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Abstract
We propose a report on automatic classification of three common types of malignant lymphoma:
Chronic Lymphocytic Leukemia, Follicular Lymphoma, and Mantle Cell Lymphoma. The goal
was to find patterns indicative of lymphoma malignancies and allowing classifying these
malignancies by type. We used a computer vision approach for quantitative characterization of
image content. A unique two-stage approach was employed in this study. At the outer level, raw
pixels were transformed with a set of transforms into spectral planes. Simple (Fourier, Chebyshev,
and wavelets) and compound transforms (Chebyshev of Fourier and wavelets of Fourier) were
computed. Raw pixels and spectral planes then were routed to the second stage (the inner level).
At the inner level, the set of multi-purpose global features was computed on each spectral plane by
the same feature bank. All computed features were fused into a single feature vector. The
specimens were stained with hematoxylin (H) and eosin (E) stains. Several color spaces were
used: RGB, gray, Lab, and also the specific stain-attributed H&E space, and experiments on image
classification were carried out for these sets. The best signal (98-99% on previously unseen
images) was found for the HE, H, and E channels of the H&E data set.

NIH Public Access
Author Manuscript
IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2011 July 1.

Published in final edited form as:
IEEE Trans Inf Technol Biomed. 2010 July ; 14(4): 1003–1013. doi:10.1109/TITB.2010.2050695.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Index-terms
Automatic image analysis; pattern recognition; lymphoma images

I. Introduction
Tymphoma [1] is a clonal malignancy that develops in lymphocytes. Lymphoma [1] is a
clonal malignancy that develops in lymphocytes. It can develop in either T- or Bcells though
about 85% of cases are B-cell-derived. The WHO Classification of Lymphoid Malignancies
includes at least 38 named entities. Lymphoma types are usually distinguished by their
pattern of growth and the cytologic features of the abnormal cells. In addition, genetic,
immunologic, and clinical features often aid in making the diagnosis. However, the most
important diagnostic criteria for lymphoma are the morphologic features of the tumor as
observed by light microscopy of hematoxylin- and eosinstained tissue sections and
interpreted by an experienced hematopathologist. Lymphoid malignancies were diagnosed
in nearly 115,000 people in 2008 [2].

Pathologists make a distinction between malignant and healthy (or benign) tissue, and
further differentiate between malignancy types. These distinctions are essential because the
diagnosis allows predictions of the natural history of disease and guides treatment decisions
[3]. Typically pathologists identify a tumor by visual inspection of a mounted tissue sample
on microscope slides using high and low magnifications. Searching for patterns in medical
images could be facilitated by implementing recent breakthroughs in computer vision [4,5].

Pattern classifiers are commonly implemented in content-based image analysis. However,
several uncertainties pose significant challenges to achieving accurate classification of
lymphoma. First, histological lymphoma features may not be present across the whole area
of a slide. Second, it is unclear that a single magnification is capable of distinguishing the
different types. Third, an individual tumor may contain a range of cell types that, while
derived from the same clone, do not share cytologic features. Fourth, individual types of
tumors may be heterogeneous. For example, follicular lymphoma contains at least two types
of cells and the relative proportions of the two types are used to grade the tumor. Another
type, mantle cell lymphoma, exhibits several patterns. A useful classifier should account for
the range of histologies that comprise a single disease entity.

Computer vision methods [4-6] are emerging as a new tool in medical imaging [5,7-9],
bridging a gap between cancer diagnostics [3,10] and pattern analysis. Nearly all cancer
classification based on computer vision methods relies on identifying individual cells,
requiring segmentation or pre-selected ROIs. The reliance on segmentation leads to the use
of image features highly specific to cell biology, or in more extreme cases, only capable of
processing H&E-stained cells or limited to specific stains and specific cell types. However,
despite these limitations, segmentation has proven effective for the diagnosis of selected
cancer types. In several studies, overall classification accuracy was as high as 90%,
comparing favorably with pathologists, even exceeding the accuracy of human scorers in
some cases.

In biology, biomedicine and related fields, an image processing approach without prior
assumptions or constraints may be of considerable interest. Biomedical applications produce
images of many kinds [4,6] where there is neither a typical imaging problem, nor a typical
set of content descriptors. This diversity of image types requires either a broad variety of
application-specific algorithms, or an approach that is not application-specific. Avoiding
task-specific preprocessing steps will lead to the development of more general machine
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vision approaches that could be applied to a greater number of imaging problems in biology
and medicine.

The general method we developed (WND-CHARM, [11]) has been previously characterized
in a diverse set of imaging problems. These included standard pattern recognition
benchmarks such as face recognition, object and texture identification [11], and detection of
comet dust tracks in aerogel [12]. Biological microscopy applications included identification
of sub-cellular organelles [11,12], classification of pollen [11,12], characterization of
physiological age and muscle degeneration in C. elegans [13,14], and scoring of high-
content imaging screens [12]. Human knee Xrays were also analyzed to diagnose
osteoarthritis [15], predict osteoarthritis risk [16], as well as identify individuals from these
radiographs [17]. Much of this work is summarized in an imaging benchmark for biological
applications called IICBU-2008 [18]. All of these applications of WND-CHARM used the
same set of algorithms with the same parameters, differing only in the arrangement of
images into training classes. Several of these examples required discriminating
morphologies in images of cellular fields, which are traditionally pre-processed using
segmentation. Examples include high-content screens for absence of centromeres, presence
of binucleate cells, and morphology of phylopodia [12,18].

In this report, we present an experimental study of three common types of lymphoma (see in
Fig. 1): chronic lymphocytic leukemia / small lymphocytic lymphoma (CLL), follicular
lymphoma (FL), and mantle cell lymphoma (MCL). These are the three most common types
of lymphoma, and were chosen because of their clinical relevance. The lymphoma cases
used in this study were chosen to be representative of the three lymphoma classes, consisting
of typical morphologies that could be used for training human pathologists. This slide
collection contained significant variation in sectioning and staining and was thus more
representative of slides commonly encountered in a clinical setting rather than being
representative of the type more commonly found under tightly controlled laboratory
conditions. The high degree of variation prompted us to compare the relative information
content in grayscale, the original three RGB channels, a color transformation into CIE-L*
a*b* (Lab) color space, and a reconstruction of the RGB channels into hematoxylin and
eosin channels (HE). Furthermore, generic image features from these color spaces were
analyzed using three different classifiers, including WND-CHARM’s weighted-neighbor
distance (WND), radial basis functions (RBF) and a naïve Bayes network (BBN).

Our findings were that the WND classifier operating on E channel of the HE color space
produced an average classification rate of 99% for the three tissues. Significant differences
in classification accuracies were found between the four color spaces tested, with HE
consistently more accurate than the others followed by RGB, grayscale and Lab. The
relative accuracies obtained in these color spaces were consistent between the three
classifiers used. The differences in classification accuracies between the three classifiers
were not as pronounced, with WND and RBF producing nearly the same accuracies for all
four color spaces and slightly lower results for BBN. We also tested three feature selection
algorithms for WND, including Fisher linear discriminant (FLD), minimum redundancy
maximum relevance (mRMR), and a Fisher/Correlation algorithm (F/C) described below.
As with the classifier comparisons, there were no significant differences between these three
feature selection algorithms. The only significant differences in classification accuracy
found in this study were attributed to the different representations of the color information in
these images.

Our report is organized in the following way: Section II discusses image content and
describes the features used; Section III discusses the relative contributions of morphological
and color information. The classifiers employed are described in Section IV, and Section V
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reports results of classification. Section VI contains the discussion, followed by future work
in Section VII, and a summary in Section VIII.

II. Content And Features
A. Summary of Previous Work

As mentioned in the introduction, much of the previous work in lymphoma classification
and medical image processing of tissues in general involves a prior segmentation step to
identify cells, nuclei, or other cellular structures. Important advances were made in this field
using segmentation (summarized below and in Table I), and serve as a basis of comparison
for our approach that does not rely on segmentation. In many cases, the initial segmentation
step is used as a basis for extracting generic image features followed by classification
algorithms, similarly to what we have done. Other than the lack of segmentation, our
approach differs in the quantity of generic image descriptors generated, as well as the
resulting need to adopt an automated dimensionality reduction technique.

In [7] Sertel et al. used color texture analysis for classifying grades of malignant lymphoma
(FL), achieving 90.3% accuracy. Foran et al. [19] applied elliptic Fourier descriptors and
multi-resolution textures to discriminate between lymphoma malignancies. A total of four
classes were used, including three lymphoma types and one normal tissue. This
computational approach (89% accuracy) outperformed the traditional method of evaluation
by expert pathologists (66%). In [9] the authors used machine vision to discriminate five
lymphoma types. They used texton histograms as image features and applied a Leave One
Out test strategy to obtain an overall classification accuracy of 89%. Notably, they reported
56% correct classification for their worst data type (FL). Nielsen et al. [8] studied ovarian
cancer cells using adaptive texture feature vectors from class distance and class difference
matrices. They reported 78% correct classification for a two class problem (good and bad
prognosis). In [20] the authors applied the back-propagation neural network to diagnose
pathology of lymph nodes. The two classes in the study were malignant nodes (metastasis of
lung cancer) and benign tissue (sarcoidosis). Their computer vision approach resulted in
higher classification accuracy (91%), than the diagnostic accuracy of a surgeon with five
years of experience (78%). In [21] Monaco et al. used probabilistic Markov models for
classifying prostate tissues; they reported overall classification accuracy 79% on a two-class
problem.

B. Mapping Pixels to a Global Feature Space
It is inefficient to deal directly with pixels when learning patterns, which leads to the
concept of mapping pixels into feature space [22], for applications like classification, search
and retrieval [23,24]. We note that there are some methods for texture analysis dealing
directly with local pixel neighborhoods (see in [9]) or under-sampling the original images
(as in [25]).

Let us define I = ℝm×n as the image pixel plane, and f⃗ as its corresponding ℝN×1 feature
vector. Then the mapping  can be expressed in the form f⃗ = ψ (I). This
conversion could be performed with a function, equation, algorithm, or a combination of
algorithms (the later was used in this study). The conversion does not require images to have
the same dimensions, while the resulting feature space has the same dimensionality for all
images.

The mapping implemented in this report is a composite of several algorithms. The feature
set encompasses a representative collection of global features [11] assessing texture content,
edges and shapes, coefficients in polynomial decompositions, and general statistics, as
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shown in Table II. The feature set contains eleven families of different algorithms for
numerical assessment of the content. Experiments performed in [11,12,14,18] convincingly
support the assertion about efficacy of this feature set for diverse imaging applications.

C. Fusing Features: Two-Stage Approach
We used the two-stage approach suggested in [11]. In this method, the raw pixels at the
outer level were transformed with a set of given transforms to corresponding spectral planes.
The organization of the transforms is given in Fig. 2. The approach used Fourier (FFTW
[26]), Chebyshev and wavelet (symlets51, level-1 details) transforms. The compound
transforms producing super-spectral planes included Chebyshev of Fourier and wavelets of
Fourier. The set of multi-purpose global features [11,14] was computed for every pixel plane
(transforms included) by the same feature bank (described in previous section). Finally, all
computed features were fused into a single feature vector. Therefore, all algorithms for
multi-purpose features (see also in Table II) – combined with several transforms – resulted
in a vector of 1025 elements. We refer to the scheme shown in Fig. 2 as a computational
chain.

Using spectral features in pattern analysis is not entirely new [23,24]; on the other hand,
fusing features from different transforms for enhancing class discrimination is not common
either. The motivation for this way of combining features came from the realization that
mapping pixels into spectral planes is equivalent to using alternative content for the same
classification problem. The given set of transforms is linear with respect to intensity but is
non-linear with respect to pixel indices with the result that different spectral planes generate
a variety of diverse patterns.

Therefore, the desire for a multi-purpose feature set that could be used across the entire
biological or medical domain can, in fact, be fulfilled with a rather moderate set of basic
features. Another advantage of using transforms is that there is little incremental cost for
their development, but a multiplicative increase in feature diversity, with essentially all of
the cost being computational. To some extent, the idea of fusing different spectral planes
together is similar to the concept of multi-scale representation: it also allows assessing
content from multiple perspectives. We will pursue this topic elsewhere.

D. Spectral Features and Their Meaning
Previous work on constructing global descriptor sets was reviewed in Gonzalez & Woods
[24], with more recent work by Rodenacker & Bengtsson [4] and Gurevich & Koryabkina
[27]. It should be noted that the authors manifest their feature sets as algorithm toolboxes,
and they promote the idea of specialized feature sets for each particular imaging application.
Such an approach suffers from the shortcoming that an expert opinion is needed to select the
useful features for every new imaging problem. Further, minor changes in acquisition
parameters could invalidate this expert-selected set of optimal descriptors. In contrast, in the
approach suggested in [11] the global feature set is intended to be used as a whole, without
manual selection of particular algorithms a priori. Instead, we automate the selection and
weighting of these features for each imaging task.

In biomedical image processing, application-specific features tend to be more commonly
used than generic global descriptors [6,28,29]. Indeed, there are clear advantages to using
domain-specific features: they allow to work in smaller feature spaces, are faster to compute
and often allow some parameter tuning for achieving higher accuracy. Unfortunately,

1www.mathworks.com/access/helpdesk/help/toolbox/wavelet/
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specific features restrict expansion to different applications that can be a disadvantage in
biology and biomedicine, where there are many image types in common use.

For certain classification problems, features have valuable scientific meaning, and often the
selected subsets have a clear interpretation. A good example is the relative expression of
genes used as features when classifying microarray experiments [30]. In contrast, in the
transform-based feature set, the interpretation of even the most intuitive features (such as
FFT-based descriptors) is rather more limited. In some studies of malignancy patterns (as in
[5]) authors characterize the selected features as visual cues and consider them potentially
useful. The generality of the feature set we employ precludes any guarantees that the
selected or most highly ranked features will be visually informative or interpretable.
However, it is possible that even in this general set, selected features can lead directly to
interpretable visual cues [31]. Additionally, by classifying sub-regions of images, it is
possible to identify where the classification signal is greatest, potentially leading to spatial
visual cues [16].

E. Feature Ranking and Feature Selection
Fig. 3 outlines the general classification scheme. We employed the Fisher Linear
Discriminant [23] (FLD) as our major feature ranking tool. In multi-class problems the FLD
operates on ‘between’ and ‘within’ data variations as

, and the class separation score is the

ratio . Here  are the training samples in class c, μ⃗c are class average,  is
the average on all classes, and Nc is the number of training samples in the c -th class.

Similarly to the Fisher score, the colinearity measure ranks each individual feature as a ratio
of between/within data scattering with different figures measuring data variations. The
colinearity approach operates in terms of angles between individual samples

. Let the vector f be an arbitrary row of data X, then
 is a combination of partitions belonging to different classes. The variation between

different classes for this row can be measured with  for all C (C − 1)/2 pairs of

k, l. Now, if  are two randomly shuffled sub-samples of pc, then the within-class

variation is . The corresponding feature score here is .

The third ranking scheme used the Pearson correlation coefficient 
describing the correlation between the given feature and the intended class values ζ⃗ (as the
ground truth).

FLD was implemented to select features having the most discriminative power. We
gradually increased the pool of selected features by starting with the highest ranked features,
progressing to less discriminative ones, and stopping feature addition once classifier
performance stops improving. We also used a heuristic F/C approach for subspace
construction:

For each candidate feature to be added to the feature pool, we compute a Pearson correlation
between the candidate and each feature in the pool. The average of these correlations is the
denominator in a ratio where the numerator is the candidate feature’s Fisher score. Features
are added to the pool in descending order of their Fisher score until this ratio stops
increasing. In this way, features are selected that have highest Fisher discrimination and
least Pearson correlation at the same time. A third method for feature selection was the
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mRMR algorithm [32], which maximizes relevance (discrimination) while minimizing
redundancy. Comparison of these three feature selection algorithms are shown in Table VI
and discussed further in Section V.

III. Lymphoma Data: Morphology And Color
A. Malignancy Patterns

Although there are as many as 38 different lymphoma types, the three most clinically
significant B-cell derived lymphomas were selected for this study. These three major types
are also commonly used in other machine-classification studies (see Table I).

Depending on the magnification, malignancy patterns in pathology specimens are revealed
jointly by the texture and low-to-mid scale spatial features of the image. Specifically, the
common pattern for the CLL type in low resolution shows pale areas (nodules) that are
interpreted to be proliferation centers (Fig. 1). In high magnification, these areas show small
cleaved cells (small round nuclei) with condensed chromatin that cause their relative
paleness at lower magnification. Abundant pale cytoplasm at high resolution may also be
indicative of CLL type [33].

The MCL malignancies in high resolution feature irregularly shaped nuclei; in low
magnification MCL type may reveal several patterns, including mantle zone, nodular,
diffuse, and blastic. In diffuse and blastic types (see in Fig. 1) neoplastic lymphocytes
replace the node. Given high structural variability, the MCL type is often difficult to
diagnose. For the FL type, low magnification exhibits the follicular pattern, with regularly
shaped nuclei in higher magnifications.

B. Color as an Experiment Variable
From the pathologist’s standpoint, color has no direct involvement in diagnostics of the
sample; malignancy of the tissue is reflected in morphology. At the same time,
histopathology specimens are colored to highlight the morphology of nuclei and cytoplasm
[10,34,35]. One of most commonly used stain combinations is Hematoxylin-Eosin (H&E),
targeting nuclei and cytoplasm, respectively. It is not quite clear a priori whether the signal
is in the nuclear and cytoplasmic morphology exclusively, or whether color itself also plays
a role, for example due to the interaction of the two stains. As one can see from Table I, use
of color in analyzing histopathology images is not uncommon. Approaches on color use in
these applications range from mainstream techniques (color histograms [36] or color
moments [37]) to color textures [38] and unusual solutions for color quantization, as in
[7,39]. The CIE-L*a*b (Lab) color space is often used for analysis of H&E-stained samples
[40-42] and color images in general [43] due to its ability to represent color in a device-
independent and perceptually uniform way.

An issue with H&E stain is that the relative intensity is subject to variation, case-to case and
hospital-to-hospital. This stain variability, especially pronounced in the samples used in this
study, led us to avoid the use color features. Instead, we treated color as an experimental
variable. We used four separate color schemes to discern the three types of malignancy in
our lymphoma set. The first scheme is a grayscale intensity computed from the RGB colors
using the NTSC transform [44], where the intensity value is Gray = [0.2989 0.5870 0.1140 ]
× [R G B]T.

Second, we used a standard RGB color scheme which was the direct camera output. Third,
Lab color scheme. This representation of colors implements perceptual uniformity of the
luminance scale [44,45]. Lab color is a nonlinear scaling of device-dependent RGB signals
producing an orthogonal space where distances between colors correspond to perceived
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color differences [7,39,41,46]. Our motivation for using Lab scheme was to minimize the
within-class variation of stain color. Lastly, the fourth color scheme required color
deconvolution, as described in the next sub-section.

C. Color Deconvolution
In H&E staining, hematoxylin targets cell nuclei (blue), and eosin stains the cytoplasm red.
Combinations of stained nuclei and cytoplasm form macro patterns that are indicative of
hematologic malignancies [10,34,35]. The color CCD camera collects a tri-color RGB
image, while the original signal has only two components, representing chromatin and
cytoplasm.

One important aspect is that dyes (H&E) have complex overlapping spectra. Ruifrock and
Johnston [47] suggested a deconvolution method for the separation of overlapping spectra
into independent channels corresponding to H&E stain concentrations in the specimen. The
optical density is measured on representative areas having highest stain concentrations. The
optical density of the dye (i.e., the pixel value) measured allows to then compute stain
concentration everywhere in the image [47]. We used this technique in our study as the forth
color scheme. In Fig. 4 an example of separating H- and E- channels with the color
deconvolution algorithm is shown for an image of the MCL type.

D. Acquisition Specifics
Ten different cases of three different lymphomas (CLL, FL, MCL; 30 slides total) were
imaged on a Zeiss Axioscope white light microscope with a 20x objective and a color CCD
camera AxioCam MR5. The slides were imaged with the same instrument settings and same
objective lens, camera, and light source. Therefore, no other normalization was performed
for the camera channels.

Slides were selected with tumors present, providing representative cases, but information of
the distribution of the malignant cells on the slides was not used. The slides were imaged
randomly to avoid making assumptions about the distribution of malignancies. Tumor
heterogeneity was expected to result in a different level or type of signal in different tiles
within a complete image. A given image would have been classified correctly only if
sufficient signal of the correct type was present in its constituent tiles. When reporting
accuracy, we averaged the classifications of each of the constituent tiles and classified the
entire image as one of the three lymphoma types. In this way, the heterogeneity of the tumor
at the scale of individual tiles was downplayed relative to the scale of the whole field of
view. Each image (1040 × 1388 pixels) was tiled into thirty sub-images on a 5× 6 grid with
a tile size of 208 × 231 pixels. The number of images used for training was 57 (or 1710
image tiles) for each class, which is roughly six images (or 171 tiles) per slide. For testing
there were 56, 82, and 65 images used for CLL, FL and MCL types, respectively.

IV. Statistical Classifiers Employed
In our experiments three classifiers capable of working with multi-category data were
employed: Weighted Neighbor Distance (WND), naïve Bayes network (BBN) and radial
basis functions (RBF). Previous experiments [11] demonstrated good performance of the
WND classifier compared to state-of-the-art algorithms in a variety of imaging problems.
Results from BBN and RBF classifiers are given for comparison. Feature ranking was
applied to the global CHARM feature-set. While the BBN and RBF classifiers used ranking
for conventional dimensionality reduction, the WND classifier used the feature weights to
compute similarities to training classes.

Orlov et al. Page 8

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A. WND Classifier
The general classification scheme in Fig. 3 uses the WND classifier. The WND algorithm

relies on the sample-to-class distance ρc (t): ,

where the weighted difference δ⃗w is , and t⃗,  are the test and training
samples, respectfully; C is the total number of classes. Note that in effect, ρc is the square of
a Euclidean distance. Fisher scores [48] were used as weights in δ⃗w, penalizing weak
features and rewarding strong ones. Similarity of the sample t⃗ to the class c is defined as

[11] , where Nc is the number of samples in the class c, and p is a parameter
that provides an absorbing effect to individual variation. Although the parameter has rather
broad range (from 0.01 to 20) with satisfactory classifier performance, we fixed it at 5.
Experiments demonstrated that p = 5 works well in a range of different imaging applications
[11]. The classification method calls the class cpred when the similarity of the test sample is

highest for this class, i.e. . The probability of the sample t⃗ belonging to

the class cpred is defined as . This probability distribution represents the
similarity of an individual test sample to each separate class.

Probabilities of each set of 30 tiles get averaged, and reported as the image probability
distribution. Each image is assigned to a class based on the highest probability in the
distribution. We made eight random splits of the image pool into training-test partitions and
determined overall accuracy of the classifier as the average of the per-split performance
scores (i.e., the accuracy is computed with an eight-fold cross-validation scheme).

B. Naïve Bayes and Radial Basis Functions
The Bayes classifier [48] is based on the concept of inference. The naïve Bayes classifier
originates from applying the Bayes’ theorem with an assumption of independence of feature
variables. The joint probability P(X1, X2,…, Xn|c) does not account for the interaction of
variables, it is rather considered as a product of individual probabilities corresponding to
different nodes of the Bayes network. We used the naïve Bayes classifier [49] that works
with discrete data and employs a discretization algorithm [50] for adopting data to network
inputs.

RBF network [48] has only two layers of nodes; it is easy to implement as no topology
optimization is required. The top N features form the input layer. The network maps N -
dimensional features to C dimensions of the predicted class. The network approximates the

target function in the form  with weights wk and
approximants ϕ (X⃗, μ⃗k) (radial functions). Index c corresponds to c-th output variable, and μ⃗k
are the function centers. The Gaussian form of radial functions was used:

, here σ were heuristically set to a multiple of the
average distance between function centers of a corresponding class. The multivariate
network output  is subject to the constraint Σyc = 1 that represents marginal
probabilities.
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V. Results
The HE set of channels (e.g., HE, H, and E) resulted in the best classification accuracy.
Table III presents comparison of performances for a total of nine data sets (Gray, RGB, Red,
Green, Blue, Lab, HE, H, and E) achieved using the three classifiers WND, BBN, and RBF.
As Table III shows, the HE set of channels result in the best classification on three
lymphomas (> 88% for BBN and > 98% for the other two classifiers), the RGB set gave the
second-best result (90%), the Gray set produced second to worst accuracy (85%), while the
Lab set gave the worst classification of all sets (maximum of 74%). We found that the WND
classifier demonstrated the best overall performance with RBF performing very similarly,
and with BBN never reporting the best accuracy.

One important property of a classifier is the number of features employed. In our
experiments we found that WND worked most effectively in the range of 12-200 of the top-
scoring features (scored by the methods described in Section II.E). Fig. 5 illustrates the
convergence of accuracy as a function of number of features (N) for the WND classifier. As
one can see in Fig. 5, the curve for HE channels remains flat for the entire range, while other
color spaces show peaks and declines in accuracy for certain ranges of N. Also, N = 200
features are optimal only for the Lab set, while other sets require less than 100 features.
BBN [49] worked optimally with as few as four top-scoring features. RBF worked best in
relatively higher dimensional spaces: its accuracy peaked at about 400 features.

Uniformity of per-class scoring is also a desirable property, and this was more significantly
affected by the choice of color representation that it was by the choice of classifier. Table IV
shows per-class accuracy for all nine data sets. The MCL class in Lab classified by WBD
had a much lower accuracy (65%) than the other two classes (72% and 86% for CLL and FL
respectively), affecting the uniformity of per-class scoring. In contrast, the MCL class in HE
(98%), H (99%) and E (99%) was more accurately classified by WND than CLL (96%,
97%, 94% for HE, H and E respectively), and these three channels also gave the most
uniform per-class scoring. This trend persisted in all three classifiers tested.

We compared the effect of the three different feature ranking schemes described in the
Section II.E on the three different classifiers in the HE color space (see Table V). We found
that overall, FLD feature ranking demonstrated the best classification accuracy for all three
classifiers. Table VI compares the effect of feature selection (FLD, F/C, and mRMR [32])
on the WND classifier in four color spaces (Gray, RGB, Lab, and HE) and shows that
feature selection techniques do not have a marked effect on classification accuracy.

VI. Discussion
Results of automated lymphoma classification reported here on the three most prevalent
malignancy types demonstrate the fruitfulness of whole-image pattern recognition without
reliance on segmentation. The independence of this method from segmentation contributes
to its potential generality, as previously demonstrated with its accuracy classifying many
different image types both related and unrelated to histopathology. The absence of a
segmentation step also allowed us to directly compare various color spaces for their
information content as assayed by the classification accuracy of different down-stream
dimensionality reduction and classification techniques.

The color spaces used in this study can be separated into three categories: original or
camera-originated (R, G, B, and RGB); derived (Gray, Lab); and histological (HE, H, and
E). For the original and derived categories it was observed that no single-channel data set
could outperform the RGB set, where the WND accuracy is 90%. In contrast, the
histological channels alone or in combination outperformed all other combinations of
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original and derived channels. It could be argued that the channels in the HE set are more
orthogonal to each other than the channels in the RGB or Lab set because these color spaces
are convolutions of the different information represented by the separate H and E stains,
mainly nuclei and cytoplasm. The features computed from the HE channels would then be
more unrelated to each other and thus represent a greater variety of image content than
features computed from the RGB channels, each of which contains both H and E in different
proportions.

The orthogonality of color channels cannot explain the poor performance of Lab compared
to RGB. The Lab color space was designed as an orthogonal color space specifically to
allow measuring Euclidean distances between colors. At the same time, the transformation
between RGB and Lab is reversible, meaning that it preserves all information content. Yet
Lab had the worst performance of all color spaces tried. In contrast, the Gray transformation
from RGB is clearly not reversible and represents information loss, and yet Gray performed
better than Lab. The performance of Gray relative to Lab also contradicts the argument that
more channels result in better performance, even though this was observed for RGB relative
to R, G and B separately. These observations indicate that neither diversity nor quantity, or
even completeness is sufficient to yield the best classification results.

When pathologists classify these samples, they tend to identify landmarks, similarly to the
segmentation process in machine vision. They tend to use several magnifications to aid in
identifying these landmarks, and focus their attention on particular areas of tissue for a small
number of diagnostic markers. In contrast, whole-image pattern recognition seems to be
entirely unrelated to this process as it doesn’t use segmentation, processes random
collections of images, and relies on many weakly-discriminating features in concert to
achieve a diagnosis. Our observations of classification accuracy in different color domains
indicate that those domains that are best at preserving biological morphology (HE, H, and E)
perform best in direct comparisons. Despite the differences between how machines and
pathologists process visual information, it is apparently the preservation of biologically
relevant cellular morphology that allows machines to achieve the best classification results.

VII. Future Work
Our ultimate goal is a diagnosis of new cases on previously unseen slides. The major
difficulty of this objective is the variability of existing data: the slide collection used in this
study contains a broad range of variables including different sectioning and staining
performed at different clinics. We believe that standardization in sample preparation is an
important factor in machine-assisted or automated diagnostic histopathology just as it is for
manual diagnosis [51,52]. In future studies we will evaluate the performance of this
classifier on tissue micro-arrays (TMAs), where biopsies from different patients and
hospitals can be arrayed on the same slide and stained in bulk to eliminate much of this
variability. While TMAs may themselves not be practical in a clinical setting, a
demonstration that a more uniform sample produces more accurate diagnosis will encourage
the standardization of these processing techniques.

In this study we revealed image processing factors that promote separability of the three
major types of lymphoma. In a more clinical setting, additional considerations would have to
be accounted for, including a greater diversity of cases as well as an expansion in the
number of different lymphomas to be analyzed. In a clinical application, pattern recognition
systems can be used in various capacities ranging from stand-alone to decision support.
Even a limited system like that presented here has the benefit of consistency, and so can act
to reduce the degree of variation in classification ability of different pathologists.
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VIII. Conclusions
A whole-image pattern recognition method can be successful in discriminating between
three of the most common lymphoma types. A classification accuracy of 99% is possible
without segmentation, using multiple magnifications, or selecting training images containing
diagnostic lymphoma markers. The strongest signal is contained in a histological (HE) color
scheme, with the original (RGB) scheme giving measurably worse performance, indicating
that classification is sensitive to biologically relevant morphologies.
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Fig. 1.
Patterns for three lymphoma types: a) CLL, pale areas as proliferation centers; b) FL,
follicular structure; c) MCL, neoplastic lymphocytes in the diffuse/blastic sub-type.
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Fig. 2.
Use of transforms in the framework: three simple transforms (wavelets, Chebyshev and
Fourier) and two compound transforms (Chebyshev of Fourier and wavelets of Fourier). The
feature bank is applied to each pixel plane shown.
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Fig. 3.
Multi-purpose features are computed and weighted in accordance to their task-specific
discriminative power. Weighted features are used by the WND classifier.
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Fig. 4.
Color deconvolution example. MCL lymphoma sample stained with H&E combination in
RGB (a). Deconvolved images in HE color space: H-channel (b) and E-channel (c).
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Fig. 5.
WND classifier accuracy for different number of features used in different color spaces (HE,
RGB, Gray, and Lab).
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TABLE I

Source Class Number Segmentation Accuracy Reported Color

Sertel et al [7] 3 Yes 90.3% Yes

Foran et al [11] 4 Yes 89% Yes

Tuzel et al [9] 5 Yes 89% No

Nielsen et al [8] 2 Yes 78% No

Tabesh et al [5] 2 Yes 96.7% Yes

Monaco et al [50] 2 Yes 79% No

This work 3 No 99% Yes

Comparison of reported results in the relevant research.
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TABLE II

Feature Name Output Size

Polynomial Section

Chebyshev features 32

Zernike features 72

Chebyshev-Fourier features 32

Texture Section

Tamura features 6

Haralick features 28

Gabor features 7

Other Features

Radon features 12

Multi-scale histograms 24

First four moments with comb filter 48

Edge statistics 28

Object statistics 34

Feature vector output sizes. The raw pixels and spectral planes (transforms) were fed into the feature bank in the computational chain.
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TABLE III

Data Set WND-5 BBN RBF

Gray 0.85 ± 0.03 0.72 ± 0.04 0.83 ± 0.06

RGB 0.90 ± 0.02 0.74 ± 0.06 0.87 ± 0.03

RGB, Red 0.84 ± 0.02 0.69 ± 0.03 0.86 ± 0.04

RGB, Green 0.81 ± 0.02 0.66 ± 0.04 0.77 ± 0.03

RGB, Blue 0.78 ± 0.01 0.61 ± 0.01 0.77 ± 0.02

Lab 0.74 ± 0.02 0.52 ± 0.05 0.71 ± 0.04

HE 0.98 ± 0.01 0.92 ± 0.03 0.98 ± 0.01

HE, E 0.99 ± 0.00 0.90 ± 0.06 0.99 ± 0.00

HE, H 0.98 ± 0.01 0.88 ± 0.05 0.98 ± 0.00

Performance comparison for different sets: WND, BBN, and RBF classifiers. Data in bold correspond to the strongest result for each data set.
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TABLE IV

Data sets CLL FL MCL

WND-5 classifier

Gray 0.91 0.90 0.75

Lab 0.72 0.86 0.65

RGB 0.86 0.97 0.87

RGB, Red 0.86 0.91 0.76

RGB, Green 0.80 0.89 0.73

RGB, Blue 0.82 0.86 0.66

HE 0.96 1.00 0.98

HE, H 0.97 1.00 0.99

HE, E 0.94 0.99 0.99

BBN classifier

Gray 0.77 0.85 0.52

Lab 0.39 0.75 0.41

RGB 0.80 0.90 0.49

RGB, Red 0.72 0.92 0.43

RGB, Green 0.62 0.86 0.50

RGB, Blue 0.71 0.73 0.39

HE 0.88 0.95 0.93

HE, H 0.80 0.87 0.96

HE, E 0.86 0.92 0.94

RBF classifier

Gray 0.85 0.88 0.78

Lab 0.70 0.82 0.60

RGB 0.85 0.91 0.84

RGB, Red 0.89 0.91 0.78

RGB, Green 0.83 0.81 0.67

RGB, Blue 0.85 0.86 0.60

HE 0.93 1.00 1.00

HE, E 0.98 0.99 1.00

HE, H 0.95 0.99 0.99

Per-class accuracies. With almost no exceptions, FL type demonstrates the best per-class performance in nearly all sets. For HE sets the
performance for FL and MCL become very close.
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TABLE V

Data sets CLL FL MCL Total

Fisher Discriminant

WND-5 0.96 1.00 0.98 0.98

BBN 0.88 0.95 0.93 0.92

RBF 0.93 1.00 1.00 0.98

Collinearity

WND-5 0.83 0.97 0.93 0.91

BBN 0.83 0.90 0.95 0.89

RBF 0.86 0.95 0.89 0.90

Pearson correlation

WND-5 0.79 1.00 0.94 0.91

BBN 0.73 0.83 0.94 0.83

RBF 0.88 0.98 0.99 0.95

Comparison of the three different feature ranking schemes (Fisher Scores, Colinearity Scores, and Pearson correlation). The HE data set was used.
Fisher Scores gives the best accuracy of all three.
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TABLE VI

Data Set FLD MRMR F/C

Gray 0.85 ± 0.03 0.81 ± 0.03 0.85 ± 0.02

RGB 0.90 ± 0.02 0.87 ± 0.03 0.89 ± 0.01

Lab 0.74 ± 0.02 0.71 ± 0.02 0.73 ± 0.02

HE 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.00

Comparison of different feature selection techniques (WND classifier used) on Gray, RGB, Lab, and HE data sets. Top classification accuracy
values are in bold. All three methods report close results.
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