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Abstract
The advent of high throughput genome-scale bioinformatics has led to an exponential increase in
available cellular system data. Systems metabolic engineering attempts to use data-driven
approaches – based on the data collected with high throughput technologies – to identify gene
targets and optimize phenotypical properties on a systems level. Current systems metabolic
engineering tools are limited for predicting and defining complex phenotypes such as chemical
tolerances and other global, multigenic traits. The most pragmatic systems-based tool for
metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has
seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we
examine here how this approach can be expanded for novel organisms. This review will highlight
advances of the systems metabolic engineering approach with a focus on de novo development and
use of genome-scale metabolic reconstructions for metabolic engineering applications. We will
then discuss the challenges and prospects for this emerging field to enable model-based metabolic
engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering
techniques represent a viable first step for improving product yield that still must be followed by
combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.
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1 Introduction
Cellular metabolism is a coordinated, interwoven collection of metabolites, enzymes, and
regulatory factors. Metabolic engineering attempts to favor desired product formation by
reconfiguring this interconnected network through the introduction of genetic controls and
novel enzymes. In one respect, the complexity of these cellular networks makes engineering
these systems a daunting task. However, at the same time, each of the sources of complexity
within a cell provides an access point for improving cellular phenotype. In this regard,
changes at the genetic, regulatory, enzymatic, and small molecule level can lead to desired
phenotypes. However, it is usually difficult (and sometimes impossible) to naively select a
genetic target among the wide array of potential candidate genes and components. To
address this complexity, systematic approaches for redesigning cells have been formalized
and explored. This basic premise founded the field of Metabolic Engineering – initially
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aimed at identifying pathway limitations through the systematic analysis and quantification
of pathway fluxes.

A great deal has changed since the field of metabolic engineering was first described nearly
20 years ago [1]. Specifically, the advent of post-genomic technologies and high-throughput
biology provides the ability to make cellular measurements and perturbations at vastly
increased speeds and accuracy. The resulting explosion of data has enabled the newfound
ability to take accurate snapshots of entire cellular function. Integrating and synthesizing this
data forms the foundation for systems biology research. When the efforts of systems biology
and metabolic engineering are combined, a systems metabolic engineering approach [2]
emerges with promises to unlock cellular potential and describe cellular phenomena. This
approach truly appreciates the cell as an integrated, global network, and attempts to use
model-based and data-driven approaches to identify pathway bottlenecks and provide
cellular reconstructions. However, the cost of producing these models (and the data required
to create and validate them) is often high both financially and in terms of time consumption.
Therefore, it is essential that a sound methodology and firm set of outcomes and
expectations be defined prior to utilizing these approaches. The purpose of this review is to
provide an overview of systems metabolic engineering and to highlight areas where more
work must be done before realizing the potential of ground-up systems metabolic
engineering. In this review, we will particularly recognize the contributions of genome-scale
modeling as it remains the most tangible and applicable systems biology approach for
metabolic engineering. Prior to discussing these approaches, we will review the area of
metabolic engineering to build the context for the emerging systems metabolic engineering
paradigm. We will then discuss the complete work throughput required to perform systems
metabolic engineering for a newly discovered organism. Finally, we will conclude with
prospects and challenges for the future of systems metabolic engineering as an enabling tool
for improving cellular phenotypes.

2 Metabolic engineering defined and successes
Metabolic engineering embodies the manipulation of enzymatic, transport, and regulatory
functions of a cell through recombinant DNA technologies with the goal of improving a
cellular phenotype, often yield of a desired product. The traditional metabolic engineering
toolbox comprises rationally selected deletions and overexpressions of native and
heterologous genes [1]. More recently, this toolbox has been expanded to include many new
tools for controlling gene expression, for modulating regulatory networks, for combinatorial
genetics, and for employing synthetic biology approaches [3](Text Box 1). The current
portfolio of advances in metabolic engineering is large for such a young field of study. A
recent example of complex metabolic pathway engineering can be seen in work by the
Keasling lab to produce artemisinic acid, a precursor to artemisinin, an anti-malarial drug.
By relieving growth inhibition caused by a toxic pathway intermediate [4–7] and by tuning
intergenic regions of polycistronic operons to alter expression levels of individual genes to
balance flux [8], flux through the pathway to the intermediate amorphadiene was increased 1
000 000 fold and resulted in an artemisinic acid titer of 300 mg/L [6]. Similar heterologous
pathway engineering approaches have been used to produce other complex products such as
fosfomycin [9,10] and novel polyketides [11–13].

Metabolic engineering has had additional success increasing the productivity of industrially
relevant small molecules [14–17], alcohol-based biofuels [18–21], and biodiesel [22,23].
Recently, this work has been expanded to hijack E. coli's amino acid biosynthetic pathway
and divert 2-keto acid intermediates for the synthesis of 1-butanol, 2-methyl-1-butanol, 3-
methyl-1-butanol, and 2-phenylethanol [24]. A similar approach was used to produce (S)-3-
methyl-1-pentanol [25]. In contrast to these single pathway optimization projects, creating
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complex products or phenotypes places a larger demand on metabolic engineers often
requiring novel approaches to modulate multiple gene targets at the same time.
Combinatorial metabolic engineering approaches have attempted to overcome this problem.
Examples include improving xylose metabolism [26,27] and further probing metabolic
landscapes [28] in E. coli. Genome shuffling and shotgun genomic approaches have been
successful in inducing phenotypical improvements [29,30] and has led to improved
thermotolerance, ethanol tolerance, and ethanol production in Saccharomyces cerevisiae
[31] and to improved acid tolerance and L-lactic acid production in Lactobacillus rhamnosus
[32]. These are two industrially relevant strain improvements. A final example of
combinatorial metabolic engineering is the use of global transcriptional machinery
engineering (gTME) to increase ethanol tolerance and production in yeast [23,33]. Most of
these combinatorial tools were created to address a limited ability to systematically improve
and model cellular phenotypes.

3 Systems metabolic engineering defined and successes
Systems metabolic engineering [2] embodies the incorporation and probing of large-scale
datasets with the goal of improving a cellular phenotype and synthesizing cellular function
in the form of models. Recent advances in the “omics” technologies enabled by high
throughput biology techniques have expanded traditional metabolic engineering to further
incorporate a systems-level view of cells [3]. These capabilities have ushered in the field of
systems metabolic engineering [2,34] (Fig. 1). However, this wealth of data has created new
challenges. Specifically, a major goal of systems biology involves combining high
throughput genomic, transcriptomic, proteomic, metabolomic, and fluxomic data to develop
a robust and experimentally confirmable in silico cell model. This complete cell model
could theoretically simulate (and ideally predict) cell and metabolic function. In this regard,
this model would be invaluable for metabolic engineering by enabling rational predictions of
phenotypical response for changes in media, gene knockouts, antibiotic effects, or
incorporation of heterologous pathways.

Large-scale global measurements are favored as a means of assessing cellular and metabolic
function. In some respects, the use of carbon-labeled substrates to reconstruct cell-wide flux
maps represented the first attempt at applying a systems biology approach toward metabolic
engineering. More recently, our capacities have expanded beyond this point to measure
transcript levels, protein levels, interactions, concentrations, and even localizations.
However, our ability to reconcile this data is not yet complete enough to build
comprehensive cell models. Consequently, the most comprehensive and predictive models
to come out of systems biology work are global metabolic network reconstructions. These
models serve as a basic outgrowth of simple material balances and typically only account for
stoichiometric reactions occurring within the cell. Despite being simplistic in their view of
the cell, these models have successfully predicted various metabolic perturbations and can
aid in designing improved cells (examples discussed below). These in silico genome-scale
metabolic reconstructions form the backbone of future applications of systems metabolic
engineering.

Novel Metabolic Engineering Tools

Metabolic engineering has numerous successes to its credit, and new metabolic
engineering tools have recently been discovered [3]. For instance, by mutating the
genetic sequence of a constitutive promoter, Alper et al. [77] created a library of
promoters with different strengths, allowing the transcription rate of a gene to be
modulated to desired levels by inserting the correct promoter upstream. This allows for
the possibility of engineering the transcription rates of all enzymes in a metabolic
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pathway to optimize pathway flux. In addition to modifying the promoters themselves,
Alper et al. [23,33] mutated sigma factors in prokaryotes and binding and associated
transcription factors in eukaryotes to alter the global transcriptional machinery of the
model organism. This global transcription machinery engineering (gTME) altered
expression levels for hundreds of different compared to wildtype expression levels.
Several groups have employed the use of shotgun genomics and combinatorial genetic
screens to identify gene over-expressions in a high-throughput manner. Synthetic
biologists have invented many devices that can be used by metabolic engineers for
cellular programming. The development of an inducible “on” switch for cell pathways
can allow for the production of toxic products when cell mass is maximized [84].
Furthering this, Gardner el al. [85] developed a novel genetic toggle switch, an inducible
system that can switch between two states, with gene A on and gene B off or with gene B
on and gene A off. These cellular “on/off” switches can easily be incorporated into
metabolic models.

These novel metabolic engineering tools, promoter engineering, gTME, combinatorial
shotgun overexpressions, and synthetic cell switches, will prove valuable additions to the
metabolic engineer's toolbox.

4 Metabolic engineering applications of in silico analysis
While still an emergent field, systems metabolic engineering has already had significant
successes. Park et al. [35,36] and Lee et al. [2,36] used similar approaches to improve the
production of L-valine and L-threonine, respectively in E. coli. Their approaches diverged
from the traditional means of creating industrial amino acid producing strains based on using
random mutations and screening. Product yield was first increased using traditional pathway
approaches (overexpression of rate limiting enzymes and deletion of genes to increase
metabolic precursors). Then a systems metabolic engineering approach was used taking
advantage of transcriptome analysis and in silico model-based metabolic reconstructions to
identify gene knockouts. Sequential rounds of non-random mutations resulted in final
product yields of 0.378 g L-valine per gram glucose and 0.393 g L-threonine per gram
glucose. These yields are comparable to those values obtained from industrial strains,
demonstrating that a rational approach can achieve yields similar to an unguided approach in
shorter time-frames. Moreover, these strains may be further enhanced through in silico
predictions because their genomes are still fully characterized, unlike in a randomly mutated
strain. This outcome represents an important difference in systems metabolic engineering
over strain improvement through random mutagenesis.

In a similar fashion, Alper et al. [37] used a genome-scale metabolic model of E. coli to
identify single, double, and triple gene knockouts that improved lycopene production. A
triple knockout system, which would have been intractable to discover without the genome-
scale model using standard strain optimization search strategies [38], yielded lycopene
production at nearly a 37% increase over an engineered parental strain. Furthermore, in
2002, Lee et al. [16,39] used an early E. coli metabolic reconstruction to engineer the
production of succinic acid, reaching 85% of the maximum theoretical yield.

More recently, these models have been employed to increase yields of complex products as
in the case of recombinant human interleukin-2 (IL-2) production in E. coli [40]. A
simplified stoichiometric model (a lumped model that ignored vitamins and minerals) was
used to predict amino acid supplementations that would increase IL-2 production.
Successful results included an increase from 81 to 195 mg IL-2/L in shake flask, and 403 to
594 mg IL-2/L in a fermenter, and 5150 to 10 010 mg IL-2/L in a fed-batch cultivated
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fermenter. Albeit simplified, this model was able to successfully predict changes in culturing
conditions.

Beyond E. coli, this approach has seen significant adoption in the basic yeast, S. cerevisiae.
Initial work was performed to improve succinic acid production [41] in yeast. Bro et al. [42]
used an in silico genome-scale metabolic reconstruction of S. cerevisiae to engineer yeast
reductive oxidative metabolism for decreased glycerol production and increased ethanol
production on glucose as well as on a glucose/xylose carbon source.

A third industrially relevant organism suitable for systems metabolic engineering is the
amino acid producing bacterium Corynebacterium glutamicum [43], responsible for
producing nearly 1 500 000 tons/yr of L-glutamate and 550 000 tons/yr of L-lysine. Kieldsen
et al. [44] recently published a genome-scale in silico metabolic reconstruction of C.
glutamicum. In addition, work has already been done to aide in the reconstruction of
transcriptional regulatory networks of Corynebacteria, easing potential future integration of
metabolic and regulatory networks to increase model robustness [45]. Given the results
above, this model may be used to engineer C. glutamicum for increased industrial amino
acid titers.

The results above illustrate the power of in silico modeling as a complement to traditional
metabolic engineering approaches for producing small molecules and biopharmaceuticals.
The successful application of limited genome-scale models for metabolic engineering give
reason to believe that further advances will be made when more comprehensive models are
assembled. Beyond the limited scope of these models, a major potential drawback is the
availability of a metabolic reconstruction. For standard, un-mutated strains of interest,
network availability is often not an issue due to freely available genome-scale
reconstructions for common organisms such as Escherichia coli [46], Saccharomyces
cerevisiae [47], Aspergillus niger [48], Bacillus subtilus [49], and Corynebacterium
glutamicum [44]. However, for industrial strains, mutant versions of common strains, or
newly isolated organisms, the lack of an in silico model limits the applicability of a systems-
based approach. Thus, researchers are challenged with the following dilemma: invest
resources to create a model or use established, traditional approaches. In the next section, we
go through the steps in network construction and highlight limitations and challenges that
need to be overcome.

5 Enabling systems metabolic engineering
A critical decision for any metabolic engineering project is the selection of a platform
organism [50]. Uncharacterized, non-model organisms may have innate biochemical
pathways to produce desired products but can exhibit low growth rates or be limited by
poorly developed genetic tools. Common industrial model organisms such as S. cerevisiae
and E. coli have developed genetic tools, but may be lacking in necessary resistance or
biosynthetic pathways.

When non-model organisms are chosen as the platform, building systems biology expertise
and capacity from scratch is not a trivial task. High throughput biology measurements
require high precision experiments. However, the price of these techniques is decreasing as
they become more standardized. For the case of in silico genome-scale metabolic
reconstructions, many steps are required if starting with an unsequenced organism (Fig. 2).

5.1 Genome sequencing
The required input data for an in silico genome-scale metabolic reconstruction is access to
the genome sequence for the organism to determine innate cellular capacities. The first
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genome sequenced was that of bacteriophage ΦX175, in 1977 [51]. A seemingly
disproportionate amount of effort was necessary to discover the 5 kilobase sequence. By the
early 1990s, Sanger's biochemistry had revolutionized sequencing technology [52], and the
automation of Sanger's chain termination method would eventually allow for the shotgun
sequencing of much larger genomes [53] with decreasing costs. However, recent advances
in “next-generation” [54] sequencing (relying mainly on cheaper, shorter reads) have greatly
reduced this cost. For example, the next-generation ABi SOLiD platform sequencer can
sequence DNA for about $2 per megabase, compared to $500 per megabase with Sanger-
based sequencing. Thus, next generation sequencers provide the means for rapid de novo
sequencing, a required first step for model reconstruction.

These drastic decreases in sequencing cost have essentially brought major sequencing
centers into the hands of individual investigators. This explosion of genomic data allows for
comparative genomics, the systems-based study of genomes across different strains or
species. Comparative genomics can be used to rationally engineer metabolic pathways by
uncovering essential enzymes that can increase product yield. As an example, a comparative
genomic analysis between the E. coli and Mannheimia succiniciproducens genomes,
combined with in silico flux analysis, allowed for a seven-fold improvement in succinic acid
yield in E. coli [55]. In the near future, these costs will be reduced further, removing this
step as a financial or time limitation in the systems metabolic engineering approach. We
expect that sequencing diverse collections of organisms will lead to systems-based pathway
design and will help advance the field of metabolic engineering by facilitating pathway
construction and design. Currently however, the cost of sequencing for more than a handful
of organisms cannot be overlooked as a trivial cost.

5.2 Genome annotation and automatic metabolic reconstruction
Following genome sequencing, the next step in the metabolic network reconstruction
process requires the bioinformatic discovery of all unique ORFs coding for enzymes in the
metabolic network. Once identified, ORFs are assigned an enzyme functionality based on
database information that includes activity, substrate specificity, cofactor dependence, and
location within the cell (for compartmentalized models) [56]. Challenges to this process
include assigning function to enzymes that may catalyze several reactions, enzymes with
broad substrate specificity, or enzymes unique to the organism of study.

Genome annotation and metabolic reconstructions can be automated through a coupling with
metabolic databases (Table 1), such as KEGG [57], LIGAND [58], BioCYC [59], EcoCYC
[60], MetaCYC [61], PathBLAST [62], FMM [63], SEED [64], and BRENDA [65]. These
databases collect bioinformatic and systems biology knowledge sets, serving as a repository
for new or well-characterized pathways and reconstructions. As this repository grows in size
and continues to be characterized, it essentially amounts to available biological catalysts that
can be “pulled off the shelf” and imported into cells via synthetic biology constructs. Thus,
the prospect for de novo pathway design is being advanced in these endeavors.

For uncommon genes, function can be assigned using gene finding algorithms, sequence
homology searches, and non-homology based algorithms (Table 1). The drawback of these
approaches is that they rely upon databases and commonalities of studied organisms, but
seemingly similar enzymes can have different functionalities in different organisms.
Furthermore, many unsequenced organisms contain pathways, enzymes, or metabolites that
have not been characterized. In particular, the biochemical verification of even very closely
related enzymes is important because minor differences in sequence have been known to
drastically alter enzyme function. Thus, a great deal of hand curation is necessary to ensure
the accuracy of the genome annotation, making this step the limiting factor for employing a
systems metabolic engineering approach to unsequenced organisms.
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Once organism annotation is completed, it is necessary to create the metabolic network and
component interactions [56]. For a metabolic network enzyme, reaction stoichiometry,
cofactor specificity, substrate specificity, directionality or reversibility, and cellular location
all need to be included in the model [66]. The combination of verified automatically
generated network reactions and manually curated reactions yields the first version of the
genome-scale metabolic reconstruction.

5.3 Iteratively improving upon the metabolic reconstruction using flux analysis
The first metabolic reconstruction is often neither sufficiently accurate nor complete, thus an
approach to improve the model is necessary. At this stage, computer programming-based
flux analysis can be performed using the in silico metabolic reconstruction to assess its
accuracy (Table 1). In this regard, flux balance analysis (FBA) is a constraint-based
optimization approach toward quantifying flux distribution inside a genome-scale in silico
metabolic reconstruction under the assumption of steady state conditions. An informative
review of many flux analysis techniques has previously been published by Park et al. [67].
Initially, these in silico models are used to assess whether the model can predict biomass
formation in general. These biomass formation tests are used to address the absence of key
metabolic enzymes.

After successfully modeling cell growth, the reconstruction should be checked to confirm
that it generates all known metabolites produced by the organism. This step requires either
prior knowledge of the strain or global systems biology measurements of cellular
components, including metabolites. The inability of the metabolic reconstruction simulation
to produce a known cellular component infers a gap in the network that must be resolved
using database or experimental methods. Furthermore, Manichaikul et al. [68] developed a
methodology based on RT-PCR and RACE to verify hypothetical enzymes in order to refine
genome annotations.

When the metabolic reconstruction can replicate cellular metabolites synthesis, further
iterative improvement of the model is possible using comparative gene knockout data.
Experimental data about growth or lack of growth of gene knockout strains can be compared
to the in silico model. If the in silico model predicts no growth, while the experimental
knockout grows, the discrepancy is likely due to an isozyme or an unsuspected metabolic
pathway. If the in silico predicts growth, but the experimental knock out will not grow, then
most likely there are enzyme functionalities in the metabolic reconstruction that are not
actually present in the organism. GrowMatch [69] is a novel program that can automatically
search for reactions to add to or to suppress from the network to help fix these growth versus
no growth discrepancies.

5.4 Using flux analysis of the metabolic reconstruction for systems metabolic engineering
To the present date, most successful systems metabolic engineering approaches have used
flux analysis to model gene knockouts in metabolic reconstructions in order to identify
otherwise intractable deletions to increase product yield. These gene knockouts are modeled
in silico by constraining the flux through the deleted reaction to be zero. Often, these
reconstructions also introduce synthetic enzyme pathways to model non-native products.

A number of optimization algorithms have been developed to better reflect flux
redistributions in response to a gene deletion. In addition to the linear-programming of FBA,
minimization algorithms such as [70] minimization of metabolic adjustment (MOMA) and
[71] regulatory on/off minimization (ROOM) have been developed to model gene
knockouts. MOMA minimizes the flux redistributions in knockout models compared to
wildtype fluxes while ROOM minimizes the number of significant flux changes in knockout
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flux models compared to wildtype fluxes. FBA, MOMA, and ROOM all only have a single
objective function when calculating cellular flux distributions, normally to optimize cell
growth. However, the common objective of a systems metabolic engineer is to optimize
production of a given metabolite without decreasing cell growth. Therefore, the ability to
specify multiple objectives, as in OptKnock [72], is very useful for the dual optimization of
cell growth and product yield. Additional modeling constructions such as OptStrain [73],
OptReg [74], and OptGene [75] have potential systems metabolic engineering application.
These modeling approaches attempt to find multiple targets for flux improvement through
gene overexpressions, gene knockdowns, gene deletions, and heterologous protein
incorporations. These approaches are expanding the in silico metabolic engineering toolbox
to complement our experimental capacities.

These flux analysis algorithms can be used to model gene knockouts and insertion of
heterologous enzymes for metabolic pathway engineering applications, however, they do
have inherent limitations. Heterologous enzymes are simply inserted into the reconstruction
matrix, assuming that they are going to be actively expressed in their new host. This is often
not the case due to solubility problems, unknown regulators, or problems with unoptimized
codons. In addition, these flux analyses are not particularly adept at modeling
overexpressions of enzymes. This limitation results from the fact that flux analyses based on
stoichiometric matrices tend to represent gene overexpression by adjusting the flux
constraint. When looking at the basic genome to fluxome cellular data pathway: Genome →
transcriptome → proteome → metabolome → fluxome, it can be seen that the enzyme
overexpression occurs at the genomic level. Due to cellular complexity, there is no direct,
linear relation between any of the levels of cellular data [76]. In addition, the enzyme may
not be the rate-limiting step or may be part of a tightly regulated pathway, so overexpression
will have no phenotypical effect. Thus, these models are more predictive for the type of
activity change required in the cell rather than the way in which to deliver this change. In
this respect, these systems metabolic engineering tools provide guidance for strain
engineering, but still rely on the availability of a powerful metabolic engineering toolbox
(Textbox 1) capable of inducing these changes.

A general advantage of the systems metabolic engineering approach to strain improvement
is complete cataloguing of all genetic modifications, allowing for future rational pathway or
systems based engineering. To utilize traditional metabolic engineering techniques, only
knowledge of the basic pathway of interest is prerequisite, and all engineering endeavors
exploit only reactions closely related to the basic pathway. On the contrary, the systems
metabolic engineering approach can target enzymes for gene knockout that are seemingly
not related to the pathway or phenotype of interest. The cumulative effects of these
knockouts combined with traditional metabolic engineering approaches generate an
increased product titer or an enhanced phenotype. Even after several rounds of rational
engineering, it is possible to adapt the metabolic reconstruction to model the engineered
strain by constraining it to accurately reflect experimental 13Carbon flux data. This
reconstruction can be used for further in silico analysis to search for potential genetic
modifications [2,35,36]. Thus, an iterative systems metabolic engineering approach may be
used to engineer already altered cells.

6 Improving the capabilities of systems metabolic engineering
Systems metabolic engineering is dependent on the availability and accuracy of high
throughput data to incorporate into in silico models. The omics revolution has vastly
increased our knowledge base, but our basic understanding of the cell's complexity is
rudimentary. Therefore, our in silico cell models are also comparatively simple. Systems
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metabolic engineering's effectiveness at phenotypical predictions will theoretically increase
as in silico reconstructions further reflect the complexity of the cell.

Reconstruction complexity can be increased in three ways in the near future. Firstly, in vivo
enzyme kinetic data are lacking for many metabolic reactions, and incorporating this data
into the metabolic model will increase its predictive prowess. Secondly, a suitable in silico
representation of traditional enzyme overexpression and novel enzyme underexpression
[8,77] will permit the modeling of essential metabolic engineering techniques, increasing the
capacity of the reconstruction to model genetic perturbations. By simulating gene over-
expression, knockdown, and knockout, instead of only gene knockout, the power of the
reconstruction will have increased three fold. Finally, the incorporation of transcriptional
regulatory networks and signaling networks into the metabolic network reconstruction will
greatly increase the predictive efficacy of the model and allow for dynamic cellular
representation.

Transcriptional regulatory network reconstructions can be created following the same basic
outline as for metabolic reconstructions [66]. Recent work by Faith et al. [78] using network
inference algorithms may automate the future development of regulatory networks. In 2002,
Covert and Palsson developed an experimentally confirmable integrated metabolic/
regulatory model for the central carbon metabolism of E. coli that could model growth,
substrate uptake, product secretion, and gene expression [79]. Furthermore, a very complete
genome-scale reconstruction of E. coli's transcriptional and translational machinery was
recently completed by Thiele et al. [80], but it has not been integrated into the metabolic
reconstruction. Advanced integrated transcriptional regulatory/metabolic reconstructions
could be used to model global transcriptional modulation, a key facet missing from existing
metabolic reconstructions. Dynamic analysis of integrated metabolic, transcriptional
regulatory, and signaling networks is in the initial stages. Lee et al. [81] proposed an
integrative, dynamic FBA to solve a stoichiometric reconstruction containing metabolic,
regulatory, and signaling processes of a S. cerevisiae pathway. Likewise, Covert et al. [82]
modeled the dynamic behavior of the three networks in E. coli central carbon metabolism
using an altered FBA approach. When the integration of the metabolic, transcriptional
regulatory, and signaling transduction cellular networks is scaled up to the genome level, it
will vastly improve the predictive power of in silico cell models.

It is important to note that as network or integrated network reconstructions increase in
complexity, the computational power necessary to model flux analyses increases. Modeling
multiple gene knockouts by systematically searching the reconstruction for single, double,
triple, or more knockouts leads very quickly to combinatorial explosion. Therefore, a
sequential, iterative approach is typically employed whereby the reconstruction is searched
for a certain number of potential single knockouts, and then these single knockouts are
searched for potential double knockouts, and so on. Alternatively, the optimization function
can be augmented to simultaneously guarantee product yields and maximal growth.
Regardless, increased computational power and refined optimization techniques would
allow for a more thorough search.

7 The drawbacks of systems metabolic engineering
Assuming that reconstruction and modeling capabilities continue to be improved, there are
still two potential difficulties blocking the proliferation of the systems metabolic engineering
approach. Most importantly, even though the cost of generating the necessary high
throughput data for a systems approach has been decreasingly rapidly, the price tag can still
be prohibitively high, especially in an industrial setting where many mutant strains are under
study. These high throughput costs include sequencing the genome and generating
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microarrays for analyzing transcript and protein levels, and 13Carbon flux data to verify the
flux model. For instance, if multiple randomly mutated strains have improved phenotype, all
of their genomes would have to be sequenced and analyzed in order to find the beneficial
mutations. It may be more cost-effective to first shuffle the genomes together to combine the
phenotypical improvements, and then sequence only the most improved strain. The second
difficulty slowing the incorporation of systems-based approaches is that high throughput
data in effect takes a “snap shot” of certain cellular component levels, transcript levels,
metabolite levels, or protein levels. This snap shot provides a very descriptive view of the
cell status but inherently does not have any information about any past or future cell states.
Therefore, when a reconstruction is fitted to this high throughput data, it runs the risk of
becoming a descriptive model, instead of the desired predictive model. As a result, systems
metabolic engineering must address both cost and model predictivity to compete with
traditional strategies for strain improvement.

8 The future of systems approaches to metabolic Engineering
In the near future, the most successful approaches utilizing systems metabolic engineering
will continue to employ genome-scale metabolic reconstructions to model gene knockouts.
Currently, there are metabolic reconstructions for over 30 organisms [56,83], but of these, it
has been mainly the metabolic reconstructions of commonly modeled organisms such as E.
coli and S. cerevisiae that have been used for systems approaches. As metabolic
reconstructions are expanded and genetic tools are developed for non-model organisms,
systems approaches toward engineering these organisms will thrive. The capability to model
gene overexpression and underexpression will be difficult due to the unquantified relation
between transcription levels and network flux modulation. However, these impacts will
certainly advance the field.

To maximize the benefit of using systems approaches, a metabolic engineer must ask the
following questions. First, what organism should be engineered to optimize yield? Second,
in what stage of the strain development process should a systems biology approach be
applied? Third, is a systems metabolic engineering approach more cost-effective than
traditional pathway engineering or industry-styled random mutagenesis and screening?

i. What organism should be engineered to optimize yield? Before attempting to begin
any modeling or experimental work, literature should be referenced to determine
how easily potential organisms grow under standard laboratory or industrial
conditions. Traditional pathway engineering and systems metabolic engineering are
possible only for organisms that have developed genetic tools, such as the
transformative insertion of heterologous DNA and protocols for the deletions of
unwanted genes. In certain cases, properties of an uncommon organism make it
seemingly ideal for the desired application. If this potential organism does not have
developed genetic tools, phenotype improvement is often limited to random
mutagenesis. If the organism has developed genetic tools, it can be altered using
traditional metabolic engineering techniques. If, in addition, the organism has a
developed metabolic reconstruction, in silico modeling can be utilized to test for
desired phenotypes in a systems-based setting. If the metabolic reconstruction does
not exist, it can be created by following the procedure discussed above. However,
the time demand and costs associated with the annotation and reconstruction
process can be prohibitive, so it may be more cost-effective to engineer the
organism using non-systems-based methods. After weighing the benefits and
shortcomings of using model or non-model platforms, the optimal organism
identified can be used for experimental work.
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ii. In what stage of the strain development process should a systems biology approach
be applied? The largest quantity of bioinformatic data is available for wildtype
strains because they have not been genetically modified or randomly mutated.
Therefore, most genome-scale metabolic reconstructions are likely to be available
for non-modified wildtype strains, and a systems metabolic engineering approach
should be employed in the beginning stages of strain development. The largest
degree of success has been seen in improving the metabolic phenotypes of cells,
rather than more complex phenotypes. Even if the metabolic reconstruction is being
produced from scratch, it is still best to begin with a systems approach, both to
improve phenotype, and to check the reconstruction for accuracy. Additionally, all
systems metabolic engineering-based genetic alterations are fully characterized and
traceable, unlike combinatorial and evolutionary approaches. Thus, sequential,
iterative approaches toward improving phenotypes are easier when employing a
systems-based approach. Following this approach, the use of combinatorial
approaches for further improving phenotypes should be employed since suitable
systems approaches for global cellular engineering are not currently available.
Moreover, these techniques can create genomic mutations that are difficult to track
and model using systems approaches.

iii. Is a systems metabolic engineering approach more cost-effective than traditional
pathway engineering or industry-styled random mutagenesis and screening? The
cost-effectiveness of systems metabolic engineering depends heavily on two
factors: if the platform organism has developed genetic tools and if the organism
has a previously existing metabolic reconstruction. Developing genetic tools for
uncommon organisms can be costly and prone to failure. Therefore, random
mutagenesis is most likely the only viable method to improve phenotype for these
organisms. If the organism has genetics tools but lacks a metabolic reconstruction,
the cost of producing such a reconstruction must be weighed against the potential
phenotypical improvement through systems metabolic engineering. Finally, there is
the scenario in which the organism has both genetic tools and an existing
reconstruction; the field of systems metabolic engineering has had the most
successes under these conditions. In this case, the metabolic reconstruction can be
used to find gene knockouts to improve product yield at little to no charge.
Updating the reconstruction after successful knockouts requires newly acquired
fluxomic data. This process, which can be repeatedly iteratively and inexpensively,
can be considered a first leap in improving product yield. After potential gene
perturbations have been exhausted, combinatorial techniques (gTME or genome
shuffling) and random mutagenesis can be employed to obtain another leap in
product yield. Combinatorial approaches are often necessary because the
multigenic nature of many phenotypes cannot be captured by a simplified model.

In conclusion, the emerging field of systems metabolic engineering is rife with prospects
and capabilities. Previous systems metabolic engineering successes have used model
organisms with existing metabolic reconstructions to discover gene knockouts to improve
product yield. At the present time, strains improved in this manner can be furthered
optimized using novel combinatorial techniques and random mutagenesis to further increase
product yield. As more non-model organisms or industrial strains are sequenced and
annotated, the library of organisms (and enzymes) available to a systems metabolic engineer
will increase. Furthermore, reconstruction predictive power can be improved by
incorporating other cellular processes, allowing for the improvement of multigenic traits and
non-metabolic phenotypes. At present, systems biology approach for metabolic engineering
work well for predicting changes for metabolic pathway engineering. The computational
support of the field must also be advanced to match our current capabilities of high-
throughput biology measurements. In addition, this approach has significant limitations in
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the engineering of complex, multigenic phenotypes such as tolerance and thus still requires
follow-up using combinatorial metabolic and cellular engineering tools. As these approaches
evolve, the cost of systems metabolic engineering will continue to decrease allowing for
widespread adoption as an iterative first step in phenotype improvement.
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Figure 1.
Systems Metabolic Engineering. The merging of systems biology with traditional metabolic
engineering brings about the field of systems metabolic engineering. In this vision, a
systems based approach is used for predicting phenotypical changes and selecting gene
targets. This approach allows for a global metabolic engineering implementation.

Blazeck and Alper Page 18

Biotechnol J. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Flowchart for enabling systems metabolic engineering starting with an unsequenced
organism.
A basic outline is provided for each of the steps required to create a successful genome-scale
model for an unsequenced, novel organism.
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Table 1

Online tools and databases for in silico model construction. A variety of tools are available to aid the
automated construction, validation and verification of in silico models. These include tools for genome
annotation, ORF function assessment, pathway design, and optimization routines.

Systems metabolic engineering online databases and computational tools

Databases for automated and manual genome
annotation

TRANSPORT DB [86], WIT [87], SGD [88], KEGG [57], LIGAND [58], BioCYC
[59], EcoCYC [60], MetaCYC [61], and BRENDA [65], UniProt [89], SWISS-PROT
[90]

Elucidating gene function for unknown ORF Gene Finders: GLIMMER [91], GlimmerM, Exonomy and Unveil [92] or GENSCAN
[93]

Homology based – BLAST [94,95], FASTA [96], or HMMER
(http://hmmer.janelia.org/)

Non-homology based - Prolinks database [97]

Pathway completion tools REBIT [98], BNICE[99,100], FMM [63], PathBLAST [62]

In silico modeling tools MOMA[70], ROOM[71], OptKnock [72], OptStrain [73], OptReg [74], OMNI [101],
COBRA Toolbox [102], COPASI [103], GrowMatch [69]
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