

Let s ∈ [−smax, smax] denote the (signed) arc length along the detector, where s = 0
corresponds to the detector center. Assuming detector elements are equally spaced along the
detector, arc length is the natural parameterization. The various angles have the following
relationships:
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where the two most important cases are

(33)

The relationship between s and γ is:

(34)

The ray corresponding to detector element s and angle β is (s, β) = {(x, y) : x cos φ(s, β) +
y sin φ(s, β) = r(s)}, where

(35)

The range of r depends on the position of the X-ray source and the size of the detector:

(36)

where γmax ≜ γ(smax) and smax is half the total detector arc length. The radius rmax defines
the circular field of view of the imaging system. The fan angle is 2 γmax.

The line-integral projection p(s, β) of f along (s, β) is2:

(37)

for |s| ≤ smax and 0 ≤ β < βmax. We require βmax ≥ π+2 γmax to ensure complete sampling of
the FOV (otherwise the impulse response would be highly anisotropic).

The usual inner product for fan-beam projection space is

Using this inner product in projection space, and the usual 2 inner product in image space,
the adjoint of  is given by

(38)
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where r(s) and φ(s, β) were defined in (35). We will next extend a common derivation of
backproject then filter (BPF) tomographic reconstruction to accommodate a user defined
weighting, and then change the coordinates from parallel-beam to fan-beam space.

B. Parallel-Beam Grammian Analysis
When we analyze the local impulse response, we typically consider recentered local impulse
functions. In this derivation we will start with an uncentered local impulse response, and
center it at the end by removing a phase term in the frequency domain. The un-centered
local impulse response of the Grammian operator is,

Using the sampling property with the first δ, define

(39)

We denote the Fourier transform of δj(x, y) as Fj(ρ, Φ). Then, using the Fourier slice
theorem,

(40)

This is nearly the inverse Fourier transform in signed polar coordinates except for a ρ scale
factor. Dividing by ρ,

The local impulse response is recentered, hj(x, y) = * δj(x+xj, y+yj) which eliminates
the complex phase term Fj(ρ, φ). Then, the local frequency response is

(41)

C. Fan Beam Grammian Analysis
The natural indexing for fan-beam data is arc-length s and angle β. The analogs to r, ϕ for
parallel-beam systems are r(s), ϕ(s, β) as defined in (35). The weighting expression w(r, ϕ) is
indexed as w(s, β) in fan-beam coordinates. We start by looking at the fan-beam projection
in terms of the analogs to parallel-beam coordinates,
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We use the change of variables

(42)

(43)

as defined in (35) which has the corresponding Jacobian determinant

(44)

Then,

In this expression,

Using the sampling property of the first δ as in the parallel beam case,

(45)

(46)

Again, let Fj(ρ, Φ) denote the Fourier transform of δj(x, y). Then, using the Fourier slice
theorem,

where φ″ = φ′ + π. This is similar to the parallel-beam derivation except that we have two
integrals. We can convert each integral into the inverse Fourier transform as we did in the
parallel-beam case and strip out the phase term Fj(ρ, Φ) by recentering the local impulse
response. The local frequency responses of the Grammian operator is
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(47)

where,

(48)

Because of the absolute value function in (44), J(s) is invariant to the π phase shift. For the
case where we have uniform weighting, w(s, β) = 1 and therefore W = I, and (47) simplifies
to

(49)

We use this equation in the calculation of a target local impulse response (24).

Appendix C: Derivations of the analytical solution

In this appendix, we show that , as claimed below (31) in §IV-C. Squaring the
integrals in (31), we have:

In particular,

Thus,  since wj(Φ) ≥ 0 for all Φ and cos(2X − 2Y) ≤ 1 for all X and Y.
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Fig. 1.
First octant of quadratic penalty design space showing the four regions where different
constraints are active.

Shi and Fessler Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Ring phantom used for simulation study
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Fig. 3.
Regularization penalty coefficients used in reconstruction of ring phantom. The four images

are  for l = 1, …, 4
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Fig. 4.
Images of right-most ring, Upper-Left: uniformly blurred by target PSF. Upper-Right:
reconstructed using conventional regularization. Mid-Left: reconstructed using certainty-
based regularization. Mid-Right: reconstructed using AIMA regularization, with α = 0.1.
Lower-Left: reconstructed using AIMA regularization, with α = 0. Lower-Right:
reconstructed using FIIN regularization, with α = 0.

Shi and Fessler Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Images of left-most ring, Upper-Left: uniformly blurred by target PSF. Upper-Right:
reconstructed using conventional regularization. Mid-Left: reconstructed using certainty-
based regularization. Mid-Right: reconstructed using AIMA regularization, with α = 0.1.
Lower-Left: reconstructed using AIMA regularization, with α = 0. Lower-Right:
reconstructed using FIIN regularization, with α = 0.
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Fig. 6.
Profiles through the right-most ring from each reconstructed image.
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Fig. 7.
Profiles through the left-most ring from each reconstructed image.
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Fig. 8.
Reconstruction with conventional regularization without windowing with impulse responses
marked
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Fig. 9.
Reconstructions windowed from 800 to 1200 HUs using, from top to bottom, conventional
regularization, certainty based regularization, AIMA with α = 0.1, AIMA with α = 0, FIIN
with α = 0.
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Fig. 10.
Impulse Responses at (-100,-100). From left to right, target, conventional regularization,
certainty based regularization, AIMA regularization with α = 0.1, AIMA regularization with
α = 0, FIIN regularization with α = 0.
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Fig. 11.
Impulse Responses at (150,-120). From left to right, target, conventional regularization,
certainty based regularization, AIMA regularization with α = 0.1, AIMA regularization with
α = 0, FIIN regularization with α = 0.
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Fig. 12.
Impulse Responses at (170,0). From left to right, target, conventional regularization,
certainty based regularization, AIMA regularization with α = 0.1, AIMA regularization with
α = 0, FIIN regularization with α = 0.
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Fig. 13.
Impulse Responses at (-130,100). From left to right, target, conventional regularization,
certainty based regularization, AIMA regularization with α = 0.1, AIMA regularization with
α = 0, FIIN regularization with α = 0.
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Fig. 14.
Plots of the error histogram for different impulse responses.
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Fig. 15.
Illustration of fan beam geometry.
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