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Abstract
Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which
has been proven very successful in resolving multiple intravoxel fiber orientations in MR images.
The standard computation of the orientation distribution function (ODF, the probability of
diffusion in a given direction) from q-ball data uses linear radial projection, neglecting the change
in the volume element along each direction. This results in spherical distributions that are different
from the true ODFs. For instance, they are neither normalized nor as sharp as expected, and
generally require post-processing, such as artificial sharpening. In this paper, a new technique is
proposed that, by considering the solid angle factor, uses the mathematically correct definition of
the ODF and results in a dimensionless and normalized ODF expression. Our model is flexible
enough so that ODFs can be estimated either from single q-shell datasets, or by exploiting the
greater information available from multiple q-shell acquisitions. We show that the latter can be
achieved by using a more accurate multi-exponential model for the diffusion signal. The improved
performance of the proposed method is demonstrated on artificial examples and high-resolution
HARDI data acquired on a 7T magnet.
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INTRODUCTION
Diffusion-weighted magnetic resonance imaging provides valuable information about the
fiber architecture of tissue by measuring the diffusion of water in three-dimensional (3D)
space. The microscopic diffusion may be measured using the model-free diffusion spectrum
imaging (DSI) (1), which exploits the direct Fourier inversion of the diffusion signal. This
technique is time intensive, as it measures the signal on a 3D (e.g., 11×11×11) Cartesian
lattice. Thus, an alternative approach based on sampling only on one or multiple spherical
shells in q-space has been proposed, referred to as high angular resolution diffusion imaging
(HARDI) (2). The spherical shell, being a 2D manifold, includes a number of measurement
points which grows quadratically with the desired angular resolution, as opposed to
cubically with the spatial resolution in the entire 3D lattice of DSI.
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While the 3D probability density function (PDF) of diffusion is helpful in studying the tissue
microstructure, the orientation distribution function (ODF) – the marginal probability of
diffusion in a given direction – is the quantity of interest for mapping the orientation
architecture of the tissue. Q-ball imaging (QBI), (3), is a widely used reconstruction scheme
for HARDI, from which ODFs are approximated through a spherical tomographic inversion
called the Funk-Radon transform (4). This technique’s simplicity and its ability to resolve
intravoxel fiber orientations have made it popular for fiber tracking and characterizing white
matter architecture. A number of recently proposed methods have turned QBI into a very
efficient and robust technique (5)–(11). Moreover, a few works have suggested exploiting
data from multiple q-shells to benefit from the high signal-to-noise ratio (SNR) and high
angular contrast-to-noise ratio (CNR) of the data acquired at respectively low and high b-
values, (3), (12)–(14). Using multiple q-shells also allows us to employ richer models for the
diffusion signal, as discussed in this paper. Nevertheless, QBI only allows us to compute the
diffusion ODF, which is a blurred version of the underlying fiber distribution (fiber ODF).
To overcome this blurring, spherical deconvolution methods have been proposed, (15)–(17).
Other strategies used in HARDI include the Persistent Angular Structure (18) and Diffusion
Orientation Transform (DOT) (19), both of which compute non-ODF quantities revealing
the orientations of microstructural fibers. (For a comparison between all the mentioned
methods, see (20)–(21).) In this work, we attempt to reduce the blurring in QBI by defining
the ODF as the true marginal probability of diffusion, and proposing a suitable
computational approach.

The definition of the ODF used in the original QBI is, however, different from the actual
marginal PDF of diffusion in constant solid angle. It is computed as a linear radial projection
of the PDF, which does not take into account the quadratic growth of the volume element
with respect to its distance from the origin (see the “General ODF Definition” section and
Fig. 1 for more details). This inaccurate formulation generally distorts the ODF, produces
non-distribution functions, and has created the need for artificial post-processing such as
manual normalization and sharpening.

In this paper, we re-derive the ODF expression for QBI via Fourier analysis, this time
starting from the proper definition of the ODF in constant solid angle (CSA). We show that
this results in an inherently normalized and dimensionless expression. In addition, we
illustrate through our experiments that the new ODFs are naturally sharp and thus multiple
fiber orientations are better resolved, potentially improving tractography. We also provide a
general formulation for multiple q-shell QBI, and demonstrate the improvement achieved by
considering the information from multiple q-shells and using richer multi-exponential
models. Furthermore, by making use of the spherical harmonic basis, we demonstrate that
the implementation of the new, mathematically correct expression is as straightforward as
that of the original formula, or perhaps even simpler, considering that further sharpening
(post-processing) is not necessary.

This paper extends our previous conference versions for single (22) and multiple q-shells
(23). In particular, we provide more complete mathematical proofs, a regularization scheme,
and additional validation and comparisons.1

1After our conference paper was accepted and its extension to multiple shells was submitted, a parallel and independent work was
published (11), where the proper definition of the ODF was considered in single q-shell QBI. However, in addition to not considering
multiple shells and the richer models as done here, the authors of (11) take the integral of the diffusion signal on a circle and not on
the entire plane, and that results in a different formula which is not necessarily normalized and leads to other potential inaccuracies.
(See the “Theoretical Comparison” section for further details.)
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METHODS
General ODF Definition

The PDF of the diffusion of water molecules, P(r ⃗), gives the displacement probability P(r ⃗)dv
of a molecule, initially placed at the origin, to be in the infinitesimal volume dv located at r ⃗
after a certain amount of time. We make the common assumption that this function is
symmetric, i.e. P(−r ⃗) = P(r ⃗). The PDF can be presented in Cartesian coordinates with r ⃗=(x,
y, z)T and dv= dxdydz. However, for mapping the orientation architecture of the tissue, the
representation which mostly interests us is in the standard spherical coordinates,
parameterized by (r,θ,φ), where r ⃗=rû with û(θ,φ)=(sin θ cosφ, sin θ sin φ, cos θ)T the unit
direction vector. The volume element in this case is dv=r2drdΩ with dΩ= sinθdθdφ being
the infinitesimal solid angle element.

We denote by ODF(û)dΩ the probability of diffusion in the direction û through the solid
angle dΩ, which is computed by integrating the displacement probabilities, i.e. P(r ⃗)dv=
P(rû)r2drdΩ, for all magnitude r, while keeping û constant:

or simply:

[1]

The above definition, which is normalized and dimensionless, is the integral of the
probability values in a cone of “very small” constant solid angle (Fig. 1, left). This correct
definition was used for instance by the authors of (1) in DSI, where P(r ⃗) was first computed
from the diffusion data via Fourier inversion and then integrated to calculate the ODF, and
also in (24)–(25) for diffusion tensor imaging (DTI), where the ODF was analytically
computed. However, the original expression for ODF reconstruction in QBI (3), is different
from Eq. [1], in the sense that the integral is not weighted by the important factor r2 (Fig. 1,
right). To the best of our knowledge, the only paper which has so far considered this factor
in (single shell) QBI, is a very recent parallel work (11) (published independently after a
conference version of our paper (22) had just been accepted), where the ODF is
approximated using Eq. [1]. (See the “Theoretical Comparison” section for details.)

Computing the ODF without the factor r2 would be equivalent to assuming the PDF to be

P(r ⃗)/|r ⃗|2, as . This radial projection gives an artificial weight to
P(r ⃗) which is, respectively, too large and too small for points close to and far from the
origin, and in fact, the computed quantity would be different just as the zeroth moment of a
one-dimensional function, P̅(r):= P(rû) is different from its second moment. For instance, a
consequence of not including r2 is that the computed ODF will not be necessarily
normalized, and an artificial normalization factor will be required. Moreover, the ODF will
not be dimensionless, since, given that P(r ⃗) has the dimension of L−3 (L being the length),
the dimensions of P(r ⃗)r2dr and P(r ⃗)dr are respectively 1 and L−2.

As an example intended for comparison, we compute the ODFs with r2 (which we shall call
CSA ODF when comparing to the original method) and without r2 (original ODF) in the
case of DTI (26), with the following standard Gaussian PDF:
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[2]

where D is the covariance matrix (proportional to the diffusion tensor). The computed ODFs
are:

[3]

[4]

where Z is the normalization constant that subsequently needs to be computed and
considered in the original ODF(û) (see (3)). An example of this pair of ODFs is illustrated in
Fig. 2. (No min-max normalization is used in any of the figures.)

Next, we derive a closed-form expression for the ODF in QBI using the correct r2 -weighted
integral.

Q-ball Imaging ODF Reconstruction
Let E(q⃗) be the 3D Fourier transform of P(r ⃗). We have the values of E(q⃗) measured on a q-
ball, i.e., the frequencies with constant norm |q|= q0, as Ẽ(û):= E(q0û)= S(û)/S0, where S(û) is
the HARDI signal and S0 is the non diffusion-weighted (or B0) image. In addition, since the
diffusion signal at q⃗= 0 is S0, one can see that E(0)= 1. Alternatively, E(0) is the zero
frequency of a PDF which is its integral over the entire space, yielding 1.

Our mathematical derivation is based on the following two fundamental facts from Fourier
analysis:

• The Fourier transform of P(r ⃗)|r ⃗|2 is − ∇2E(q⃗), where ∇2 is the Laplacian operator
(proof presented in Appendix A).

• For a symmetric function f: ℝ3 → ℝ with the 3D Fourier transform function f̂(q⃗),

and for the arbitrary unit vector û, we have that ,
where û⊥ is the plane perpendicular to û (proof presented in Appendix B).

Combining these statements with Eq. [1] leads to

[5]

Now, without loss of generality, we choose our coordinates such that ẑ = û, thus making û⊥
the qx−qy plane. We then use the following expansion for the Laplacian in spherical
coordinates (q,θ,φ):
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[6]

where  is the Laplace-Beltrami operator defined independently of the radial component q,

as . The surface integral on the qx−qy plane is computed

by fixing  and using the expression d2q⃗= qdqdφ as the surface element (see also very
recent work (10)), which yields

[7]

We can see that the integral of the first term is constant and independent of E(q⃗) and its
derivatives:

[8]

where the subscript indicates the partial derivative. We made the standard assumptions that
the diffusion signal and its radial derivative go to zero (sufficiently fast) as q → ∞, and also
that the derivative is bounded at the origin. Therefore we have

[9]

while  is kept constant in the integration.

To compute the integral of the second term, the values of E(q⃗) are required in the entire q-
space (as the radial integral is from zero to infinity). The above equation could be used for
example in DSI, where direct computation of the ODF from the diffusion images would
eliminate the need for 3D Fourier inversion. In QBI, however, the values of E(q⃗) are
available only on the q-ball, from which E(q⃗) needs to be approximated. In this work, we
consider the following radial mono-exponential model:
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[10]

where q0 is the radius of the q-ball. This type of interpolation has been presented and
discussed in (27) as E(qû) ≅ e−τq2.ADC(û), where the Apparent Diffusion Coefficient (ADC)
is assumed to be constant in each direction, and estimated as

. An advantage of this model over the original
QBI model, i.e. E(qû) ≅ Ẽ(û)δ(q − q0) (see (28),(10)), is the compatibility with E(0)=1.

After applying the mono-exponential assumption and a few more steps of calculations (see
Appendix C for details), the following ODF expression is derived:

[11]

Finally, rewriting the expression independently of the choice of axes, the following
analytical formula can be shown to hold for the ODF:

[12]

where FRT is the Funk-Radon transform (4), defined as

[13]

with δ(•) the Dirac delta function. Next, we compare our method from the theoretical aspect
with some other approaches.

Theoretical Comparison
The CSA ODF expression derived in Eq. [12] is dimensionless and intrinsically normalized,
since the integrals of the first and second terms over the sphere are respectively 1 and 0.

This is in contrast to the ODF formulas used in the original QBI, i.e., , and
also in (11), where an artificial normalization factor Z is needed.

Additional fundamental differences can be observed in the approach presented here,
compared to (11). As we demonstrated above, integration of the radial part of the Laplacian
on the plane always results in a constant (1/4π in Eq. [9]) without assuming any model for
the diffusion signal. Yet, (11) uses the Bessel approximation of the Dirac delta function
which yields a variable (sometimes negative) term. As for the integral of the tangential term
of the Laplacian, we use the exponential model that is in particular consistent with E(0)=1,
in contrast to (11) that assumes the tangential term of the Laplacian to be zero everywhere
except on the q-ball (Bessel approximation again), leading to an expression rather similar to
Laplace-Beltrami sharpening (LBS) (29). A major disadvantage of approximating the Dirac
delta with a Bessel function while considering the factor r2 is that, unlike for P(r ⃗) which is
typically concentrated near the origin, the projection of P(r ⃗)|r ⃗|2 may have its highest values
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at a certain positive radius coinciding with the side lobes of the Bessel function, reducing the
accuracy of the approximation.

From Eq. [12], it can be seen that the essential quantity used in computing the ODF from the
raw data is L(Ẽ):=1n (−1nẼ), plotted along with the absolute value of its derivative in Fig. 3.
Given that the second derivative of this function is zero at the inflection point e−1 ≈ 0.368,
L(Ẽ) is almost linear for the values of the signal close to that point. Therefore, from Eq. [12]
it can be observed that the ODFs reconstructed from signals with values close to e−1 will be
similar to those obtained by the original QBI (3) with LBS (note that FRT commutes with

). This resemblance ends as the range of the signal values approaches 0 or 1 (for example
when the diffusion is respectively higher or lower, or the data is acquired at respectively
higher or lower b-values), in which case L(Ẽ) becomes quite nonlinear, amplifying the
measured signal. This nonlinearity can be concluded to be the main source of improvement
seen in the experimental results obtained using Eq. [12] (predominantly seen in resolving the
fiber crossings, see the “Results and Discussions” section).

DOT (19) is a useful method for fiber orientation mapping that computes the PDF of the
diffusion of water P(r0û) at a fixed distance r0 from the origin, and is therefore a different
quantity from ODF. DOT provides essential information about the fiber microstructure, yet,
at the cost of an additional parameter, r0, which is not always trivial to determine. The
optimum r0 depends on the fiber microstructure and may vary in different regions of the
volume. In contrast, ODF sums up the orientation information for all radii. In fact, since
CSA ODF and DOT both use the exponential model for the diffusion signal, we see from
Eq. [1] that,

[14]

Implementation
Our implementation of the ODF reconstruction makes use of the spherical harmonic (SH)
basis, , which is common for the analysis of HARDI data. The steps taken here to
numerically compute Eq. [12] are similar to those described in (6). Particularly, we use the
real and symmetric modified SH basis in (6), where SH functions are indexed by a single
parameter j= k(k+1)/2+m+1, with corresponding kj and mj, as follows:

[15]

We adopt a minimum square error scheme to compute the modified SH coefficients cj of the
double logarithm of the signal, such that

[16]
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where R=(l+1)(l+2)/2, with l being the order of the SH basis. Next, since the SH elements

are eigenfunctions of the Laplace-Beltrami operator, we compute  by
multiplying the coefficients cj by their corresponding eigenvalues, −kj(kj+1). Then, as
suggested in (6), the Funk-Radon transform is computed by multiplying the coefficients by
2πPkj(0), where Pk(•) is the Legendre polynomial of degree k, with

 for even k. Finally, given that , the SH
coefficients of the ODF are derived as

[17]

By taking advantage of the SH framework, this implementation of the proposed technique is
as straightforward as the one introduced in (6) for the original QBI ODF formula.
Additionally, neither normalization, nor sharpening is required.

Regularization
As mentioned before, the essential quantity used in computing the ODF from the raw data is
L(Ẽ):=1n (−1nẼ), plotted in Fig. 3. Hence, if there is a relatively constant error ΔẼ in the
diffusion data, the error introduced in the computed ODF will be proportional to the
derivative of L(Ẽ):

[18]

As Fig. 3 suggests, this quantity becomes unstable for values of Ẽ very close to 0 and 1, and
subsequently amplifies the error in the diffusion data.

To overcome this problem, besides the approach introduced in (30) to impose positivity
constraint and spatial regularity, the more robust L1 error norm may be used to compute the
SH coefficients from Eq. [16]. Using a robust error norm, the noise will not contribute to the
error function for high values of L(Ẽ) (when Ẽ is very close to 0 or 1) as much as when the
L2 error norm is minimized, therefore the ODF will remain more robust to noise.

We also propose the use of a flexible threshold on the diffusion data to keep their values
away from the unstable regions of [0,δ1] and [1 −δ2, 1], where the thresholds δ1 and δ2 are
manually defined. To perform this operation, we use the following function f(Ẽ):

[19]
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which is plotted in Fig. 4 for δ1=δ2= 0.15. In practice, however, δ1 and δ2 do not need to be
greater than 0.001 and therefore the distorting effect on the signal is minimal.

Conversely, the ODF is most stable to noise when ΔL(Ẽ) is minimum, which is achieved for
Ẽ= e−1 ≈ 0.368. This gives us a clue on how to choose an optimum b-value in data
acquisition. Particularly, in the mono-exponential model, since Ẽ= e−b.ADC where the ADC
is assumed independent of the b-value, the optimum b-value is obtained as

[20]

where 〈ADC〉 is the mean ADC in the region of interest. Note that this result holds only in
the simple model which assumes both ADC and ΔẼ to be independent of the b-value. For
further discussion about the optimal b-value in different techniques, see (21) and (31).

Extension to Multiple q-Shells
Multi-Exponential Model—We have so far employed the proposed technique to compute
the ODF from a single q-shell. However, if diffusion data are available on multiple q-shells,
this technique can be applied to reconstruct the ODF while exploiting the information from
all the q-shells. With more available data, richer models become practical and appealing.
Here we consider the following radial multi-exponential model (see (19),(32)),

[21]

with the constraints

[22]

where Eq. [22] comes from E(0)=1. Once the values of λk and αk are estimated (see the
“Parameter Estimation” subsection), they can be used in the following more general ODF
expression, which we have derived in details in (33):

[23]

This can be implemented quite similarly to what we explained in the “Implementation”
section, with Eq. [16] being the only difference, as it now writes

[24]
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In addition, the methods suggested in the “Regularization” section can be applied to αks, to
reduce the effect of noise.

Parameter Estimation—To approximate the diffusion signal in a direction û by a
weighted sum of N exponentials, we need to estimate the 2N parameters λk(û) and αk(û), for
k=1,…, N. Therefore, at least 2N−1 independent equations – besides Eq. [22] – are required,
which can be obtained from the HARDI signals measured on M q-balls, for M ≥ 2N−1, as
follows:

[25]

where Ẽi(û):= E(qiû) and qi corresponds to the ith q-ball. Parameterizing the problem in
terms of b-values, bi = τqi

2, and choosing the physical units such that the diffusion time τ =1,
we obtain

[26]

Numerical optimization approaches such as the trust region algorithm, (34), may be
employed to solve this non-linear system in the most general case. Here, however, we
discuss two special cases (one familiar and one new) with analytical solutions. We continue
this subsection considering a fixed direction, and therefore drop the notation (û).

The mono-exponential assumption (N=1) requires measurement on at least M=1 q-ball. M=1
leads to λ1= 1 and α1=Ẽ1

1/b1. As we have shown in (33), α1
γcan also be a solution with any

constant γ. Therefore, choosing γ= b1 results in the solution α1= Ẽ1, which is consistent with
what we already derived (Eq. [12]). Furthermore, if measured values are provided on more
than one q-shell and the mono-exponential model is still desired, then the assumption in this
model (ADC being independent of the b-value) suggests that the best exponential can be
fitted by computing the average ADC across all the q-balls.

Another practical case of great interest arises when we consider the richer bi-exponential
model (N=2, see for example (35)–(36)) to reconstruct the ODFs from (at least) M=3 q-
shells. For M=3, the following system of equations holds for each direction:

[27]

In general, this set of equations can be solved numerically. Nevertheless, an analytical
solution can be derived for the particular and reasonable case when the sequence 0,b1,b2,b3
is an arithmetic progress. (The sequence xi is an arithmetic progress if xi − xi−1 is constant).
We describe this solution here, along with some regularization that guarantees the
parameters to remain within the correct range.

Aganj et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Without loss of generality, let us assume α ≥ β, and also choose the physical units such that
b1=1, b2=2, and b3= 3. Then,

[28]

We first define and calculate the following two quantities:

[29]

The parameters are afterward computed as:

[30]

However, we still need to ensure that they are real and in the correct ranges. One can verify
that these conditions are satisfied by enforcing the following constraints:

[31]

Thus, we can obtain the optimal values of α, β, and λ, by initially projecting Ẽi s onto the
subspace defined by the above inequalities, and then computing the parameters. Note that
such projection is usually necessary, because the bi-exponential model may not be fully
accurate and the data may be noisy. Furthermore, using a small separating margin of δ= 0.01
~ 0.1 in the inequalities makes the ODFs more stable in practice.

RESULTS AND DISCUSSIONS
Results from Single q-Shell

To validate our approach, we first show results using artificial data. We simulated fiber
crossing by generating diffusion images from the sum of two exponentials, Ẽ(û)=(e−ûTD1û+
e−ûTD2û)/2, where D1 is a diagonal matrix with diagonal entries (9, 2, 2), and D2 is D1
rotated about the y-axis by a varying angle. Assuming an ADC of 0.7×10−3 mm2s−1 (the
mean diffusivity in brain parenchyma), these diffusion values correspond to a b-value of
4800 s/mm2. We tested the following techniques to reconstruct their corresponding
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quantities from 76 diffusion directions uniformly sampled on the sphere, in the eighth order
SH basis: ODF approaches such as CSA QBI (with no regularization), the original QBI, and
the original QBI followed by LBS,( ), with λ=0.15 chosen to produce the optimal
results; and also non-ODF approaches such as Constrained Spherical Deconvolution (CSD)
(16), Mixture of Wisharts (MoW) (37) using nonnegative least squares (NNLS) with
manually optimized parameters, and DOT (19) for two radii. The results are presented in
Fig. 5. As can be seen, DOT with the larger radius, CSA QBI, and MoW (respectively)
resolve the crossing with the smallest angles. We also verified this using the dip test (38) on
sample points generated from the reconstructed distributions. The dip test measures
multimodality in a sample by the maximum difference, over all sample points, between the
empirical distribution function, and the unimodal distribution function that minimizes that
maximum difference. As can be observed in Fig. 6, the two modes of the distributions are
distinguished in the same order as mentioned above. It should however be noted that DOT
and MoW require manual adjustment of parameters to produce the best results, a process
that is not so convenient for unknown real data, in contrast to CSA QBI which is parameter
free. In addition, the negative values seem to appear only in the four non-QBI methods in
this particular experiment (although they can be corrected, they may indicate potential
intrinsic problems with such computations). CSA QBI (with no regularization) and DOT
(for higher radius), however, were less stable to noise compared to the rest of the methods
when we repeated the simulation with Rician noise.

We also tested our method on four real HARDI datasets; first on the physical phantom in
(39), which was constructed from excised rat spinal cords and designed to have crossing
tracts (90 diffusion images at b=1300 s/mm2, no regularization), and then on a public human
brain dataset (40) (200 diffusion images at b=3000 s/mm2, regularization parameters δ1=δ2=
0.001). The ODFs were reconstructed in the fourth order SH using three QBI approaches:
our proposed method, the original QBI, and the original QBI followed by LBS with λ=0.5
for the rat data and λ=0.8 for the brain data. Results are superimposed on the fractional
anisotropy (FA) map and presented in Fig. 7. (ODFs are shown as they are; no min-max
normalization is used in any of the figures.) Our method (left) produces sharper and more
accurate ODFs than the original QBI (middle). In addition, although sharpening (right)
enhances the original QBI ODFs considerably in anisotropic tissue, it causes significant
instability in isotropic regions (e.g. the background of the rat phantom and the cerebrospinal
fluid (CSF) in the human brain data), in contrast to our technique which preserves isotropy
fairly well. For the human brain dataset, we focus on the region of the centrum semiovale,
where three major fiber bundles intersect: the internal capsule (IC)/corona radiata (CR), the
radiations of the corpus callosum (CC), and the superior longitudinal fasciculus (SLF).

We performed additional experiments on a human brain HARDI dataset acquired at 7T with
256 diffusion directions. (For the fourth real dataset, see the “Results from Multiple q-
Shells” section.) Similar results as mentioned above were obtained for b=3000 s/mm2 with
no regularization (Fig. 8, top row). We then compared the results with those obtained from
DOT for three different radii, which are depicted in Fig. 8 (middle row). As can be seen, for
the smallest radius r0 (middle row, left), the fiber crossings are not well resolved. As the
radius increases (center), the resolution of the crossings improves. Eventually for the largest
r0 (middle row, right), regions with fiber crossings are very well reconstructed. However,
negative values (shown in dark red) start to appear in anisotropic regions. (These values can
be projected to zero, yet without affecting the eventual fiber orientations.) In all cases, DOT
achieves quite isotropic PDFs in the CSF.

Finally, we reconstructed the ODFs in a dataset acquired from the same subject at b=2000 s/
mm2. In contrast to the previous dataset where no regularization was needed, the noise in
this one made the use of regularization necessary, particularly in the highly anisotropic
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regions (see the “Regularization” section). Figure 8 (bottom row) shows the corpus callosum
in an axial view, where ODFs are reconstructed with the regularization parameters of δ1=δ2=
0.001 (bottom, left), δ1=δ2= 0.01 (bottom, center), and once without any regularization but
using the L1 error norm (bottom, right). As can be seen, increasing δ1 and δ2 more than
0.001 did not result in any significant improvement. However, using the L1 error norm to
compute the SH coefficients considerably reduced the number of negative values.

Results from Multiple q-Shells
To demonstrate the advantages of exploiting multiple q-shells in QBI, we first show
experimental results on a synthetic example which consists of large diffusion values in two
orthogonal directions. We synthesized diffusion images by sampling the sum of two

exponentials, , on seven q-shells (b=q2=1,2,., 7) and in 76
directions, uniformly distributed on the sphere. Figure 9 illustrates the ODFs reconstructed
from single q-shells for different b-values, and from three q-shells with both mono-
exponential and bi-exponential models. For the data acquired at low b-values (b=1,2,3), the
proposed bi-exponential model using three q-shells is the only method correctly resolving
the horizontal and vertical ODF peaks, corresponding to the strong ADC values in the
directions φ= 0°,90°,180°,270°. It should be noted, however, that the drawback of such a
more general model is its lesser robustness to noise (as low order models are often more
robust).

We also tested our method on a 7T monkey brain HARDI dataset introduced in (41). The
proposed method was used to reconstruct the ODFs from the three b-values of 1000, 2000,
and 3000 s/mm2, using both bi-exponential and mono-exponential methods and also from
the single q-shells individually. Figure 10 depicts the results on a coronal slice through the
centrum semiovale area, superimposed on the FA map. (For comparison, one of the sub-
figures shows results by the original QBI.) Note how using the bi-exponential method
allows for more clear recovery of certain fiber bundles, such as callosal radiations and
corticospinal tract, and better resolution of crossing areas (see outlined regions in Fig. 10).

CONCLUSIONS
We have proposed a novel framework to correct a mathematical inaccuracy in the original q-
ball imaging, and have demonstrated its improved performance through experiments on
simulated and real HARDI data. We also extended our technique to the case with multiple q-
shells, and observed enhancement in the results which were, however, achieved at the cost
of additional (while still moderate) acquisition time. Whether using multiple q-shells and
reducing the number of diffusion directions (to maintain the same acquisition time) would
still be helpful, is a subject of current research.
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APPENDIX A

Fourier Transform of P(r ⃗)|r ⃗|2

From the Fourier analysis, we know that if E(q⃗) is the Fourier transform function of P(r ⃗),
then:

[32]

where F{•} is the Fourier transform. By writing the second equation for y and z and
summing them all, we will get:

[33]

This has also been exploited in a parallel work, (11).

APPENDIX B

Computing the Radial Projection of a Symmetric Function in the Fourier
Domain

Let f: ℝ3 → ℝ be a symmetric function with the 3D Fourier transform function f̂(q⃗), and û

be an arbitrary unit vector. We will show that , where û⊥ is
the plane perpendicular to û.

Without loss of generality, we choose our coordinates such that ẑ = û, thus making û⊥ the
qx−qy plane. We first rewrite the expression as a volume integral over the entire space, with
the help of Dirac delta functions:

[34]

The factor ½ is required because we need the integral only on the positive half of the z-axis,
and the function is symmetric. Let us define g(x, y, z):=δ(x)δ(y). For the two functions f, g:
ℝ3 → ℝ with Fourier transform functions f̂(q⃗) and ĝ(q⃗), Parseval’s theorem states that

[35]

Computing ĝ(qx, qy, qz)= 2πδ(qz) and replacing it in the above equations, leads to
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[36]

The integral is taken on the qx−qy plane, which is û⊥. This completes the proof.

APPENDIX C

Incorporating the Mono-Exponential Model in the ODF Formula

We will show that by assuming the mono-exponential model, , we have:

[37]

while  is kept constant in the integration. We begin by proving a lemma:

Lemma
For a continuous and differentiable function f(θ, φ): S2 → ℝ with S2 being the unit sphere,
we have:

[38]

where the subscript indicates the partial derivative.

Proof—We use the following expansion for Laplace-Beltrami:

[39]

Integral of the second term is zero, because of the periodicity of fφ:

[40]

Thus, the only remaining term in the integral is fθθ, which completes the proof of the lemma.

We now change the order of the integrals twice, while using the lemma in between:
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[41]

Next, we compute the radial integral:

[42]

Given that 0< Ẽ(û)<1 → ln Ẽ(û)<0, the above expression vanishes as q → ∞. Also, since

for a negative function f(θ) we have , the above integral
simplifies as:

[43]

Substituting in Eq. [41]:

[44]

We completed the proof by reusing the lemma in the last step.
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Fig. 1.
Radial integration of the PDF, (left) in a cone of constant solid angle (i.e., the factor r2 is
considered), and (right) by linear projection (i.e., without the factor r2 as done in the original
QBI).
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Fig. 2.
DTI example of ODF reconstruction (with {10, 5, 1} as the diagonal entries of the tensor),
shown from two view angles, (left) considering the factor r2 (CSA) (right) without the factor
r2 and after normalization. Note how less sharp the latter is and how incompletely it
represents the true structure of the ODF.
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Fig. 3.
Behavior of (left) ln(−ln E) and (right) the absolute value of its derivative with respect to E.
Note how unstable they are for E close to 0 or 1.
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Fig. 4.
The regularization function used for the diffusion signal to avoid the unstable regions (blue
curve). The truncating margins are exaggerated for better visualization.
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Fig. 5.
Experimental results on synthetic data with fiber crossing, using: Proposed CSA QBI,
original QBI after normalization, original QBI with Laplace-Beltrami sharpening (LBS),
Constrained Spherical Deconvolution (CSD), Mixture of Wisharts (MoW) with manually
optimized parameters, and Diffusion Orientation Transform (DOT) for two radii. The two
columns in the box correspond to the crossing angles of 28.1° and 33.8°. Dark red represents
negative values.
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Fig. 6.
Results of the dip test (a measure of multimodality) using the same distributions as shown in
Fig. 5. The asterisk (*) on each curve indicates the minimum angle where the bimodality is
detected. The y-axis is plotted on a logarithmic scale.
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Fig. 7.
Reconstructed ODFs from (top) rat spinal cord phantom and (bottom) human brain, shown
on the FA map, using: (left) CSA QBI, (middle) original QBI after normalization, and
(right) original QBI with LBS.
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Fig. 8.
(Top row): Reconstructed ODFs from 7T human brain data shown on the FA map, using:
(left) CSA QBI, (middle) original QBI after normalization, and (right) original QBI with
LBS. (Middle row): Results of DOT for different radii, ascending from left to right. (Bottom
row): ODFs reconstructed using regularization parameters of (left) 0.001, (middle) 0.01, and
(right) without regularization using the L1 error norm. A singly refocused 2D single shot
spin echo EPI sequence was used. Image parameters were: FOV: 192×192 mm2 (matrix:
196×96) to yield a spatial resolution of 2×2×2 mm3, TR/TE 4800/57 msec., acceleration
factor (GRAPPA) of 2 and 6/8 partial Fourier were used along the phase encode direction.
Diffusion-weighted images were acquired at three b-values of 1000, 2000 and 3000 s/mm2

with 256 directions, along with 31 baseline images. EPI echo spacing was 0.57 msec. with a
bandwidth of 2895 Hz/Px.
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Fig. 9.
Results of the ODF reconstruction on synthetic data. Note how the bi-exponential model
correctly resolves the maxima of the ODF from low b-values. Dark red represents negative
values. These values do not appear often in general, nonetheless, a possible formal approach
to handle them can be found at (30).
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Fig. 10.
Reconstructed ODFs from the real brain data, shown on the FA map. The bi-exponential
model ODFs (top, left) have been scaled down 1.5 times for better comparison. All the
ODFs except those in (top, right) are CSA ODFs. Note how the bi-exponential model for
diffusion improves the resolution of fiber crossings, compared to the mono-exponential
(constant ADC) model. An anesthetized Macaca mulatta monkey was scanned using a 7T
MR scanner (Siemens) equipped with a head gradient coil (80mT/m G-maximum, 200mT/
m/ms) with a diffusion weighted spin-echo EPI sequence. Diffusion images were acquired
(twice during the same session, and then averaged) over 100 directions uniformly distributed
on the sphere. We used three b-values of 1000, 2000, and 3000 s/mm2, TR/TE of 4600/65
ms, and a voxel size of 1×1×1 mm3.
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