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Abstract Oxidation of proteins and peptides is a common
phenomenon, and can be employed as a labeling technique for
mass-spectrometry-based proteomics. Nonspecific oxidative
labelingmethods canmodify almost any amino acid residue in
a protein or only surface-exposed regions. Specific agents
may label reactive functional groups in amino acids, primarily
cysteine, methionine, tyrosine, and tryptophan. Nonspecific
radical intermediates (reactive oxygen, nitrogen, or halogen
species) can be produced by chemical, photochemical,
electrochemical, or enzymatic methods. More targeted oxida-
tion can be achieved by chemical reagents but also by direct
electrochemical oxidation, which opens the way to instru-
mental labeling methods. Oxidative labeling of amino acids in
the context of liquid chromatography(LC)–mass spectrometry
(MS) based proteomics allows for differential LC separation,
improvedMS ionization, and label-specific fragmentation and
detection. Oxidation of proteins can create new reactive
groups which are useful for secondary, more conventional
derivatization reactions with, e.g., fluorescent labels. This
review summarizes reactions of oxidizing agents with
peptides and proteins, the corresponding methodologies and
instrumentation, and the major, innovative applications of
oxidative protein labeling described in selected literature from
the last decade.
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Introduction

The development of analytical methods for oxidatively
modified amino acid residues has benefited from the study
of oxidative damage to proteins related to ageing and
disease [1, 2]. This review focuses on applications of
oxidative protein labeling in mass-spectrometry (MS)-based
proteomics.

Proteomics experiments typically aim at the identification
and subsequent quantitation of as many proteins as possible in
a sample. Often, however, a subset of proteins of interest
needs to be quantified, for example, as potential biomarkers.
Labeling, whether oxidative or nonoxidative, changes prop-
erties of peptides and proteins, which can be used to improve
sample cleanup, high performance liquid chromatography
(HPLC) separation, MS detection, and quantitation. A
labeling method can be tailored to enhance detection of target
proteins or peptides and/or suppress signals from undesired or
uninteresting ones. For example, through the labeling of N-
terminal peptides, sample complexity is greatly reduced [3],
whereas important details about protein processing are
revealed.

The main targets for derivatization in proteomics are
amines [protein or peptide N-terminus and lysine (Lys)] and
thiols [cysteine (Cys)], for which numerous specific labeling
methods are known. Oxidative derivatization primarily targets
redox-sensitive residues, comprising the aromatic tryptophan
(Trp), tyrosine (Tyr), phenylalanine (Phe), and histidine (His)
residues and the sulfur-containing Cys and methionine (Met)
residues (Fig. 1). Although thiols are usually labeled through
nonoxidative electrophilic substitution reactions, disulfide
bond formation between two thiol groups can be promoted
by oxidizing agents and is a common and reversible labeling
method.
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For oxidative labeling reactions a distinction is made
between primary (direct) oxidation of amino acid residues
followed by reaction with nucleophiles (e.g., electrochem-
ical oxidation of Tyr followed by reaction with water) and
reaction with oxidizing reagents (e.g., hydroxyl radicals).
For aromatic residues such as Tyr and Trp the distinction
between oxidation and electrophilic aromatic substitution is
not always clear. Different reactions can result in the same
products via different intermediates (e.g., via hydroxylation
or halogenation of the aromatic rings).

Oxidative labeling is presented here as a distinct
category of labeling techniques, based on the specific
methods employed and the fact that less commonly targeted
redox-active residues are modified. In contrast to regular
chemical labeling methods, reactive intermediates of either
the reactant or the target protein are formed by oxidation.
Oxidative labeling is the most straightforward labeling
method for aromatic residues, in particular Tyr and Trp, and
provides access to purely instrumental labeling methods,
such as electrochemical oxidation, which has no equivalent
in conventional, chemical labeling methods. Electrochem-
ical oxidation can be achieved with a stand-alone electro-
chemical cell but the electrospray emitter itself can also act
as an electrode in the case of online liquid chromatography
(LC)-electrospray–MS analysis.

The following sections present and discuss the main
reactive agents, their production methods, and their most

common reactions with peptides and proteins, illustrating
various applications of oxidative labeling in MS-based
proteomics.

Methods for oxidative modification

A distinction can be made between nonspecific labeling
reactions and reactions directed at specific amino acids or
functional groups. The directed reactions are used for site-
specific labeling, whereas less specific methods, notably
those mediated by free radicals (e.g., hydroxyl radicals), are
useful for accessibility-based labeling to probe the three-
dimensional structure of proteins (see “Applications”).
However, studies have shown that amino acids with
redox-active side chains are more susceptible than others
[4]. Nonspecific labeling reactions are also widely used for
mimicking in vivo oxidation (e.g., susceptibility to oxidants
generated during a host defense reaction).

Oxidation agents and reaction with peptides and proteins

In this section, a review of the most widely used oxidizing
agents is presented and the primary end products are listed
with selected examples taken from the literature. Oxidizing
agents are grouped in three main categories, namely,

Fig. 1 Structures of the most
common amino acid oxidation
products. X denotes either a
halogen or a hydroxyl group
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reactive oxygen species (ROS), reactive nitrogen species
(RNS), and reactive halogen species.

Reactive oxygen species

ROS-mediated oxidation of amino acids in proteins is an
important process occurring in vivo as part of the first-line
defense of a host organism against infections [5–7]. ROS-
mediated protein modification has therefore been exten-
sively studied by biologists and biochemists owing to its
implication in disease development [1, 2]. ROS include
hydroxyl radicals OH�ð Þ, superoxide anions O2

��ð Þ, per-
oxides (ROOR, including radical species derived from
them), and ozone (O3). The effect of ROS on free amino
acids and amino acid residues in proteins has been
extensively studied and reviewed by Garrison [8] and more
recently by Stadtman and Levine [9]. Typically, the study of
ROS-mediated oxidation of proteins can be performed by
generating the reactive species by chemical, photochemical,
enzymatic, or electrochemical reactions of molecular
oxygen (O2), hydrogen peroxide (H2O2), or water (H2O).

Hydroxyl radicals are by far the most commonly studied
ROS. They can easily be generated (see “Production and use
of oxidation agents”), and they have a broad range of
reactivity, which includes not only the oxidation-sensitive
Cys, Met, Trp, Tyr, Phe, and His side chains, but also
aliphatic groups and the peptide backbone [4, 9]. Hydroxyl
radicals can abstract electrons from the alpha carbon of any
amino acid to form carbon radicals [4], which after reaction
with O2 leads to peptide backbone cleavage. Alternatively
beta-carbon radical formation leads to beta-scission, resulting
in side chain cleavage [10]. Covalent modification of the side
chains of aromatic amino acids by hydroxyl radicals results
most commonly in hydroxylation (Fig. 1). Phe is converted to
2-hydroxy-Phe, 3-hydroxy-Phe, and 4-hydroxy-Phe, whereas
Tyr yields mainly the ortho-hydroxylation product [11]. Tyr
can also undergo cross-linking reactions to form dityrosine
derivatives [12]. Trp residues are converted to a mixture of
hydroxy-Trp isomers followed by further decomposition to
kynurenine by a pyrrole ring opening reaction [13].

Ozone, as a powerful oxidizing agent, was shown to react
with free amino acids and proteins similarly to other ROS by
affecting sulfur-containing (Met and Cys) and aromatic (Trp,
Tyr, Phe, and His) residues although Phe and Cys are much
less reactive. Studies with ambient air ozone [14, 15] and
aqueous ozone [16–19] have agreed on the following
relative reactivity: Met > Trp > Tyr > His > Phe > Cys.

Performic acid oxidizes Met, Tyr, and Trp, leading to
sulfoxide formation and aromatic hydroxylation, respective-
ly. It is used specifically for oxidative cleavage of disulfide
bonds, producing two cysteic acid residues [20, 21]. Sulfenic
acid is an unstable intermediate oxidation product of Cys
(Fig. 1). It may be further oxidized to unreactive sulfinic acid

and sulfonic acid (cysteic acid). Sulfenic acid reacts readily
with nucleophiles, including other Cys residues, with which
it can form a disulfide bond [22].

ROS are highly reactive and can modify most amino
acid residues. As shown later in this review, such
nonspecific modifications are useful for protein surface
mapping experiments. They are, however, of limited utility
for selective, oxidative modifications.

Reactive nitrogen species

RNS mainly derived from nitric oxide NO�ð Þ lead to
nitration and nitrosation of proteins in vivo [2]. RNS, in
comparison with ROS, preferentially oxidize sulfur-
containing (Cys and Met) and aromatic (Tyr, Trp, Phe,
and His) amino acids. In vivo nitration of Tyr is a well
known widely studied phenomenon, whereas nitration of
Trp has received less attention [23]. Tyr nitration occurs at
the ortho positions and dinitration is possible [24].

Peroxynitrite (ONOO-), which may be formed from NO�

and superoxide anion O2
��ð Þ, is thought to be the primary

agent for reaction with Cys, Met, and Trp, whereas for reaction
with Tyr, Phe, and His secondarily formed radicals are thought
to be involved [24]. Reaction with NO2 is believed to be the
main in vivo Tyr nitration pathway [25–27].

Reaction of Cys with NO in the presence of oxygen may
lead to nitrosation of the thiol group [28]. In addition,
formation of sulfenic acid is possible with RNS in a similar
way as with ROS [24].

RNS are more selective than ROS and thus potentially
more suitable for site-directed labeling of peptides and
proteins. Subsequent reduction of nitrated Tyr or Trp to the
corresponding aromatic amines is a useful approach for
site-directed labeling [29, 30].

Reactive halogen species

Reactive halogen species are oxidized forms of chlorine,
bromine, and iodine, including hypohalous acids, which
readily react with aromatic amino acids. The oxidized halogen
intermediate may be formed through reaction between halide
anions and oxidizers, such as H2O2 (see “Chemical meth-
ods”). Reaction with Cys and Met to form sulfoxides is
possible (Fig. 1) [22, 31] and cystine can yield N-
dichlorocystine, but halogenation of free Cys is not observed.
The extent of oxidation of Cys, Met, and His can be limited
by using substoichiometric amounts of oxidizing agents.

Reaction with Tyr and Trp leads to single or multiple
halogenations (see below). Halogenated intermediates
(Fig. 2) react with other nucleophiles, including water,
leading to hydroxylation or cleavage of adjacent peptide
bonds. Oxidative halogenation and cleavage of peptide
bonds C-terminal to Tyr and Trp often occur simultaneously
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and can be achieved by chemical or electrochemical
methods (see “Direct electrochemical oxidation of peptides
and proteins”). Some selectivity for the cleavage reaction is
observed, depending on the size of the reactant and the redox
activity of Tyr or Trp (at low pH the redox potential of Trp is
slightly lower than that of Tyr [32]). N-Bromosuccinimide,
N-iodosuccinimide, and N-chlorosuccinimide have been
used to cleave peptide bonds C-terminal to Tyr [33–35]
and Trp [36, 37] residues. In all cases cleavage is
accompanied by halogenation. Reagents have been pro-
posed that are selective for Trp (e.g., ortho-iodosobenzoic
acid) but have never achieved widespread use [38].

Halogenation of Tyr is most favorable at the ortho position
(Figs. 1, 2b), yielding a mixture of singly and doubly
halogenated Tyr. For Trp the 2 position of the pyrrole ring
and any position on the six-membered aromatic ring are
targeted [39], analogous to naturally occurring Trp bromina-

tion patterns [40] (Figs. 1, 2a). Oxidation by reactive halogen
species usually leads first to 2-oxoindole formation (Fig. 2a,
structure 1) through reaction with water. Subsequent oxida-
tion reactions result in halogenation of the six-membered
aromatic ring, presumably at the 5-position, and/or peptide
bond cleavage, as illustrated in Fig. 2a [39]. The secondary
oxidation of the 2-oxoindole leads to an intramolecular
reaction to form an iminolactone, which is readily hydro-
lyzed, cleaving the tryptophanyl or tyrosyl peptide bond
(Fig. 2a, structure 2). The reaction of Trp with 3 equiv of N-
bromosuccinimide leads to monobrominated, cleaved 2-oxo-
Trp [41], whereas the equivalent reaction with Tyr produces
a dibrominated, cleaved Tyr residue [39] (Fig. 2b).

Hypohalous acids, such as HOCl and HOBr, produce
mainly halogenated Tyr and Trp, as well as 2-oxo-Trp [42–
44]. In addition, many other minor modifications of these
and other residues have been described [45]. Mono- and
dichlorination of Tyr with performic acid in the presence of
Cl- have been observed, which may be ascribed to
intermediate HOCl formation [46, 47].

Production and use of oxidizing agents

Chemical methods

Chemical oxidants can be added directly to a protein
sample or generated after chemical, photochemical, elec-
trochemical, or enzymatic activation (see below). Hydrogen
peroxide is the most easily obtained oxidizing agent.
Hydroxyl radicals are formed from hydrogen peroxide or
from water by chemical, electrochemical, or photochemical
activation. Online reactions coupled with electrospray–MS
or reactions on the target plate for matrix-assisted laser
desorption/ionization (MALDI)-MS [48] have the advan-
tage that sample handling is avoided.

Various peroxide species are produced by combining
hydrogen peroxide and precursors, such as nitrite to form
peroxynitrite [49], or formic acid to form performic acid
[47]. Reactive halogen species include hypohalous acids
such as HOCl and N-halogensuccinimides. Others are
produced by oxidizers such as hydrogen peroxide to form
hypohalous acids with molecular halogens (I2 and Br2) or
alkali halides. Iodination of Tyr is used in radiology, where
radioactive iodine (125I) is incorporated in proteins, typi-
cally with 125I- which is activated by chloramine T [50].

Metal-catalyzed oxidation of proteins with transition
metal complexes (e.g., ruthenium bipyridine or porphyrin-
like compounds) is used for photochemically or chemically
induced oxidation of Trp, Tyr, and Cys to their radical
intermediates [51, 52]. Such methods are most commonly
employed for protein cross-linking or to determine the
metal-binding site of proteins [53, 54].

Fig. 2 a Proposed reaction pathway for oxidation reaction of Trp with
bromine [39]. A first oxidation step with Br+ leads to the oxoindole
(1), followed by a second oxidation, which induces internal cleavage
of the peptide bond (2). In the presence of an excess of bromine,
halogenation of the six-membered ring occurs (3). b The analogous
reaction of Tyr with 3 equiv of N-bromosuccinimide (NBS) leads to a
dibrominated, cleaved Tyr residue [138]
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The Fenton reaction has been used to produce hydroxyl
radicals from hydrogen peroxide by addition of Fe(II) for Trp
and Tyr oxidation and cross-linking studies [55, 56]. An iron
complex has been constructed which produces oxoferryl
[Fe(IV)=O] in combination with hydrogen peroxide [57],
which is claimed to be potentially more specific than other
ROS such as hydroxyl radical owing to lower diffusion.

Reactive intermediates produced by irradiation

Hydroxyl radicals are photochemically generated either by
photolysis of hydrogen peroxide or by radiolysis of water.
Photolysis induced by a UV lamp [58] or a laser [59–65] and
radiolysis induced by X-ray [66–70] and γ-ray [71] irradia-
tion as well as pulsed electron beam methods [72] have
proven to be useful to produce hydroxyl radicals for protein
footprinting experiments (see “Protein surface mapping”).

Photochemical oxidation of hydroquinone with a UV
laser on a MALDI target coated with TiO2 particles has
been shown to produce benzoquinone, which reacts with
thiols in peptides [73]. This parallels the electrochemical
generation of benzoquinone in the electrospray emitter
reported by the same group (see “Electrospray emitter”).
Furthermore, metal complexes employed in protein oxida-
tion can be photochemically activated, e.g., the ruthenium–
bipyridine complex [52].

Electrochemically produced reactive intermediates

Electrochemistry is a useful method of producing ROS in a
controlled manner. An electrochemical cell can be used to
oxidize water to hydroxyl radicals at sufficiently high
potential. Boron-doped diamond (BDD) electrodes are
particularly suitable for hydroxyl radical production owing
to their intrinsic high overpotential for the formation of
molecular oxygen by oxidation of water (oxygen evolution)
[74, 75]. The potential at which the radical formation is
observed is dependent on the doping and impurity level of
the BDD material employed [75]. Another major advantage
of BDD when it comes to protein analysis is its low
adsorption. Adsorption of proteins and peptides to the
working electrode affects the reproducibility, as has been
observed when working with commonly used carbon
electrodes [76]. Hydroxyl radical formation at high voltage
combined with the low adsorption properties makes BDD a
suitable and efficient material for footprinting experiments
[77] (see “Protein surface mapping”).

The Fenton reaction (see “Chemical methods”) can be
initiated in an electrochemical cell [78]. Alternatively, the
electrospray emitter of a mass spectrometer’s source can be
employed to oxidize atmospheric oxygen. High voltage on
the electrospray emitter tip (typically above 5 kV) can
generate a corona discharge, which leads to hydroxyl and

perhydroxyl radical formation and subsequent peptide
oxidation in the gas phase [79], an approach that has been
used for protein footprinting experiments [80, 81] (see
“Protein surface mapping”). However, Boys et al. [82]
showed recently that corona discharge can occur under
regular electrospray ionization (ESI) conditions (3.5 kV, N2

nebulizer gas) and induce hemoglobin oxidation. Electro-
chemical production of RNS in an electrochemical cell has
been shown to lead to Tyr nitration [83, 84] by oxidation of
nitrite to nitrogen dioxide or peroxynitrite.

Enzymatically produced reactive intermediates

Peroxidases are often used for production of ROS or RNS
in in vivo assays. Both the enzyme and an oxidizing reagent
may be added to a protein sample, but more commonly
peroxidases are supplied with hydrogen peroxide to induce
in situ oxidation. For example, myeloperoxidases can
produce HOCl from Cl- and H2O2, and NO2 from nitrite
and H2O2 [85], leading to Tyr chlorination and nitration,
respectively.

The tyramine labeling system [86] uses peroxidase
activity to cross-link tyramine to Tyr residues in proteins.
Tyramine-fluorophore labeling has been used to probe Tyr
radical formation in vivo [87].

Direct electrochemical oxidation of peptides
and proteins

Electrochemical cell

Electrochemistry has long been a domain reserved to
specialists but the coupling of electrochemistry with MS
has generated increased interest owing to its ability to
monitor electron transfer processes online. Many groups
have contributed to the development of methods and
instrumentation for coupling of electrochemical cells to
MS and LC-MS systems (see [88–90] for reviews).

Electrodes can donate or accept electrons and thus
reduce or oxidize macromolecules. Metalloproteins have,
for instance, been widely studied because of their crucial
role in in vivo redox processes [91]. The electrochemistry
of biomacromolecules is mainly used for detection purposes
and in that aspect metalloproteins are easily oxidizable
targets owing to their metal ion cofactor.

Electrochemistry is also used to mimic oxidative modifi-
cations occurring in vivo through enzymatic and ROS activity.
Indeed, proteins contain electroactive amino acid residues
whose side chains can interact with an electrode and undergo
electron transfer reactions. Sulfur-containing Cys and Met
residues as well as the aromatic Tyr, Trp, and His are
susceptible to direct oxidation reactions in an electrochemical
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cell when a positive potential is applied to the working
electrode. Reduction of disulfide bridges can, on the other
hand, be achieved by applying negative potentials [92].

Electrochemical oxidation of aromatic amino acids
produces reactive intermediates which mainly yield hy-
droxylated residues by reaction with water and, for Tyr,
quinones after secondary oxidation reactions. Sulfur-
containing residues can be oxidized through up to three
oxygen atom insertions in the case of Cys [90]. Another
common oxidation reaction for Cys is to form a disulfide
bond with another Cys residue. Recent work in our group
showed that cleavage of the protein backbone can occur
after electrochemical oxidation of peptides and proteins [76,
93]. Similarly to the chemical cleavage with halogen
species described in “Reactive halogen species,” electro-
chemical oxidation of peptides and proteins leads to the
preferred cleavage of peptide bonds C-terminal to Tyr and
Trp residues. The cleavage reaction yields a spirolactone
derivative of Tyr and Trp (Fig. 2). This amino acid
specificity makes it a promising method for the develop-
ment of an alternative protein digestion technique. Interest-
ingly, it has been shown that the method can be used to
distinguish phosphorylated Tyr from Tyr, since phospho-
Tyr cannot be oxidized and thus no cleavage occurs [93].

Proteins have not been extensively studied in terms of
oxidative side-chain modifications using electrochemistry
although it is a potentially useful method to mimic in vivo
processes. Brabec and Mornstein [94, 95] first presented
electrochemical oxidation of Tyr and Trp side chains in the
protein backbone. Nitration of Tyr side chains in lysozyme
has also been investigated by electrochemical oxidation of
nitrite [84].

Carbon-based working electrodes are the most commonly
used working electrodes in organic electrochemistry but have
the main drawback of surface oxidation and fouling due to
irreversible adsorption when working with large peptides and
proteins. This strongly hampers accurate analysis and repro-
ducibility. BDD electrodes have recently gained considerable
attention owing to their chemical inertness, large potential
window, and more importantly their lower adsorption prop-
erties as compared with glassy carbon [74, 75]. Shin et al.
[96] showed strongly reduced adsorption of bovine serum
albumin to BDD electrodes as compared with glassy carbon
and Chiku et al. investigated the direct electrochemical
oxidation [97] and conformational changes of bovine serum
albumin [98] using BDD electrodes, indicating that this
electrode material is suitable for protein analysis.

Electrospray emitter

The simplest configuration to perform electrochemical
oxidation in combination with MS is to make use of the
inherent electrochemical processes occurring within the

electrospray emitter of the mass spectrometer. Blades et al.
[99] were the first to compare the ESI source to an
electrolytic cell by showing that Zn(II) and Fe(II) ions
were generated in solution by electrochemical oxidation of
the emitter tip. ESI by its nature involves electrochemical
processes. In positive ionization mode, positively charged
droplets formed at the emitter tip flow towards the aperture
of the mass spectrometer owing to the applied electrical
field. The way to balance charges and to allow current to
flow through the entire circuit is by providing electrons at
the liquid–metal interface by electrochemical oxidation of
the metallic emitter tip and/or electrolytes present in
solution to release electrons, although there is ongoing
discussion about this process [100, 101]. The emitter can
thus act as a working electrode where oxidation (positive
ion mode) or reduction (negative ion mode) reactions take
place, whereas the curtain plate or inlet capillary of the
mass spectrometer plays the role of the counter electrode.
Van Berkel and coworkers studied the fundamental aspects
of the ESI process extensively [101] and “in source” redox
reactions were mainly used to ionize compounds such as
porphyrins [102], polyaromatic hydrocarbons [103], metal-
locenes [104], and fullerenes [105] in the form of radical
cations in positive ion mode.

Girault and coworkers pioneered the use of in source redox
reactions for peptide and protein analysis. In their work,
hydroquinone was oxidized to benzoquinone, which reacts
with the thiol groups of Cys in peptides and proteins within
the emitter as shown in Fig. 3a [106–110]. In this way they
developed a system for “online counting” of Cys residues
with the goal to facilitate peptide identification through
database searches, which is enhanced when at least one
amino acid residue in the sequence is known [109, 111, 112].
The technique was shown to be successful on a set of
peptides containing up to three Cys residues and on proteins,
although the tagging efficiency decreased with increasing
molecular size owing to steric hindrance and slower
kinetics.

The same group explored the use of sacrificial electrodes
on microchip devices to generate metal ions in solution [Cu
(II), Zn(II), Ni(II), Fe(II), and Ag(I)] that can complex to
peptides (Fig. 3b) [113]. The use of copper and zinc
electrodes appeared to be most efficient to probe metal ion-
protein interactions that mimic those observed in biological
systems. Copper sacrificial electrodes, for instance, were
used to study copper–Cys interactions [114–116]. Copper is
known to catalyze Cys oxidation in vivo [117] and it was
shown that generating Cu(I) and Cu(II) ions in solution
promoted the formation of inter- or intramolecular disulfide
bridging. Alternatively, a sacrificial zinc electrode was used
to tag phosphopeptides. Zn(II) ions generated at the emitter
tip were shown to interact with phosphopeptides and
complex phosphorylated Tyr and Ser [116, 118].

3446 J. Roeser et al.



Redox reactions taking place at the electrospray emitter
electrode can affect the composition of the solution in the
capillary [119, 120]. Oxidation or reduction of water at the
liquid–metal interface (Fig. 3c) can induce a variation of
the pH in solution. Pan et al. [121] showed that this change
of solution composition can be used to enhance ubiquitin,
myoglobin, and cytochrome c detection in negative ion
mode. Indeed reduction of water within the electrospray
capillary progressively increased the basicity of the solution,
through formation of OH− ions, thus altering the charge state
of the different proteins and improving the detection in
negative ESI-MS. The electrochemical modification of a
solute inside the electrospray capillary is strongly dependent
on the liquid flow rate. When the flow rate is increased, there
is a lower yield of electrochemical reaction products [101].

Applications

Applications of chemical modifications and tagging strate-
gies for protein research and proteomics have been covered
in recent reviews [122–124]. Here we highlight applications
where oxidation facilitates sample preparation and purifi-

cation, and those where oxidative changes of the physico-
chemical properties with respect to chromatographic
separation, ionization efficiency, or mass are utilized for
improved or differential detection of labeled peptides.

Sample preparation

Oxidative modification for sample preparation is most
commonly performed at the protein level. The oxidized
functional group may be the end point of labeling, but
oxidation methods can also be employed for the creation of
functional groups for secondary labeling, e.g., biotinylation
for affinity purification or fluorescent labeling for detection.

Fig. 3 Oxidation reactions in an electrospray emitter. a Oxidation of
hydroquinone (hQ) to benzoquinone (bQ) in the presence of Cys-
containing peptides leads to quinone-labeled peptides [106]. b Oxida-
tion of metals (e.g., from the emitter material itself) leads to metal ions
that may coordinate with peptides [113]. c Oxidation of water reduces
the solvent pH, leading to higher protein charge states [121]

Fig. 4 Secondary labeling reactions of oxidized amino acid residues. a
Oxidative nitration, followed by reduction of the nitro group to an
amine, and finally amide formation [27, 131]. b Reaction of the radical
intermediate of Tyr with the spin-label 5,5-dimethylpyrroline-N-oxide
(DMPO) [134] or a second Tyr residue [51]. c Secondary oxidation of
hydroxylated Tyr to an orthoquinone, followed by reaction with an
amine (e.g., a protein Lys), leading to a Schiff base intermediate, which
is very reactive towards thiols [51]. d Reaction of sulfenic acid with a
linker molecule containing secondary amine or azide functional groups
for labeling [137]. e Tyr peptide bond cleavage leads to a lactone
intermediate that can react with alcohols or amines [138]
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Figure 4 illustrates a variety of secondary labeling
methods after oxidation of amino acids. Nitro-Tyr can be
reduced with sodium disulfite [125], dithiothreitol in
combination with heme [126], or by electrochemical
reduction [127–130] and yield amino-Tyr. This amine
group is useful for coupling labels (Fig. 4a) such as biotin
[27, 30, 131], sulfhydryl groups [29], or fluorescent tags
[132]. This strategy allows isolation of residues containing
the modified amino acids. Zhang et al. [29] and Abello et
al. [30] showed selective tagging of nitro-Tyr after prior
acetylation of primary amines.

Oxidative cross-linking of radical intermediates of Tyr with
other Tyr residues (Fig. 4b) or with tyramine coupled to a
fluorophore [51, 52, 87] produces dityrosine-containing
compounds with distinct spectroscopic properties. Cross-
linking reactions are of great interest owing to the fact that
they involve residues (Tyr, Trp, Cys) that often play an
essential role in protein function and biological recognition
processes. Studies of such reactions have, for instance,
revealed intermolecular interactions between G-protein-
coupled receptors within intact cells [51] or that neutrophil-
derived proteins with anti-inflammatory and bactericidal
properties are more susceptible to attack by Tyr radicals [87].
The biological role of protein Tyr radicals can be assessed by
trapping them with the spin-label 5,5-dimethylpyrroline-N-
oxide before they react with other radicals (Fig. 4b). The
trapped radicals are stable enough for subsequent tryptic
digestion and MS analysis and can thus be localized in the
protein [133, 134]. Such studies allow one to map the radicals
in proteins under oxidative stress, leading to a better under-
standing of the mechanisms that are related to human diseases.
Trapped Tyr residues can also be detected with antibodies and
by molecular magnetic resonance imaging [135].

Tyr orthoquinone is produced by a second oxidation
after oxidative hydroxylation (see “Electrochemical cell”).
This group is susceptible to nucleophilic attack by thiols, as
shown in Fig. 4c, or by other oxidized Tyr residues [51,
136]. Sulfenic acid is capable of nucleophilic attack, which
has been used to couple a linker molecule that subsequently
reacts with fluorescent labels [137] (Fig. 4d).

The spirolactone group of Tyr, which is produced upon
peptide cleavage, is reactive towards alcohols and amines under
basic conditions to form esters and amides (Fig. 4e) [138]. An
analogous reaction with amines such as tris(hydroxymethyl)
aminomethane has been described for the homoserine lactone
produced by CNBr cleavage C-terminal to Met [139].

Protein digestion for proteomics, which is typically
performed enzymatically, may be achieved by electrochem-
ical or chemical oxidative cleavage of proteins as described
in “Reactive halogen species” and “Electrochemical cell.”
The distinct specificity and the reactive spirolactones of Tyr
and Trp at the peptide C-terminus may provide novel
peptide enrichment and identification strategies.

LC properties

Oxidative labeling may change peptide retention on the
chromatographic stationary phases. Hydroxylation of Tyr
and Trp and oxidation of Met and Cys to sulfoxide or
sulfoacids decrease their hydrophobicity, thus reducing
peptide retention on reversed phase (RP) columns. Hydro-
phobicity and elution order may be further affected by
solvent composition and pH (e.g., nitro-Tyr has a longer
retention time than Tyr in RP-HPLC under acidic con-
ditions, but is eluted earlier under basic conditions [27]).
Increased retention times are observed upon halogenation,
so Tyr, bromo-Tyr, and dibromo-Tyr are eluted in this order
in RP-HPLC [140].

Direct comparison of labeled versus unlabeled samples
is possible, but as for peptide mass shifts (see “Mass change
of peptides and fragments”), sample complexity and low
abundance of peptides of interest can make retention time
shifts hard to detect. To overcome this issue the COFRA-
DIC method has been developed [3], which is a two-stage
LC method with a primary separation, labeling of certain
molecules or functional groups in fractions, and a second-
ary separation. Differential labeling will cause a shift in
retention time for labeled peptides, whereas unlabeled
peptides remain unaffected, making labeled peptides easily
detectable. COFRADIC has been applied to various targets
based on different labeling methods, including oxidation of
Met with performic acid [141]. Met oxidation has also been
used to reduce the hydrophobicity of peptides derived from
membrane proteins, which are difficult to elute from RP
stationary phases [142]. This is a case where oxidative
modification of Met residues, which are often located in
transmembrane segments, leads to increased peptide cover-
age, which is often an issue when analyzing membrane
proteins by LC-MS. Reaction of Cys with benzoquinone,
similar to the electrospray tagging reaction (see “Electro-
spray emitter”), has been employed to induce a hydrophilic
shift in COFRADIC with RP-HPLC [143].

Mass-spectrometric properties

Ionization efficiency and charge state

Protein solution-phase conformation influences the charge
state of a protein during the ESI process [144, 145]. The
charge state itself influences the ionization efficiency of
proteins since highly charged conformers are more easily
amenable to ESI. A protein in its native folded conforma-
tion gives rise to lower-charge states (fewer available
protonation sites) and a wider charge distribution compared
with its unfolded equivalent. On the basis of this empirical
relationship, ESI-MS has been used as a tool for monitoring
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protein conformational changes in solution [146], including
for protein footprinting experiments [147] (see “Protein
surface mapping”), where oxidative modifications affect the
solution-phase structure. The nature of the oxidized residue
can also affect the charge state as testified, for instance, by
the lower proton affinity of 2-oxo-His compared with
unmodified His [148]. Oxidation of Cys to cysteic acid
can, on the other hand, contribute to an increase of the
charge state in negative ion mode owing to its acidity. It is
also noteworthy that the peptide dissociation patterns in
MS/MS may be affected by oxidatively modified residues,
which must be taken into account during the interpretation
of MS/MS spectra [148] (see “Mass change of peptides and
fragments”). Ionization efficiency can also be increased by
taking advantage of inherent electrochemical processes
taking place in the electrospray emitter as discussed in
“Electrospray emitter.”

Mass change of peptides and fragments

Almost any labeling method, including oxidation, will
increase the mass of an analyte. Differential MS analysis of
oxidized versus unoxidized samples will therefore reveal
modified peptides, provided that they are sufficiently
abundant and can be ionized well. Alternatively, much more
sensitive MS/MS methods can selectively detect modified
peptides on the basis of characteristic product ions or neutral
losses [149]. Table 1 lists precursor and neutral loss scanning
applications that have been described for various (in vivo)
modifications that can be mimicked by oxidative labeling.

Collision-induced dissociation of peptides is influenced
by the side-chain properties of the constituent amino acids.
Notably, creation of acidic or basic groups affects the proton
localization, so formation of sulfinic acid and sulfonic acid
leads to greatly increased fragmentation at their C-terminal
side [150], analogous to the preferential fragmentation

induced by aspartic acid [151]. This observation may help
in interpreting MS/MS spectra of unknown peptides [152].
In contrast, the preferential fragmentation normally observed
for His is inhibited upon its oxidation to 2-oxo-His [148].

Although fragmentation of protonated peptides by
collision-induced dissociation is the most common tech-
nique in proteomics, electron-transfer-induced dissociation
has gained considerable interest since its introduction in
2004 [153], and applications targeting oxidized residues are
easily envisaged. In a related method, iodinated Tyr is
irradiated in the gas phase to produce radical intermediates
which readily fragment upon collisional activation [154].

Mass defect and isotopic pattern signature

In addition to the overall mass increase upon labeling, the
elemental composition of the labeling group may introduce
a shift in the mass defect of the peptide or protein, which is
on average +0.00055 amu per amu for protein-derived
peptides. Labels with many hydrogen atoms cause an
additional positive mass defect, whereas incorporation of
heavier elements, including chlorine, bromine, and iodine,
leads to an increasingly large negative mass defect (Table 2).
The term “mass-deficient mass tag” (MaDMaT) was
proposed by Steen and Mann [155]. The large mass defect
of halogens may be used for the preparation of internal
standards for quantitative proteomics [156]. MaDMaT-
labeled peptides are easily distinguished from nonlabeled
peptides in a mass spectrometer with sufficient mass
resolution and accuracy [156]. Performic acid oxidation of
Met [20] or halogen labeling [157, 158] expands the mass
distribution of tryptic peptides, and the compositional
information may be used to improve peptide identification.

The well-known specific isotope patterns of chlorine and
bromine are used to confirm their presence and number from
the relative isotope intensities (Table 2). In combination with

Residue Modification Precursor immonium ion (Da) Neutral loss (Da) References

Trp Bromo 237.002 [155]
239.001a

Hydroxy 175.086 [45]

Tyr Hydroxy 152.071 [45]

Bromo 213.986 [174]

Chloro 170.037 [45, 174]

Nitro 181.061 [175]
Dinitro 226.046

Iodo 261.973 [176]
Diiodo 387.869

Met Sulfoxide 63.998 [177, 178]

Cys Sulfinic acid 65.977b [150]

Cam sulfoxide 107.004 [179, 180]
Cam sulfone 122.999

Table 1 Specific fragments of
oxidatively modified amino acid
residues used for tandem mass
spectrometry based detection

cam carbamidomethylcysteine
produced by alkylation with
iodoacetamide
a 81 Br isotope
b Negative ionization
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its large mass defect, the characteristic isotope pattern
makes detection of labeled peptides in mass spectra rather
straightforward.

Differential isotopic labeling for quantitation

Isotopic labeling is a standard approach in mass-
spectrometric quantitation, and becoming increasingly

important in proteomics. Synthesis of labeled peptides as
well as metabolic and enzymatic labeling are widely used,
but the most common method is chemical labeling either at
the peptide or at the protein level. The primary labeling
targets are the same as for nonisotopic labeling, such as
primary amines of Lys residues or protein/peptide N-
termini [159, 160] or the thiol of Cys [161]. Labeling is
performed by reaction with alkyl halide (nucleophilic
substitution) or maleimide (thiols), or N-hydroxysuccini-

Table 2 Effect of oxidative modifications of Tyr on the mass defect
and isotope pattern of angiotensin I (DRVYIHPFHL). The average
and lowest monoisotopic masses of tryptic peptides (without missed

cleavages) were calculated in 1-Da mass bins from a yeast protein
database (http://www.yeastgenome.org; orf_trans.fasta database of
8 May 2009)

Modification Chemical
composition

Monoisotopic mass
(M+H+, Da) and mass defect

Average tryptic peptide
monoisotopic mass
(M+H+, Da)

Lowest tryptic peptide
monoisotopic mass
(M+H+, Da)

Isotope masses
and relative
intensities

None C62H90N17O14 1,296.6848 (0.52 mmu) 1,296.6475 (−0.0373 Da) 1,296.5526 (−0.1322 Da) 1,296.68 (100.0)

1,297.69 (74.9)

1,298.69 (30.6)

1,299.69 (8.9)

1,300.70 (2.0)

Hydroxy C62H90N17O15 1,312.6797 (0.52 mmu) 1,312.6706 (−0.0091 Da) 1,312.5286 (−0.1511 Da) 1,312.68 (100.0)

1,313.68 (74.9)

1,314.69 (30.8)

1,315.69 (9.1)

1,316.69 (2.1)

Chloro C62H89N17O14Cl 1,330.6458 (0.49 mmu) 1,330.6723 (+ 0.0265 Da) 1,330.5344 (−0.1114 Da) 1,330.65 (100.0)

1,331.65 (74.9)

1,332.65 (62.5)

1,333.65 (32.8)

1,334.65 (11.8)

1,335.65 (3.2)

Bromo C62H89N17O14Br 1,374.5953 (0.43 mmu) 1,374.6884 (+0.0931 Da) 1,374.5483 (−0.0470 Da) 1,374.60 (78.2)

1,375.60 (58.6)

1,376.60 (100.0)

1,377.60 (63.9)

1,378.60 (24.9)

1,379.60 (7.1)

1,380.60 (1.6)

Iodo C62H89N17O14I 1,422.5814 (0.41 mmu) 1,422.7089 (+0.1275 Da) 1,422.5259 (−0.0555 Da) 1,422.58 (100.0)

1,423.58 (74.9)

1,424.59 (30.6)

1,425.59 (8.9)

1,426.59 (2.0)

Dibromo C62H88N17O14Br2 1,452.5058 (0.35 mmu) 1,452.7232 (+0.2174 Da) 1,452.5795 (+0.0701 Da) 1,452.51 (44.4)

1,453.51 (33.3)

1,454.50 (100.0)

1,455.51 (68.7)

1,456.50 (69.3)

1,457.51 (39.3)

1,458.51 (14.6)

1,459.51 (4.1)

Table 2 Effect of oxidative modifications of Tyr on the mass defect
and isotope pattern of angiotensin I (DRVYIHPFHL). The average
and lowest monoisotopic masses of tryptic peptides (without missed

cleavages) were calculated in 1-Da mass bins from a yeast protein
database (http://www.yeastgenome.org; orf_trans.fasta database of
8 May 2009)
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midyl esters (amines). Trp is also a target for direct
electrophilic aromatic substitution using the sulfenylation
reagent 2-nitrobenzenesulfenyl chloride [162].

Oxidative labeling for quantitation is limited by the lack
of specificity and completeness of the reactions, but it is
certainly useful if incomplete labeling is acceptable. Other
applications described to date comprise oxidative tagging
with H2

18O during ESI [163] and metabolic isotopic
labeling of amino acid targets followed by H2O2 oxidation,
as shown for Met in the COFRADIC workflow [164].

Protein surface mapping

Protein footprinting is a technique that gained attention
during the last decade owing to its ability to probe solvent-
accessible residues. The technique of choice makes use of
in situ generated hydroxyl radicals that induce oxidative
chemical modification of surface-accessible reactive amino
acid side chains. The term “footprinting” was introduced
some 30 years ago by Galas and Schmitz [165], who
performed DNA surface mapping. H/D exchange experi-
ments are also used to probe surface-accessible residues by
MS, but the need to quench the reaction at low pH to avoid
back-exchange reactions during protein analysis limits their
usefulness, since only a few proteases (e.g., pepsin) work
under low pH conditions (see [147, 166] for reviews). We
will focus here on the use of hydroxyl radicals that allowed
considerable improvement in terms of spatial resolution
compared with the bulky proteases used in other methods
[167–169]. In addition, the fact that the small hydroxyl
radicals nonspecifically attack a wide range of residues
makes them better suited to probe solvent accessibility and
thus a protein’s tertiary and quaternary structure. Sulfur-
containing (Cys, Met, and cystine) and aromatic (Trp, Tyr,
and Phe) residues represent the most reactive targets for
oxidative covalent modification, but other side chains (His,
Leu, Ile, Arg, Lys, Val, Pro, Gln, and Glu) have also been
shown to be modified [66–68, 70, 77, 170, 171]. Details
about the chemical reactions underlying the covalent
modification of amino acid side chains and backbone
cleavage can be found in a detailed review by Xu and
Chance [4].

The general footprinting workflow (Fig. 5) consists in
producing hydroxyl radicals, which can be achieved by
several means (see below and “Production and use of
oxidizing agents”) and different exposure times. After
exposure, proteins are digested with proteases and the
extent of oxidation is measured by MS. The location of
oxidized amino acids is finally assigned by MS/MS
analysis. The results obtained provide information about
the solvent-exposed residues on the surface of the protein
and can also lead to the determination of protein-ligand
interaction sites by comparison of protein and protein-
ligand complexes. When protein oxidation is measured as a
function of the time of exposure to the hydroxyl radicals,
conformational changes can be followed owing to increased
amino acid accessibility by protein unfolding induced by
primary oxidation events.

A wide set of techniques to produce hydroxyl radicals
have expanded the toolbox available for footprinting
experiments (see “Production and use of oxidizing agents”).
The Fenton reaction to produce hydroxyl radicals chemi-
cally [55, 56] has the main drawback that iron and EDTA
may distort the native protein conformation. Photochemical

Hydroxyl Radical
Formation

Oxidative Covalent
Modification

Digestion with
Specific Protease

Generation of Unique
Peptide Fragments

MS/MS Analysis
Identification of Oxidation Sites

MS Analysis
Extent of Modification

Protein + ligandProtein

Fig. 5 Workflow for hydroxyl radical footprinting of proteins and
protein/ligand complexes. MS mass spectrometry. (Adapted from Xu
and Chance [4])
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formation of hydroxyl radicals by photolysis of hydrogen
peroxide or by radiolysis of water is very efficient and
provides the advantage (compared with the Fenton reaction)
of fast (nano- to microseconds) radical generation, and the
possibility of short exposure times (fewer oxidation-
induced structural changes) allowing time-resolved studies.
Radiolysis has the advantage of not requiring the addition
of any reagent to the sample solution. Electrochemistry may
also be used to generate reactive oxidants for the mapping
of solvent accessibility. Whereas Brabec et al. [95, 172]
have pioneered the use of electrochemical oxidation to
probe protein conformational changes, new approaches for
electrochemical-oxidation-based probing of the higher-
order structure of proteins have been introduced by
McClintock et al. [77] where hydroxyl radicals have been
produced by oxidation of water on a BDD electrode.
Oxidation in the electrospray source by corona discharge
has also been performed [81, 173].

Protein footprinting experiments have found widespread
application to probe protein structure and solvent-accessible
residues in the native conformation. Moreover protein–
protein, protein–ligand, and protein–drug interaction sites
as well as conformational changes (e.g., protein folding and
unfolding) have been studied extensively, as shown by the
many applications that have been reviewed in recent years
[4, 68, 80, 147, 171]. Although footprinting methods have
matured, some drawbacks such as secondary oxidation
reactions are still an issue. It was observed that buried
sulfur-containing residues can be oxidized either by internal
electron transfer reactions [58] or by secondary oxidations
due to residual hydrogen peroxide or peptidyl hydro-
peroxides [65]. Oxidation of non-solvent-accessible resi-
dues can hamper data interpretation and must be considered
when performing footprinting experiments. Adding catalase
and/or Met as scavengers limits secondary oxidations that
may occur particularly on (buried) sulfur-containing resi-
dues [65] but internal electron transfer reactions are still
difficult to avoid.

Conclusion

Oxidative labeling of peptides and proteins has expanded
the toolbox of biochemists and notable progress has been
made in the past decade. A variety of strategies for targeting
amino acid side chains have been developed, in particular
for sulfur-containing and aromatic residues. Current label-
ing techniques targeting primary amines (N-termini, Lys)
and Cys residues have found widespread applications in
proteomics, whereas other amino acids remain inaccessible
to labeling to a large extend. The increased interest in
oxidative labeling stems from the possibility to target other
amino acid residues, such as Tyr, Trp, and Met, which have

essential roles in protein function and biological recognition
processes. Although the technique still suffers in many
cases from incomplete conversion and selectivity, several
applications in biological systems have shown its useful-
ness. It is, for instance, to be expected that oxidative
labeling will help to improve our understanding of protein–
protein interactions with respect to protein function and
signaling processes.

An interesting feature of oxidative labeling is its
potential to introduce reactive groups in a site-specific
manner, which can be targeted by secondary chemical
reactions as shown for nitro-Tyr residues. Electrochemistry,
which is far from being fully exploited, can efficiently
induce such oxidative modifications. Many advances and
developments have been observed in this field during the
last decade and interesting applications can be envisaged
especially owing to new developments in electrode materi-
als and surface-modified electrodes. BDD electrodes, for
example, are of interest owing to their reduced adsorption
of biomolecules, opening the way for new applications of
direct and ROS-mediated oxidation of peptides and
proteins.

The increasing demand for MS-based proteomics meth-
ods and the relationship with in vivo oxidative protein
damage through radical-induced modifications suggest that
these techniques will find increasing use.
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