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Abstract
Identifying patients at high risk for an acute cardiovascular event such as myocardial infarction or
stroke and assessing the total atherosclerotic burden are clinically important. Currently available
imaging modalities can delineate vascular wall anatomy and, with novel probes, target biologic
processes important in plaque evolution and plaque stability. Expansion of the vessel wall
involving remodeling of the extracellular matrix can be imaged, as can angiogenesis of the vasa
vasorum, plaque inflammation, and fibrin deposits on early nonocclusive vascular thrombosis.
Several imaging platforms are available for targeted vascular imaging to acquire information on
both anatomy and pathobiology in the same imaging session using either hybrid technology
(nuclear combined with CT) or MRI combined with novel probes targeting processes identified by
molecular biology to be of importance. This article will discuss the current state of the art of these
modalities and challenges to clinical translation.
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The anatomy of vascular disease has been appreciated for centuries. More recently, with the
explosive growth of molecular biology, the mechanisms for the common vascular diseases,
including atherosclerosis, transplant graft vasculopathy, in-stent restenosis, and aneurysm
formation, have been elucidated. Several anatomic features are common to all vascular
lesions. Important among these is expansive or restrictive vascular remodeling. For
expansive remodeling to occur, the extracellular matrix remodels by enzymatic degradation
and cell apoptosis. Restrictive vascular remodeling occurs by neointimal formation. In
transplant vasculopathy and in-stent restenosis, this process occurs by smooth muscle cell
proliferation. In atherosclerosis, smooth muscle cells migrate from the adventitia and
transform into monocytes or macrophages. Monocytes are also recruited from the circulation
and become engorged with lipids, producing large lipid-filled cores. To accommodate
plaque growth, the extracellular matrix remodels by enzymatic degradation and apoptosis.
Inflammation is a prominent feature of this process.
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All of the stages along the way to advanced vascular disease involve biologic processes that
can be targeted for imaging. Several imaging platforms are available for targeted vascular
imaging and include nuclear, CT, MRI, and optical. This section will discuss the first 3 of
these platforms. The described imaging modalities acquire information on both anatomy and
pathobiology at the same time. This is achieved either by injecting a radiolabeled probe
targeting the biologic process of interest and performing hybrid imaging—either SPECT/CT
or PET/CT—or by injecting a nanoparticle targeting the biologic process and performing
MRI.

MOLECULAR IMAGING OF VASCULAR REMODELING
Vascular remodeling, defined as persistent changes in the structure or composition of blood
vessels, is a common feature of vascular pathologies. Modalities that show the anatomy of
blood vessels provide useful information, for example, on aortic aneurysm, but additional
information on the remodeling process can enhance our understanding of pathophysiology,
guide the selection and assess the efficacy of therapeutic interventions, and provide relevant
information on prognosis.

Components of vascular remodeling, including both geometric remodeling (expansive or
restrictive) and changes in the vessel wall composition (hypertrophy or hypotrophy), play
roles in various vascular pathologies. In early atherosclerosis, in conjunction with plaque
development and intimal thickening, the total vessel area increases (expansive remodeling)
to maintain lumen size and blood flow. Over time, this expansive remodeling becomes
insufficient or is replaced with constrictive remodeling limiting blood flow and resulting in
ischemia. In apparent contradiction to its protective role in preventing ischemia, expansive
remodeling in atherosclerosis has been linked to plaque vulnerability and acute coronary
syndromes (1).

In graft arteriosclerosis, diffuse neointimal hyperplasia of epicardial coronary arteries and
their distal branches leads to ischemia and organ loss. Despite major advances in the
treatment of acute rejection, graft arteriosclerosis remains the main cause of late organ
failure after cardiac transplantation. Coronary angiography and myocardial perfusion
imaging, performed repeatedly on transplant patients, can detect only the late stages of graft
arteriosclerosis, when therapeutic interventions are less effective. Intravascular ultrasound is
able to detect early intimal hyperplasia. However, this is an invasive procedure, limiting
frequent sampling.

Expansive remodeling is the main pathologic feature of aneurysm. In aortic aneurysm, focal
expansion of the aorta, in conjunction with medial hypotrophy and mechanical
hemodynamic forces, leads to aortic rupture or dissection, complications that are associated
with high morbidity and mortality. Although size is the best predictor of aneurysm rupture, a
large number of complications occur in smaller aneurysms that do not meet the criteria for
surgical or intravascular repair. Rapid expansion of small aneurysms is believed to increase
their risk of rupture or dissection. However, with existing imaging modalities (CT, MRI,
ultrasound), aneurysm expansion can be detected only retrospectively through serial
anatomic imaging.

In postangioplasty in-stent restenosis, as well as in vasculopathies associated with diabetes,
hypertension, and chronic renal impairment, neointimal hyperplasia appears as the
prominent pathologic feature. Vascular smooth muscle cell (VSMC) proliferation and
migration and matrix remodeling are key cellular and molecular events in neointimal
hyperplasia and may be detected by molecular imaging. Resting VSMCs in the media are in
the so-called contractile phenotype. In response to injury or after exposure to growth factors,
medial VSMCs lose contractile proteins and convert to the so-called proliferative or
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synthetic phenotype. Synthetic VSMCs have increased proliferation and migration
capability and eventually form most of the cells in the neointima. VSMC phenotypic switch
is associated with changes in membrane proteins and other antigens that can serve as targets
for molecular imaging. One such molecule present on proliferating VSMCs is the antigen
for Z2D3, an antibody used in the first molecular imaging studies of vascular remodeling
(2).

Integrins, a family of heterodimeric membrane proteins involved in cell–cell and cell–matrix
interaction, play an important role in cell proliferation, migration, and survival. Integrin αvβ3
has been extensively used as a target for molecular imaging of angiogenesis and other
processes associated with cell proliferation. In addition to the expression level, integrin
function is dependent on the activation state that occurs through changes in integrin structure
altering the affinity for ligands. Given the ubiquitous expression of integrins, tracers with
specificity for their high affinity, active conformation provide additional specificity to
integrin targeting for molecular imaging in vivo. In injury-induced vascular remodeling,
whether mechanical or immune-induced, αvβ3 integrin is upregulated and activated in the
media and neointima of remodeling arteries with a temporal pattern paralleling that of cell
proliferation. RP748, an 111In-labeled quinolone with high affinity and specificity for
activated αv integrins, can track cell proliferation in vascular remodeling, as demonstrated
by autoradiographic studies in murine models of vascular remodeling (3,4). It remains to be
empirically determined whether the integrin signal is sufficient for in vivo imaging.

Matrix remodeling, through matrix protein synthesis, contraction, and proteolytic
degradation, is an integral feature of vascular remodeling. Proteases, including matrix
metalloproteinases (MMPs), a large family of calcium- and zinc-dependent proteases, play
an important role in both components of vascular remodeling. VSMC migration in
neointimal hyperplasia is dependent on changes in the matrix that facilitate cell anchoring
and movement. In geometric remodeling, protease-mediated matrix turnover is required for
changes in the vessel scaffold. MMPs and other proteases, such as cathepsins, are key
players in matrix remodeling. MMP protease activity is regulated by the expression level,
activation state, and presence of tissue inhibitors. MMP-2 and tissue inhibitors 1 and 2 of
MMPs have low expression in normal arteries. In response to injury, various proteases,
including members of the MMP family, are upregulated and activated in the vessel wall.
Inflammatory cells are a major source of activated MMPs in vascular disease. The important
role of MMP expression in tumor growth motivated the development of broad-based
metalloproteinase inhibitors (MPIs) that can be radiolabeled and used to track vascular
remodeling in vivo. One such compound, a radiolabeled broad-spectrum MMP-
inhibitor, 123I-CGS 27023A, was first used to detect MMP upregulation after carotid artery
ligation in apolipoprotein E knockout (apoE−/−) mice (5). In a subsequent study, RP782,
an 111In-labeled tracer with specificity for activated MMPs, localized to remodeling carotid
arteries of apoE−/− mice after wire injury (Fig. 1) (6). In this model of vessel injury, in
which neointimal hyperplasia is the predominant histologic feature, MMP activation was
detected by small-animal SPECT/CT and paralleled changes in vessel wall thickness. MMPs
play a key role in the pathogenesis of arterial aneurysm, and their overexpression has been
linked to aneurysm rupture. Small-animal SPECT of MMP activation in carotid aneurysm
has been reported (7), and it remains to be empirically determined whether imaging MMP
activation in aneurysm can help predict aneurysm expansion. Activation of MMPs also plays
a major role in vessel remodeling in atherosclerosis and will be further discussed in that
context below.
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MOLECULAR IMAGING OF ATHEROSCLEROSIS
Inflammation

Cardiovascular disease is the major cause of mortality and morbidity in developed countries,
and atherosclerosis is responsible for many of the severe manifestations, including
myocardial ischemia, acute myocardial infarction, heart failure, and stroke. Detection of
atherosclerosis with imaging has traditionally relied on the assessment of physical attributes
of the vessel wall such as luminal narrowing that are present in late-stage lesions. However,
the functional severity of lesions on angiography is not an accurate predictor of future
cardiac events. It is now widely appreciated that atherosclerosis is a chronic and dynamic
inflammatory disease. Inflammatory cells play a key role in all stages from initiation of
plaque development to transition of a plaque from a stable to a rupture-prone state.

Several approaches have been evaluated for radioimaging the inflammatory process in
atherosclerosis. Some of these approaches have included imaging the accumulation of
radiolabeled low-density lipoprotein (LDL) in atheromatous lesions in animals (8,9) and
humans (10), chemokine MCP-1 receptor expression (11), inflammatory cell trafficking
with 111In-oxine labeled monocytes (12), macrophage density by phagocytosis of 64Cu-
labeled nanoparticles (13), and uptake of 18F-FDG. The reason why 18F-FDG can be used to
image macrophages is that these cells have a high basal metabolic rate that is dependent on
the transport of exogenous glucose as a substrate. When activated, the metabolic rate further
increases, requiring additional uptake of glucose. Thus, the high glucose use by activated
macrophages presents a target for the 18F-labeled derivative of glucose. Several small
clinical studies have demonstrated the feasibility of imaging inflamed atherosclerotic
plaques using 18F-FDG in humans. These studies will be discussed in detail in the clinical
trials section of this article. In this section, the focus is on a new approach to imaging
inflammation in atherosclerotic plaque that involves targeted molecular imaging of the
lectinlike oxidized–1 (LOX-1) LDL receptor.

A high serum level of LDL cholesterol is a major risk factor for atherosclerosis. Oxidation
of native LDL is an early process in atherogenesis (14,15). Oxidized LDL causes endothelial
dysfunction (16) and is taken up by scavenger receptors on macrophages, resulting in the
formation of cholesterol-loaded foam cells (17). Oxidized LDL also facilitates thrombus
formation by reducing fibrinolysis and by promoting procoagulant activity via induction of
tissue factor expression (18), by reducing vasodilator species nitric oxide (19), and by
altering anticoagulant tissue-plasminogen activator and its endogenous inhibitor, PAI-1.

Oxidized LDL exerts its effects by binding to scavenger receptors on macrophages and to
the LOX-1 LDL receptor (20). LOX-1 is a membrane protein that belongs structurally to the
C-type lectin family and is expressed in vascular endothelium and in vessel-rich organs.
LOX-1 does not share homology with any of the known scavenger receptors for oxidized
LDL found in macrophages. The expression of LOX-1 is induced by tumor necrosis factor-α
angiotensin II and shear stress in endothelial cells (21-23). LOX-1 is also expressed in
macrophages and VSMCs (24).

Ishino et al. were the first to report successful in vivo imaging of LOX-1 using a 99mTc-
labeled anti-LOX-1 antibody and planar imaging in Wattanabe hyperlipidemic rabbits (25).
Atheromatous lesions were clearly visualized by planar imaging. Histologic analysis
revealed the highest accumulation of the probe in grade IV atheroma, with less uptake of the
probe observed in more stable lesions. Li et al. recently designed a multimodality imaging
probe targeted to the LOX-1 receptor and validated and tested the feasibility of the imaging
probe both in vitro and in vivo (26). The probe consists of a liposome shell decorated with
either a nonspecific IgG (nIgG) antibody or a murine anti-LOX-1 antibody, and various
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reporters, including gadolinium, 111In, and DiI fluorescence. They found that the LOX-1
probe bound specifically to atherosclerotic plaque in both apoE−/− and LDL-receptor–
deficient (LDLR−/−) mice that had been fed a high-fat and -cholesterol diet for more than
16–20 wk. As can be seen in Figure 2, the probe was readily visible in the aortic arch on
SPECT/CT images 24 h after injection. The in vivo results were confirmed by ex vivo
phosphor plate and fluorescence imaging. They also demonstrated that the LOX-1 probe
bound preferentially to the plaque shoulder region and was colocalized with known markers
of plaque vulnerability including extensive LOX-1 expression, macrophage accumulation,
apoptosis, and MMP-9 expression.

Apoptosis and the Metalloproteinases
This section will discuss biologic targets, other than inflammation, that play a role in
transformation of plaque stability: programmed cell death, enzymatic disruption of the
extracellular matrix, and vessel remodeling. The anatomic features of acute plaque rupture
are known from human autopsy studies on patients who died suddenly of acute coronary
events (27-29). Immunohistochemical staining of sections taken through vulnerable plaques
from patients, combined with experimental animal studies and advances in molecular
biology, have identified apoptosis of macrophages infiltrated in the shoulder regions of
thincapped fibroatheromas and increased expression of metalloproteinases (MMPs) as
biologic markers of plaque vulnerability (29,30). Segmental coronary artery dilation
(positive remodeling) associated with large lipid-filled plaques is an anatomic feature
associated with plaque vulnerability.

Imaging Apoptosis in Plaque—The biochemistry of apoptotic cell death involves
activation of the caspase cascade (effector caspases 3 and 7) (30). Caspase 3 activation
triggers both DNA fragmentation (identified by deoxyuride-5′ -triphosphate biotin nick end
labeling [TUNEL] staining) and induces cell membrane alterations in cells undergoing
apoptosis for phagocytic engulfment. This latter pathway has been used to target apoptosis
of cancer cells using 18F-labeled isatin sulfonamides (31). The caspase pathway triggers
changes in cell membranes as a prelude to disruption and cell death. Phosphatidylserine is
normally restricted to the inner layer of the phospholipid bilayer cell membrane. During
apoptosis, phosphatidylserine is flipped to the outer bilayer. The naturally occurring protein
annexin A5 avidly binds phosphatidylserine and was labeled first with a fluorescent probe
and subsequently as a radiotracer for in vitro and in vivo imaging of apoptosis (32). The
protein is linked to 99mTc with bifunctional chelating agents such as hydrazinonicotinamide
using an amide bond.

Programmed death can be triggered in any mammalian cell. Apoptosis plays a role in
cardiomyocyte death during acute myocardial infarction, and annexin A5 has been used to
image myocardial infarction (33). Annexin A5 has also been used to image atherosclerosis
in several animal models, including high-fat–fed New Zealand White rabbits with aortic
injury, apoE null and LDL-deficient mice, and domestic swine with coronary artery injury
fed high-fat diets (34). In all these models, the target-to-background ratios were sufficient to
permit in vivo visualization of the uptake of 99mTc annexin A5 in areas of plaque identified
at necropsy, and uptake correlated quantitatively with extent of apoptosis by caspase or
TUNEL staining. In the mouse and rabbit studies, the atherosclerotic lesions were advanced,
and staining for apoptosis colocalized to areas of macrophage infiltration (Fig. 3) (35). The
signal from radiotracer uptake into atherosclerotic plaque can be used to monitor the effect
of therapy to reduce apoptosis by administration of caspase inhibitors (36). However, in the
porcine study only class II or III lesions were present and caspase-positive staining
colocalized with smooth muscle cells. In earlier stages of plaque development, apoptosis of
smooth muscle cells occurs as positive remodeling of the vessel occurs (37). This study in
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porcine coronary arteries showed that with a high ratio of target to background uptake, focal
uptake of a radiotracer can be visualized on in vivo SPECT; the study also revealed the
limited specificity of apoptosis imaging in identifying vulnerable plaque.

Imaging Metalloproteinase Expression in Plaque—The normal arterial wall media
contains contractile VSMCs and a few resident macrophages. The extracellular matrix
contains types I and III collagen; glycoproteins, including fibronectin, vitronectin, tenascin,
and thrombospondin; and chondroitin/dermatan sulfate proteoglycans plus elastin (30,38).
During neointimal formation in early atherosclerosis, and as atherosclerotic lesions advance
and the lipid core enlarges, the vessel wall positively remodels to accommodate neointima
and preserve luminal area. As described previously, the remodeling process in the vessel
wall occurs via breakdown of extracellular matrix through expression of the
metalloproteinases (MMPs). With atherosclerosis, oxidized LDL increases MMP-1 and -3
expression (38). In addition to their catalytic effect, constitutive MMPs in VSMCs are
induced by inflammatory cytokines, and their expression leads to migration and phenotypic
modulation of macrophages (38).

In plaque monocyte-macrophages, MMP-9 is the most abundant gelatinase. Human tissue
from aortic, carotid, and coronary arteries has correlated MMP expression with plaque
vulnerability. Galis showed MMP-1, -3, and -9 in macrophages, VSMC, lymphocytes, and
endothelial cells especially at the vulnerable shoulder region of plaques (39). A 2- to 4-fold
increase in MMP-9 expression is found in human atherectomy tissue from patients with
recent unstable versus stable coronary disease (40). Levels of MMP-1, MMP-3, MMP-8,
and MMP-9 have been shown to be significantly greater in human atheromatous than in
fibrous plaques (41).

As mentioned earlier, in vivo imaging of MMP expression can be achieved using
radiolabeled broad-based MPIs (42-44). For example, a study in apoE null and LDLR null
mice showed in vivo uptake of a 99mTc-labeled MPI RP805 in aortic atherosclerotic plaque
(Fig. 4) (43). Uptake of radiotracer as percentage injected dose correlated with
immunohistochemical staining for macrophages and with MMP-2 and MMP-9 (43). A
change in the signal from the 99mTc-MPI in the plaque can be used to assess therapy to
reduce MMP expression (44). In addition to inducing inflammatory cytokines, MMPs
contribute to destabilizing plaque by segmental remodeling (4). Other platforms have been
developed to image MMP expression, including optical imaging and MRI using an
activatable near-infrared fluorescence probe and a gadolinium-coupled MPI (45,46). In a
direct comparison of the 2 radiotracers, imaging with 99mTc-labeled annexin A5 and 99mTc-
MPI was performed on apoE null mice of different ages. Between 20 and 40 wk, as the
aortic lesion area increased and the disease extended into the carotids, there were greater
increases in percentage MMP-2 and -9 than of percentage caspase-positive cells, indicating
that MMP expression is greater than apoptosis as the disease progresses. These differences
in histology correlated with differences in tracer uptake, and the results support the premise
that radiolabeled MPI is a better imaging agent for more advanced disease than annexin A5
(47).

A radisotracer such as 99mTc-MPI that targets both macrophages and vessel remodeling has
potential to non-invasively visualize vulnerable coronary lesions. Unlike 18F-FDG, 99mTc-
MPI shows little or no myocardial uptake in animal models of atherosclerosis and thus
would allow a good target-to-background ratio if the signal from the lesions is robust
enough to be seen on in vivo imaging. Because such an agent would have applications in
both cancer and atherosclerosis, motivation by industry for drug development should be
fairly high. A labeled compound that could be used in both PET and SPECT would have
more widespread application.
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NANOPARTICLES WITH MRI AND SPECTRAL CT PLATFORMS TO IMAGE
ATHEROSCLEROSIS

The term molecular imaging has an expanded meaning to encompass biomedical
diagnostics, noninvasive imaging, and targeted therapies related to pathologic molecular
biosignatures. Over the last decade, research publication and patent activities involving
nano-scaled technologies in the health sciences field have exponentially proliferated,
reflecting the leadership role played by the National Institutes of Health through the
National Cancer Institute’s Unconventional Innovation Program, the Alliance for
Nanotechnology in Cancer Program, and related nanoplatform partnerships in parallel with
the National Heart, Lung, and Blood Institute Program for Excellence and related request-
for-application funding initiatives.

Superparamagnetic Nanoparticles
One of the earliest applications of nanotechnology in MRI involved the use of paramagnetic
iron oxide particles. Iron oxide crystals have long been used as superparamagnetic T2*
contrast agents for MRI (48-51). Superparamagnetic iron oxide (particle diameter > 50 nm)
and ultrasuperparamagnetic iron oxide (USPIO, particle diameter < 50 nm) particles have
nonstoichiometric microcrystalline magnetite cores and are typically coated with dextran
(e.g., ferumoxide) or siloxane (e.g., ferumoxsil) (52). Spontaneous phagocytic uptake of
superparamagnetic iron oxide and USPIOs by macrophages in atherosclerotic plaque was
recognized and demonstrated in 2000 and 2001 by Schmitz et al. and Ruehm et al. in
hereditary or diet-induced hyperlipidemic rabbits (53-56). In 2003 this finding was extended
to include human plaque (57). Systematic evaluation of USPIO-enhanced MRI contrast in
carotid atheroma confirmed that the optimal signal intensity was achieved 24–36 h after
administration. Subsequently, the USPIO compound ferumoxytol was compared with
ferumoxtran-10 as a marker of macrophage activity in atherosclerotic plaques. Although
both were reported to be effective, ferumoxytol had optimal luminal signal intensity 3 d after
treatment, and ferumoxytol-treated rabbits had peak measurements 5 d after injection (58).
Recently, new MRI pulse sequences and image postprocessing techniques have been
developed to reverse the dark contrast appearance into a bright positive-contrast effect
(59-66).

Ligand-Directed Targeting of Iron Oxides
The development of monocrystalline iron oxide nanoparticles helped to extend iron oxide
MRI beyond the limitations of passive targeting through tissue accumulation and particle
phagocytosis to ligand-directed or active targeting. Monocrystalline iron oxide nanoparticles
have an average core diameter of 3 nm and can be directly coupled to homing ligands that
specifically target epitopes in the tissue of interest (67). The targeting efficiency of iron
oxide particles improved further with the development of dextran cross-linked iron oxide
particles (68). Cross-linked iron oxide has been used with a variety of ligands, and although
these particles may be demonstrated with histology to target tissue specifically soon after
injection, detection on MRI remains delayed because of slow particle clearance into
macrophages and nonspecific particle diffusion within tissue.

Recently, the colloidal iron oxide nanoparticle theranostic platform has been reported as a
vascular constrained T1-weighted molecular imaging agent that avoided typical magnetic
bloom artifacts, permitted rapid in vivo molecular imaging without blood pool
magnetization interference, and supported targeted drug delivery (69). Colloidal iron oxide
nanoparticle offers rapid clearance (<60 min) of circulating interference on T1 contrast,
whereas blood T2 shortening persists well over 2 h, as expected for superparamagnetic
agents. Moreover, colloidal iron oxide nanoparticle is designed for therapeutic drug
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delivery, for example, fumagillin, via a unique mechanism termed contact-facilitated drug
delivery.

Paramagnetic Nanoparticle Imaging
In 1998, Sipkins demonstrated in vivo imaging of angiogenesis with paramagnetic
polymerized liposomes in the VX2 tumor model (70) and Lanza et al. (71) demonstrated
fibrin imaging with paramagnetic perfluorocarbon nanoparticles. Alternative nonparticulate
approaches to molecular MRI were developed to target epitopes such as HER2/neu
receptors, using an avidin conjugated to gadolinium-diethylenetriaminepentaacetic acid
(12.5 gadolinium atoms per avidin), and fibrin in thrombus, targeted by a fibrin-binding
peptide derivatized with 4 or 5 gadolinium atoms (72). Integrin-targeted liposome constructs
were reported by Mulder et al. for angiogenesis-imaging rodent cancer models (73-75), and
a paramagnetic lipoprotein analog was demonstrated for macrophage imaging in
atherosclerotic plaque by Frias et al. and Lipinski et al. (76,77).

Since 1998, the laboratory of Lanza et al. has extensively studied and refined ligand-targeted
paramagnetic liquid perfluorocarbon nanoparticles for molecular imaging and targeted drug
delivery in atherosclerosis (71,78-83). Atherosclerotic plaque progresses from an early
atheromatous lesion to a thin-capped vulnerable plaque through aggressive inflammatory
and immune responses, comprising macrophage infiltration with necrotic core enlargement,
neovascular expansion of the vasa vasorum, intraplaque hemorrhage (84,85), and increased
plaque angiogenesis.

Pathologic data from excised carotid arteries in patients treated for 3 mo with statins
revealed a reduction in microvascular density, which was proposed as an explanation for the
additional benefit of statins (86). Some have suggested that statins prune the plaque
neovasculature, reducing intraplaque hemorrhage (a potential accelerator of atherosclerotic
progression) and promoting plaque stabilization (87,88). In a series of nanomedicine studies
conducted on hyperlipidemic rabbits, αvβ3-targeted paramagnetic perfluorocarbon
nanoparticles were shown to provide serial quantification of aortic angiogenesis (89), to
deliver and monitor acute antiangiogenic therapy in early atherosclerosis (Fig. 5) (82), and
to function synergistically with atorvastatin therapy to reduce plaque neovasculature and
sustain the potentially stabilizing antiangiogenic benefit (83).

In the later stages of the atherosclerosis, perfluorocarbon nanoparticles can be used to detect
and quantify the rich fibrin deposits of intravascular thrombus (78-80), the proximate cause
of stroke and myocardial infarction. The high core density of fluorine, an excellent element
for MR spectroscopy and MRI with no inherent background, supports MRI colocalization of
the fluorine and proton signal to confirm noninvasively the detection of perfluorocarbon
nanoparticles and to quantify the number of bound nanoparticles, which indirectly assesses
the extent of intraluminal clotting. Moreover, when angioplasty is required for
revascularization, collagen III- and integrin-targeted paramagnetic nanoparticles have been
used to detect and map intramural injury patterns in pigs (90), as well as to deliver
rapamycin to inhibit restenosis in rabbits without impairing reendothelialization (Fig. 6)
(91).

Spectral CT Molecular Imaging
A new field of CT molecular imaging is emerging with the development of novel
nanotechnologies capable of delivering high metal payloads. CT continues to evolve from
simple single-slice machines to multidetector arrays (e.g., 16, 64, or 256 slices) with
concomitant improvement in CT tissue characterization through the development of dual-
energy (i.e., 2-color) and now multicolored or spectral CT (92-95). Unlike the simple x-ray
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attenuation of CT or the low-resolution differential absorption of dual-energy techniques,
Spectral CT recognizes the k-edge of metals, which occurs when the attenuation of photons
interacting with a k-shell electron suddenly increases because of photoelectric absorption.
Spectral CT scanners generate the traditional CT image and simultaneously acquire
quantitative k-edge image data based on unique spectral footprints of specific elements, for
example, gold, gadolinium, or bismuth. Iodine-based imaging agents will probably not be
useful for clinical spectral CT because of a low k-edge energy, high internal scattering, and
beam-hardening effects (i.e., depletion of x-rays with higher attenuation coefficients from a
polychromatic beam). Similarly, the use of metal crystals, which may have strong spectral
CT contrast, will probably have inadequate bioelimination qualities. The Lanza group has
developed a family of “soft” metal nanocolloid k-edge agents that can be homed to fibrin
fibrils within an intravascular thrombus or other suitable biomarker, to provide the location
and concentration of targeted k-edge material. Fusion of these images with anatomic
multislice-CT images permits localization of hot spots from intraluminal fibrin to the
coronary bed.

MOLECULAR IMAGING OF ATHEROSCLEROSIS IN CLINICAL TRIALS
Multimodality Imaging

A clinically useful approach to atherosclerosis imaging involves the interrogation of several
vascular beds in the same imaging session, such as aorta, carotid artery, and coronary
arteries. To accomplish this, it is necessary to localize molecular probes to specific vascular
sites. PET/CT or SPECT/CT and MRI provide platforms to accomplish this task.
Noninvasive quantification of inflammation can be performed with both of the nuclear
imaging techniques—SPECT and PET. The radioactive tracer is administered intravenously
and allowed to circulate within the body until it accumulates at the site of interest. On the
basis of the rate of blood pool clearance, the time from injection to imaging is selected to
allow blood levels to become sufficiently low to generate a favorable target-to-background
signal. Both SPECT and PET have sensitivities for the detection of molecular targets within
the picomolar range, translating into the ability to use small doses of contrast agent,
compared with MRI and CT. Nuclear imaging sensitivities compare favorably with both
MRI and especially CT, which have sensitivities up to a trillion times lower (Fig. 7). The
superior spatial resolution of PET (4–5 mm) makes it more attractive than SPECT (10–15
mm). However, the spatial and temporal resolution of both methods is significantly less than
that achieved by either MRI or CT. The high sensitivity of nuclear methods coupled with the
favorable resolution of CT and MRI is the driver behind hybrid imaging systems such as
PET/CT and PET/MRI that are now becoming available.

Some of the imaging techniques such as 18F-FDG PET, dynamic contrast-enhanced MRI
(96,97), and USPIO-enhanced MRI (98,99) are close to the clinical arena (Table 1).
Ongoing prospective trials will determine the place of imaging inflammation in predicting
clinical events. Described below is a summary on the use of 18F-FDG PET/CT and USPIO-
MRI in atherosclerosis.

Clinical Trials with 18F-FDG
Identifying patients at high risk for an acute coronary event is clinically important. The
Framingham Risk Score, which is used to project a 10-y risk from cardiovascular disease, is
calculated on the basis of clinical and laboratory parameters: age, sex, total and HDL
cholesterol, smoking history, and systolic blood pressure. The accuracy of the Framingham
Risk Score in discriminating risk is approximately 75%. However, some patients identified
as being at low risk for mortality in the next 10 y by the Framingham Risk Score actually
have an increased lifetime risk of coronary artery disease events. Screening large numbers of
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patients with a costly and time-consuming imaging procedure to find the small number at
highest risk is impractical and impossible in an era of cost containment. A biomarker
measured from a simple blood sample would be the most cost-effective approach. C-reactive
protein is a widely available biomarker to discriminate the degree of risk in this patient
population. The recent JUPITER trial demonstrated that patients with normal cholesterol
levels, but elevated plasma C-reactive protein levels, had their risk of an event cut in half in
just 2 y by aggressive statin therapy (100). However, administering aggressive statin therapy
to all patients who meet those criteria would be expensive, and the long-term safety of
aggressive statin therapy is unknown. Another approach would be to identify a high-risk
group based on risk factors and biomarkers and on this select group perform a more
expensive imaging procedure that would identify either plaque morphologic features or
biologic signals associated with plaque vulnerability.

Inflammation is important at many stages of atherosclerotic plaque development (101). As
mentioned previously, 18F-FDG PET is a molecular imaging technique that is highly
sensitive to metabolically active processes that use glucose as a fuel, such as the macrophage
foam cells within atherosclerosis. 18F-FDG imaging is performed on a combined PET/CT
system. The anatomic information from the CT scan is used to localize 18F-FDG uptake to
the vascular tree.

18F-FDG uptake in arterial walls was first noted in the aorta of patients undergoing PET for
cancer staging (102,103). It was soon discovered that the extent of 18F-FDG uptake was
greater in older patients (102-104) and those with cardiovascular risk factors (105-107).
Since these early studies, it is now established that 18F-FDG uptake is generally greater in
symptomatic atheromatous plaques than in asymptomatic lesions (108). Additionally, the
arterial 18F-FDG signal is linked to levels of inflammatory biomarkers (109) and to the
number of components of the metabolic syndrome (110). More recently, it has been
demonstrated that arterial 18F-FDG signal can be reduced by either drug therapy (111) or
dietary and lifestyle changes (112).

Arterial 18F-FDG PET/CT is currently being applied in the assessment of novel
antiatherosclerosis drugs, in which direct evidence of an antiinflammatory effect on the
artery wall is useful (Clinical Trials.gov reveals 18 ongoing studies as of September 2009).
Early evidence of inflammation reduction can potentially avoid the need for lengthy, costly
outcome studies for drugs that are not sufficiently potent.

Imaging inflamed atheroma in the coronary vasculature with 18F-FDG is considerably more
challenging than in the carotid artery or aorta because of myocardial uptake of 18F-FDG and
the smaller size of the coronary arteries. A recent study demonstrated the feasibility of
imaging inflamed lesions in the coronary vessels using PET/CT by first suppressing
myocardial 18F-FDG uptake by having the patient consume a high-fat, low-carbohydrate
diet (113).

Clinical Trials with USPIO-MRI
USPIO-MRI has been shown to identify inflammatory changes by monitoring macrophage
uptake, a major component of high-risk (vulnerable) plaques. To date, no published study
has shown correlations between the dose of prescribed statin and in vivo changes in
macrophage distribution. “Atorvastatin Therapy: Effects on Reduction of Macrophage
Activity (ATHEROMA)” is the first prospective molecular MRI study to correlate the in
vivo effects of statin therapy on carotid plaque inflammation as observed by MRI (114). The
results of the study found a significant reduction from baseline in USPIO-enhanced MRI-
defined plaque inflammation in the high-dose atorvastatin group at both 6 and 12 wk after
treatment. Such changes were not observed in the group receiving low-dose statin (i.e.,
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atorvastatin, 20 mg). These findings provide additional in vivo evidence that high-dose
statins (i.e., 80 mg) might have a beneficial effect on plaque stability. Furthermore, these
changes in USPIO-defined plaque inflammation could be observed within 6 wk, a relatively
short treatment interval compared with the prolonged periods (years) that are required to
observe changes in plaque burden. This study may also indicate that reductions in plaque
inflammation may play an important role in the mechanism underlying the early beneficial
effects of statins.

If adequately validated, USPIO-enhanced MRI methodology may be a useful imaging
approach to access the therapeutic response to “antiinflammatory” interventions in patients
with carotid atherosclerotic lesions. However, before USPIO-MRI may be routinely used for
multicenter clinical testing, several issues with regard to the ATHEROMA study (114) need
to be examined. The relatively small patient population limits the ability to generalize the
dose response observed in that study. Although the authors found a weak correlation
between the MRI data and the microemboli count on transcranial Doppler, the study still did
not correlate the MRI findings to any hard clinical endpoints. In addition, aspects of USPIO-
MRI quantification need to be addressed before this method can be used in large multicenter
clinical trials. Differences in patient positioning, coil inhomogeneities, noise, and other
artifacts may all induce signal loss that may not be indicative of USPIO uptake. Validation
of semiquantitative analyses is needed, as well as improvements in imaging, including the
use of positive contrast or white-marker data acquisition (gradient echo acquisition for
superparamagnetic particles, inversion recovery on, ultrashort echo time, etc.), which may
be acquired within the same imaging session, to improve image interpretation and data
analysis (61).

The USPIO (ferumoxtran-10; Sinerem [Guerbet, LLC]) used in ATHEROMA is currently
not approved by the Food and Drug Administration and is considered investigational.
Sinerem was originally developed as a contrast agent for the lymphatics and bone marrow
(115); as a result, high lymphatic uptake is expected. Because the signal loss observed by
USPIOs is caused by dephasing of diffusing water protons, blooming effects (or signal loss
over a larger distance) may be observed. Because of the proximity of the lymphatics to the
arterial wall, the data obtained using the quadrant analysis approach may become biased or
skewed by lymphatic tissue included in any given quadrant. Imaging of inflammatory
changes using USPIO also requires 2 scans—a precontrast scan and a postcontrast infusion
scan—at each imaging time point.

Coronary CT Angiography (CTA) to Identify Unstable Plaque
It was observed many years ago that coronary plaques that are prone to rupture are not
associated with critical stenosis on contrast coronary angiography. Fluoroscopic coronary
angiography is limited to showing the outline of the coronary lumen only. Intravascular
ultrasound and coronary CTA image the cross section of the entire vessel, including the
vessel wall and the lumen. These technologies provide in vivo information on plaque
morphology. Several intravascular ultrasound studies have shown segmental dilation of the
coronary vessel associated with large accumulation of low-acoustic-density material in the
neointima consistent with large lipid cores. These large plaques do not encroach on the
lumen because of the positive remodeling of the vessel wall (116-118). The process of
segmental vessel remodeling, whether it is primary or secondary, is associated with plaque
vulnerability.

Intravascular ultrasound studies are invasive procedures performed on patients with
symptoms warranting catheterization and therefore not potentially useful for screening of
high-risk patients. CTA is an imaging modality that can also provide cross-sectional views
of the coronary vessel, assessing both the vessel wall and the lumen. In a recent study,
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investigators interpreted coronary CT angiogram findings for over 1,000 patients and
followed the patients for coronary events. Positive vessel remodeling and low-attenuation
plaques were used as the criteria for plaque vulnerability. The study found that patients with
positively remodeled coronary segments with low-attenuation plaques were at higher risk of
acute coronary syndrome than were patients without these findings (119). Coronary CTA
involves the administration of iodinated contrast and radiation exposure (as does nuclear
imaging) and slow heart rates. Because of the risks associated with radiation exposure,
current American Heart Association/American College of Cardiology guidelines do not
recommend CTA as a general screening tool in low-risk, asymptomatic patients. However,
newer multislice CT scanners will make procedures shorter and simpler to perform and
increase the potential of this technology as a screening procedure in high-risk groups.

CHALLENGES FOR TRANSLATION
For practical reasons, most studies on imaging vessel wall biology are initially performed on
small animals. Advantages include the availability of established models of human vascular
disease, experimental models with shorter time frames, and low cost. In addition to studying
the pathophysiology of human disease, these small-animal imaging studies can help advance
basic research and drug development and serve as a first step in the validation and screening
of novel therapies.

Despite these advantages, there are also several challenges for successful translation of the
preclinical findings to humans. The first challenge is that, despite the many similarities in
vascular biology between humans and rodents, there are also differences, for example, MMP
expression, which may ultimately affect translation to human disease. Human pathology is
often more complex than simple models in small animals, complicating the interpretation of
imaging studies.

A second challenge to clinical translation is the design of the imaging probes themselves.
Achieving sufficient target-to-background levels for visualization on in vivo images requires
a high number of binding sites or a radiochemical design to boost the signal at the target.
Moreover, it is also important that the probe clear rapidly enough from the blood pool to
reduce background levels yet remain in the circulation long enough to achieve binding.
Uptake in nontarget organs must also be minimized. Another issue is that many of these
probes are validated in mouse models using murine antibodies or antibody fragments. For
human studies, especially when the probe might be injected at multiple time points to follow
therapeutic efficacy, the potential exists for an immunogenic reaction that could adversely
affect the binding of the probe to the intended target or, even worse, be unsafe.

The translation of complex nanoparticle technologies to clinical trials and ultimately to
clinical practice also has its share of unique challenges. By far the greatest challenge is the
failure of pharmaceutical and biomedical imaging companies to embrace nanotechnology, in
part because each lacks the expertise of the other. From the drug development perspective,
nanoparticles cannot go into the clinic until concerns about nanoparticle safety, including
acute host immune or complement responses and the metabolism and elimination of the
particle and its constituents, are satisfactorily addressed. These technical challenges of
nanotechnology can be addressed by focused advancements in engineering and chemical
designs. The developmental expertise to achieve these goals rests with the major
pharmaceutical and bioimaging companies.

A third challenge for clinical translation is instrumentation. The numerous inherent
difficulties of detecting and resolving minute regions of interest within a large field of view,
and the presentation of these identified pixels in an easy-to-interpret and quantifiable
manner, are unprecedented challenges. Hybrid imaging systems such as SPECT or PET/CT
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and PET/MRI are playing an important role in helping to localize hot-spot radiotracers
within the vasculature. For practical purposes, much of the research work in this field has
been performed in peripheral large arteries, such as the aorta and carotid arteries. Imaging
smaller coronary vessels with radiotracer probes is complicated by the fact that the diameter
of these vessels is below the spatial resolution of most SPECT and PET cameras. Although
recent studies have demonstrated that vulnerable lesions can be imaged with high enough
focal activity and low background myocardial activity, future advances in instrumentation
resulting in higher spatial resolution and increased sensitivity will be helpful. Imaging the
coronary arteries is further complicated by both cardiac and respiratory motion. Thus, it will
be important to correct for these motion artifacts, especially when examining small coronary
lesions.

Lastly, the cost of tracer development for vascular diseases may be prohibitive. This
challenge may be at least partially overcome by developing tracers that are useful for
multiple applications.

CONCLUSION
Advances in molecular biology, development of genetically altered mice, and careful
observation of human pathologic specimens have produced a picture of the biologic and
anatomic initiation and progression of atherosclerosis. This complex picture presents targets
for the development of probes that, coupled with rapid advances in technology for both
small-animal and clinical hybrid SPECT, PET, and MRI platforms, has broadened
capabilities for both preclinical research and clinical imaging. Vascular remodeling
manifests as either expansive or restrictive, and changes in the vessel wall composition
(hypertrophy or hypotrophy) are common to all vascular pathologies. Enzymes involved in
dissolving the extracellular matrix and proliferating cells comprising the neointima can be
targeted for imaging. Inflammation is an important component of atherosclerosis. A
positron-labeled probe, 18F-FDG, is widely available for tumor imaging and shows promise
as a marker of inflammatory activity of atherosclerotic plaque and plaque burden. It is being
tested as a surrogate endpoint in drug trials. Experimental studies have shown that a single
photon-labeled probe that binds the LOX-1 LDL receptor, a scavenger receptor on
macrophages for oxidized LDL, is taken up in atherosclerotic lesions. This radiolabeled
probe shows promise as an agent for imaging inflammation in atherosclerosis. Radiolabeled
MPIs that target both inflammation and remodeling show promise in preclinical
experiments. MRI alone offers information on anatomy and plaque composition and can be
combined with imaging probes that target biologic processes. Nanoparticles with
paramagnetic properties have been designed to target angiogenesis, which is an important
process in advanced atherosclerotic plaque leading to intraplaque hemorrhage and
instability. Iron-based particles, USPIOs, are taken up by macrophages in atheroma, and
USPIO-MRI has the potential to become an approach to image inflamed and active
atherosclerotic plaques with further refinements in acquisition parameters. Coronary CTA
can detect 2 important features of coronary plaque vulnerability: large, soft plaque and focal
vascular remodeling. All of these approaches show promise for imaging many of the known
manifestations of atherosclerotic plaque instability, but application in the clinic will require
the availability of nontoxic low-molecular-weight probes, imaging platforms, and
demonstration of cost-effectiveness.
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FIGURE 1.
RP782 imaging of MMP activation in vascular remodeling. RP782 micro-SPECT (A), CTA
(B), and fused micro-SPECT/CT (C) images at 3 wk after left carotid injury in apoE−/− mice
demonstrate enhanced RP782 uptake in injured left as compared with control right carotid
arteries. Quantification of carotid RP782 uptake at different time points after injury is shown
in (D). S = sagittal slices; C = coronal slices; T = transverse slices; w = weeks. (Reprinted
with permission of (6).)
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FIGURE 2.
Contrast CT (left), micro-SPECT (center), and fused SPECT/CT (right) images of apoE−/−

mice fed Western diet for more than 16 wk. Imaging showed no focal aortic arch hot spots
in mice injected with a nonspecific IgG antibody (nIgG) probe (top row), whereas all mice
injected with targeted LOX-1 probe had hot spots in aortic arch (lower row). Results were
confirmed by ex vivo phosphor imaging of excised aortas. Sudan IV staining demonstrated
comparable plaques between the 2 groups.
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FIGURE 3.
(A) Six reconstructed slices from in vivo hybrid small-animal SPECT/CT scan after
injection of 99mTc annexin AV into 62-wk apoE−/− mouse fed high-fat diet and showing
uptake of tracer in aortic arch (red arrows). Image on right shows excised aorta imaged ex
vivo. (B) Immunohistochemical stained sections through aorta shows American Heart
Association class IV lesion with lipid core, prevalent macrophages, and TUNEL-positive
nuclei. (C) Correlations between percentage injected dose (%ID) and both macrophages and
TUNEL-positive cells. (Reprinted from (35).)
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FIGURE 4.
(Top left) Reconstructed slices from in vivo hybrid small-animal SPECT/CT scan after
injection of 99mTc-labeled MPI into representative mice from 5 groups: control, apoE−/− fed
high-fat diet (ChApo∈−/−), apoE−/− fed normal chow, LDLR−/− fed high-fat diet
(ChLDLR−/−), and LDLR−/− fed normal diet. Black arrows identify aorta, and red arrows
identify tracer uptake in aortic arch (on SPECT and fused SPECT/CT), with greatest amount
seen in apoE−/− mouse fed high-fat diet. Scans of control mouse are negative. (Top right)
Quantitative histologic analysis of MMP-2, MMP-9, and macrophages (Mac-3) for 4 groups
of atherosclerotic mice, and control. (Bottom) Histopathologic and immunohistochemical
staining of sections from aortae from 5 groups. (Reprinted from (43).)
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FIGURE 5.
(A) Time-of-flight MR angiogram 30 min after balloon stretch injury shows patent femoral
arteries. Left artery was treated with αvβ3-integrin– targeted paramagnetic nanoparticles
with rapamycin, and saline was used for right artery. (B and C) MR angiograms 2 wk after
injury and treatment, with arrows identifying regions of intraluminal plaque caused by
balloon overstretch injury. In B, right artery, which has arterial plaque, was treated with
αvβ3-integrin–targeted nanoparticles without drug, and widely patent left artery was treated
with αvβ3-integrin– targeted nanoparticles with rapamycin. In C, widely patent right artery
was treated with αvβ3-integrin–targeted nanoparticles with rapamycin, and partially
occluded left artery was treated with nontargeted nanoparticles with rapamycin. (D and E)
Graphs of average (D) and maximum average (E) stenosis within injured and treated femoral
arteries of New Zealand White rabbits 2 wk after balloon injury. Arterial segments were
flash-frozen in optimal-cutting-temperature compound, and alternate 7-μm sections were
used for morphologic analysis (hematoxylin and eosin staining). (F) Area at risk of injured
endothelium quantified on vascular en face preparations stained with Carstair stain. Normal,
uninjured endothelium is yellow, and injured endothelium with fibrin deposition is red. (G)
Quantitation of injured endothelium in area at risk (100% = 1-cm excised vessel segment).
Digitized images were analyzed on areas that had undergone balloon overstretch injury and
were treated with αvβ3-integrin–targeted nanoparticles with 0.4 mol% rapamycin (n = 12) or
saline control (n = 12). Vessels were excised on postinterventional days 1, 7, 14, and 28 (n =
3 per group and time point). (Adapted with permission of (91).)
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FIGURE 6.
(A) MRI of abdominal aorta shows false-colored overlay of percentage signal enhancement
at time of treatment (left) and 1 wk after treatment (right). (B) Platelet endothelial cell
adhesion molecule (PECAM)–stained section (×4) of abdominal aorta from hyperlipidemic
rabbit shows adventitia, media, and plaque. Higher-magnification inset (×20) shows that
microvessels were predominantly in adventitia associated with thickening neointima.
Neovessels were generally not in regions where plaque progression was minimal or
nonexistent in this cohort of rabbits. Arrowheads illustrate type of PECAM microvessels
counted within each section to assess fumagillin antiangiogenic effects. Larger, mature
vessels positively staining for PECAM were not included in these estimates. (C) Graph of
aortic MRI signal enhancement averaged over all imaged slices at time of treatment (black
bars) and 1 wk after treatment (white bars). Solid lines indicate individual animal’s response
to treatment over 7-d period. (D) Graph showing that number of neovascular vessels within
adventitia was reduced (*P < 0.06; ‡P < 0.05) in fumagillin-treated rabbits over proximal
half of aorta (i.e., renal artery to diaphragm), which correlated with region of greatest MRI
signal and fumagillin response in imaging studies. (Adapted with permission of (82).)
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FIGURE 7.
Illustration of relative spatial resolution of common imaging techniques, along with their
sensitivities.
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