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Abstract
Common methods of statistical analysis, e.g. Analysis of Variance and Discriminant Analysis, are
not necessarily optimal in selecting therapy for an individual patient. These methods rely on group
differences to identify markers for disease or successful interventions and ignore sub-group
differences when the number of sub-groups is large. In these circumstances, they provide the same
advice to an individual as the average patient. Personalized medicine needs new statistical
methods that allow treatment efficacy to be tailored to a specific patient, based on a large number
of patient characteristics. One such approach is the sequential k-nearest neighbor analysis
(patients-like-me algorithm). In this approach, the k most similar patients are examined
sequentially until a statistically significant conclusion about the efficacy of treatment for the
patient-at-hand can be arrived at. For some patients, the algorithm stops before the entire set of
data is examined and provides beneficial advice that may contradict recommendations made to the
average patient. Many problems remain in creating statistical tools that can help individual
patients but this is an important area in which progress in statistical thinking is helpful.
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NO ONE IS THE AVERAGE PATIENT
In personalized care, the genetic profile of the patient and other information, e.g. co-
morbidity, concurrent medication, allergies, etc., are used to tailor the diagnosis and
treatment to the patient’s unique characteristics [1–6]. In this paper, when we refer to
translational research, we are referring to the use of genetic information in clinical practice,
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typically by those who are caring for patients and view themselves as practitioners rather
than strictly as investigators. These clinicians want to use progress in the mapping of the
human genome to help manage the patient at hand. The process is also sometimes referred to
as individualized medicine. No matter what it is called, it almost always focuses on tailoring
diagnoses and treatment to the benefit of an individual patient.

No patient is the average patient 7. Personalized medicine is expected to tailor findings from
research studies to specific patients using their characteristics. One way to do so is to
evaluate the statistical model developed for the general ment efficacy, then a patient’s
specific age, e.g. 80 years old, is used to evaluate the implication of the general model for
the patient at hand. This approach works; unless the patient belongs to a sub-group for
which the general finding is not accurate.

In theory, statisticians can conduct sub-group analysis to tailor their findings to individual
patients. Since patients have many characteristics, they belong to many sub-groups and
while it is possible to do subgroup analysis, in practice it is not a viable option 8. Often there
are too few data points to conduct a full subgroup analysis. Personalized medicine is built on
the concept that what works well for a group of patients does not necessarily work for
everyone in the group. We might find that a medication, harmful to most, helps some
patients. Or, we might find that a medication helpful to the average patient is of no use to a
particular patient 9. Personalized medicine needs tools and statistics that help clinicians
advise one patient at a time, even if in contradiction to the results of group studies.

One approach is for statisticians to formalize the procedures that clinicians use to tailor their
general knowledge to help one patient. When it comes to tailoring treatment to a patient’s
characteristics, physicians engage in sequential repeated trials without a control group and
with a stopping rule of aborting the experiment at the first sign of consistent success 10,11.
Obviously, this approach to data does not address why the patient has improved, which is
what a scientist with population-wide statistical models cares about. The scientist might
want to continue the intervention after an initial success; he/she may try other combinations
of treatments to find an optimal set or to distinguish the main effects of a specific treatment
from interaction effects. All of this seems reasonable to the investigator but illogical and
maybe unethical from the perspective of the patient. Patients, and by extension their
clinicians, care first and foremost that they are better and not why they are better.

The clinician’s thought process provides a prototype for how statistical models could be
designed to serve one patient at a time. One such approach is presented in this paper. Like
the clinician, the proposed approach sequentially examines the data until a stable non-
random (statistically significant) change is observed.

ROOM FOR IMPROVEMENT
Scientists have found cures for many diseases without individualizing the treatment. In
many circumstances, treatment is the same for everyone, but increasingly we face situations
where some patients benefit from treatment and others do not. Take for example, the
treatment of depression. Clinicians have to select among a large list of treatments (selective
serotonin reuptake inhibitors, Bupropion, Buspirone, Lithium, tricyclic antidepressants,
tetracyclic antidepressants, monoamine oxidase inhibitors, serotoninnorepinephrine reuptake
inhibitors, Cognitive Therapy, Triiodothyronine, etc.). In the Sequenced Treatment
Alternatives to Relieve Depression Study 12, patients were initially treated with Citalopram,
an example of a selective serotonin reuptake inhibitor, or SSRI, the most widely prescribed
type of antidepressant. Patients who did not respond to treatment went through additional
trials, each with a different set of treatments. In total, four different attempts were made to
reduce symptoms of depression, each lasting about 3 months.
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Fig. (1) shows treatment trials on the X-axis and percent in remission on the Y-axis. In the
first trial, only 28% of the patients benefitted. Subsequent trials with different treatments
raised this percentage to 60%. If somehow we knew ahead of time which treatment would
work for which patient, then 60% of patients could benefit from the first treatment (the
straight line in the graph). This is 32% above the current experience. Thus, almost one in
three patients would have control of their depression sooner if we were able to guide the
patient accurately at the start of their care. The difference between the two lines in Fig. (1)
shows what can be achieved through guided selection of medications. It also shows the
extent to which patients are subjected to ineffective trials.

PATIENTS-LIKE-ME ALGORITHM
If the purpose is to help an individual patient, then a useful method is to find out what has
worked for similar patients in the past. Similarity of two patients can be established in
different ways. One common method is to calculate the Euclidian distance between the
patient and the case in the database. Euclidian distance is the square root of the sum of
squared differences in genetic and phenotypic features of the patient and the case. Another
approach, which is supported by research on human psychology, is Tversky’s feature
matching approach 13–15. In this approach, the similarity of the patient to the case is
calculated by dividing the number of matched features with the sum of matched and
unmatched features. Furthermore, the unmatched features are weighted differently whether
the unmatched feature is in the patient or in the case in the database.

When cases in the database are rated based on their similarity to the patient, then it is
possible to see what has worked for similar patients. Additional similar patients are
examined until sufficient information exists to detect a statistically significant difference
between treatment success and failure. The problem is akin to sequential analysis 16 of K-
nearest neighbors 17, a procedure we call Sequential K-Nearest Neighbor Analysis (SKNN).
In this approach, cases in the database are considered in decreasing order of their similarity
to the patient until an inference threshold is met (see Appendix for details). Each case in the
database adds more information about whether the treatment may work for the patient at
hand. Early on, findings are not significant because the number of cases examined is small.
As the number of cases increases, a statistically significant conclusion may be reached. If all
cases are examined sequentially and no statistically significant differences are noted, then
there is insufficient information to predict what might work for the patient at hand. In this
case, the prediction that works for the average patient should be followed and no additional
personalization is possible.

A HYPOTHETICAL EXAMPLE
Fig. (2) shows a hypothetical example that can be used to illustrate how predictions are
made using sequential K-nearest neighbor (SKNN) analysis.

In this figure, X and Y axis are two of the principal components of the genetic and
phenotypic information available on the cases within the database. The triangles show cases
for whom the treatment failed and the diamonds show cases where the treatment succeeded.
The lines around the success and failure points show the structure of the data. There are
regions in the periphery, where the prediction is simple and all cases are either success or
failure. In the middle, prediction is more difficult, as in this region both success and failures
co-occur. In our experience, many databases look like data plotted in Fig. (2), where in some
regions predictions are harder than other regions. The question mark (at coordinates .30
and .84) shows the patient for whom we want to make a prediction.
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For the case shown as a question mark, the nearest data point is a success. If we were
predicting based on the most similar case, then we would predict that the treatment will
succeed. If we were predicting based on 2 nearest neighbors, the same prediction would be
made. At 2-nearest neighbors, 100% of cases predict success. As the number of similar
patients considered increases, then the empirical probability of success changes. If the case
is in a neighborhood where most cases succeed, the empirical probability of success
increases as additional cases are added. Otherwise it decreases. When all patients are
considered, the empirical probability of success drops from 100% to 47%, roughly a tossup.
The key in making accurate predictions is to choose the right number of similar patients so
that a statistical inference can be made with confidence.

Fig. (3) shows a sequential analysis of the data for the patient marked with a question mark
in Fig. (2). In this chart, we are plotting the number of failures. The two straight lines show
the stopping rule (if the upper line is crossed then the medication is not recommended and if
the lower line is crossed then the medication is recommended). In the first step, the most
similar case is a success, but the stopping criterion is not met so we examine another case.
The next case is also a success, but still the stopping criterion has not been met. If we
examine the 3 most similar cases, 100% of cases have succeeded, but we have examined too
few cases to have confidence in this inference. When we continue to examine more cases,
the fourth case is a case in which the treatment failed. Now, the number of failures has
increased to 1 but the stopping criterion is still not met. We can continue to expand the
number of cases examined. When looking at the 8 most similar cases, the rate of success is
87.5% and the number of failures is still one. Now the stopping criterion is met, and we are
ready to recommend to this patient to take the medication. Note that this recommendation is
made despite the fact that for the average patient no such recommendation is warranted.

It is helpful to see the same analysis applied to all cases in Fig. (2). Suppose for each case in
the database we use, in order of similarity, the remaining cases in the database to predict if
the medication might work. Then for 15 patients (79% of cases) no recommendations will be
made, for 3 patients (16% of cases) a recommendation is made not to take the medicine and
for one patient (5% of cases) a recommendation is made to take the medication. See Fig. (4)
for the sequential analysis of cases in which a recommendation was made. It is not
surprising that for the majority of cases we make no recommendations; this is implied by the
fact that when we consider all cases the chances for success is 47%, close to a tossup. What
is more interesting is the fact that for a minority of cases (21% of cases) we make
recommendations that are different from the advice given to the average patient. These are
the patients that personalized medicine can help.

We can also evaluate the accuracy of our advice to the reported experience of cases in the
database. When the algorithm makes no recommendation, it is illogical to assess the
accuracy of its advice. Among the 4 cases in which the patients-like-me algorithm made a
recommendation, it was correct in 75% of cases.

PUBLISHING DATABASES NOT PAPERS
Many investigators construct statistical models to predict treatment effectiveness or
diagnostic efficacy. Often the models are used to test the hypothesis that a variable predicts
treatment outcomes and hence can serve as a biomarker for future patients. These models
provide a great deal of insight into the relationship among variables and are the building
blocks for progress in science. But these models are not necessary to help individual
patients. As part of personalizing the diagnosis and treatment of patients, it is possible to
examine the data and see what works for the patient at hand, even though no markers may
exist for the population as a whole.
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If translational research needs to report what will work for an individual patient, then
published literature, with its focus on the average for groups of patients, is of limited use.
Instead, data need to be analyzed to identify similar patients. This requires that the clinician
should have access to the intervention data collected by investigators. To accomplish this,
investigators should be encouraged to publish their databases. The National Library of
Medicine is making progress in publishing databases that will be useful for these purposes.
The clinical world we envision is directly linked to the evidence and data generated from
scientific studies. As scientists collect data, they would publish the data, and clinicians
would directly use the data to assess what will work for their patients. In this scheme, the
scientist’s key role is not to write papers but rather to gather and organize the relevant data.

CONCLUSIONS
There is a need to design statistical tools that fit the goals of personalized medicine or
individualized medicine. Several approaches have been proposed 18–20. This paper proposes
an approach of sequentially examining the most similar patients until a stopping criterion is
met. This procedure allows statistical inferences to be made for one patient at a time. In
contrast, traditional statistics focuses on likelihood of success for the average patient. For a
minority of patients, this procedure may recommend actions which contradict the
recommendation for the average patient. In this sense, the patients-like-me algorithm fits
better with the spirit of personalized medicine because it allows detection of cases in which
the average recommendation is no longer valid. It is important to explore the accuracy and
consequences of the patients-like-me algorithm and other similar procedures that better fit
the goals of individualized medicine.

A number of analytical problems remain, for which additional statistical innovations could
be helpful. One question is how to limit features to be used in measuring similarity of two
patients. One approach is to focus on features where the patient differs from the norm.
Another approach is to include all possible features but weight the features proportional to
their impact on outcomes e.g., the likelihood ratio associated with the feature. Still another
approach is to rely on a composite linear combination of features that is most effective in
separating the success and failure cases. All of these approaches require careful study and
we recommend additional exploration of these methods.

For translational research to succeed, clinicians need to have tools that can inform them
regarding the level of confidence in recommendations for a specific patient. This paper has
demonstrated one such approach. Many more are possible. The challenge to statisticians is
to design tools that can work well with the spirit of personalized medicine.
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APPENDIX
Cases are considered in order of the gradually reduced similarity to the patient according to
the following rules, first proposed by Wald 16:
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In the above formulas, F indicates the number of treatment failures in the K most similar
patients. If the true probability of medication failure is below p0, we consider not
recommending the medication to the patient to be a type one error. If the true probability of
medication failure is above p1, we consider recommending the medication to be a type two
error. The constants α and β are the maximum allowable probabilities of making type one
and type two errors. If all data are examined and the stopping rule (acceptance or rejection
of the medication) is not met, then no recommendation can be made to the patient at hand.
The stopping rule presented above allows one to stop the process in such a manner that the
probabilities of making type one and type two errors do not exceed the desired levels.

In the example reported in the paper, we selected p0 = 0.3, p1 = 0.6. The limits for the
probability of type one and type two errors were set at 10% and 5%. A smaller probability of
a type two error was assumed in order to reduce chances of recommending a medication that
can cause harm compared to avoiding a medication that can be helpful.

The parameters we selected seemed reasonable to us. These parameters are set across
patients and are affected by the number of cases examined and the strength of
recommendations desired. Many will agree that there should be a relatively high probability
of success (in this case 70%) before an intervention is recommended. That seems intuitive to
us, but if the disease is incurable and fatal and no other options are available, a treatment
might be worth trying even if it has a small chance of success (e.g. 10%). In addition, the
stopping rule presented above assumed that there was only one treatment. When there are
multiple treatments available, the stopping rule is changed to recommending treatment that
has a probability of failure that is significantly less than all the alternative treatments.
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Fig. (1).
Effectiveness of guided selection of antidepressants.
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Fig. (2). An example of treatment success in two dimensions
(Triangles show failures. Diamonds show successes. The question mark shows the patient
for whom we want to make a prediction).
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Fig. (3). Sequential analysis for this patient stops at 8th most similar case
(Medication is avoided if the number of failures exceeds the upper control line. Medication
is recommended if the number of failures is below lower control line. Otherwise next nearest
data point is added to the analysis).
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Fig. (4). Cases in which the algorithm makes a recommendation
(The X and Y corrdinates in the legend correspond to principal components of cases
depicted in Fig. (2). For each case, next nearest neighbor was added to the analysis until the
number defective was outside the upper or lower control lines).
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