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Abstract
Glaucoma is the second leading ocular disease causing blindness due to gradual damage to the
optic nerve and resultant visual field loss. Segmentations of the optic disc cup and neuroretinal rim
can provide important parameters for detecting and tracking this disease. The purpose of this study
is to describe and evaluate a method that can automatically segment the optic disc cup and rim in
spectral-domain 3-D OCT (SD-OCT) volumes. Four intraretinal surfaces were segmented using a
fast multiscale 3-D graph search algorithm. After surface segmentation, the retina in each 3-D
OCT scan was flattened to ensure a consistent optic nerve head shape. A set of 15 features,
derived from the segmented intraretinal surfaces and voxel intensities in the SD-OCT volume,
were used to train a classifier that can determine which A-scans in the OCT volume belong to the
background, optic disc cup and rim. Finally, prior knowledge about the shapes of the cup and rim
was incorporated into the system using a convex hull-based approach. Two glaucoma experts
annotated the cup and rim area using planimetry, and the annotations of the first expert were used
as the reference standard. A leave-one-subject-out experiment on 27 optic nerve head-centered
OCT volumes (14 right eye scans and 13 left eye scans from 14 patients) was performed. Two
different types of classification methods were compared, and experimental results showed that the
best performing method had an unsigned error for the optic disc cup of 2.52±0.87 pixels
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(0.076±0.026 mm) and for the neuroretinal rim of 2.04 ± 0.86 pixels (0.061 ± 0.026 mm). The
interobserver variability as indicated by the unsigned border positioning difference between the
second expert observer and the reference standard was 2.54 ± 1.03 pixels (0.076 ± 0.031 mm for
the optic disc cup and 2.14 ± 0.80 pixels (0.064 ± 0.024 mm for the neuroretinal rim. The
unsigned error of the best performing method was not significantly different (p > 0.2) from the
interobserver variability.

Index Terms
Glaucoma; multiscale 3-D graph search; neuroretinal rim; optic disc; optic disc cup; optic nerve
head (ONH); spectral-domain optical coherence tomography (OCT)

I. Introduction
Glaucoma is the second leading cause of blindness in the developed world, and is
characterized by gradual cupping of the optic nerve head and visual field loss [1].
Traditionally, the optic disc is imaged two-dimensionally with stereo color fundus
photography. The hallmark of glaucoma is cupping of the optic disc, which is the visible
manifestation of a 3-D structure, the optic nerve head (ONH), in two dimensions. The ratio
of the optic disc cup and rim surfaces, or cup-to-disc ratio in these images is an important
structural indicator for assessing the presence of glaucoma and may help in quantifying the
progression of glaucoma. To quantify the ratio, planimetry has commonly been performed
by glaucoma specialists from stereo color photographs of the optic disc [2]. However, we
and others have previously shown that manual planimetry is time-consuming with
substantial interobserver variability [2]. With the introduction of spectral-domain optical
coherence tomography (SD-OCT) scanners [3], [4], some of which are capable of acquiring
close-to-isotropic 3-D ONH-centered volumes (Fig. 1), imaging of the 3-D structure of the
ONH is now possible. The shape of the cup can potentially be measured more precisely than
with stereo photographs, and the cup shape is an important feature that experts use in
planimetry. Though direct quantification of optic nerve head parameters, such as axonal
volume, in 3-D seems attractive, clinical management is historically based on planimetry of
the optic disc as discussed above. Because glaucoma is a slowly progressive disease, with
changes occurring over many years, it is currently not clear what 3-D ONH parameters, if
any, are suitable for glaucoma progression measurement. Properties of the optic disc,
including those indicated by color, tissue vascularization and transparency, are also lost in
(narrow band) SD-OCT imaging. Therefore, in order to allow comparisons with historically
accepted optic disc planimetry, a segmentation of the optic disc directly from SD-OCT is
attractive. For example, Chrástek et al. proposed an automated segmentation method of the
ONH in Heidelberg retinal tomography images using morphological operations, Hough
transform, and an anchored active contour model [5]. However, they focused only on the
segmentation of the neuroretinal rim, not the optic disc cup.

Several groups, including ours, have studied methods to segment and quantify the optic disc
from 2-D images [6]–[8]. Carmona et al. introduced an automatic system to locate and
segment the ONH in eye fundus images using genetic algorithms [6]. The genetic algorithm
was used to find an ellipse containing the maximum number of hypothesis points. However,
this method has a potential error if the shape of the rim is not a perfect ellipse, and the
method did not segment the optic cup.

Xu et al. developed an automated system for assessment of the optic disc on stereo disc
photographs [7]. They used a deformable model technique, which deformed an initial
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contour to minimize an energy function defined from contour shape and contour location, to
detect cup and disc margins.

Abràmoff et al. presented a study of an automated segmentation method of the optic disc
cup and rim from stereo color photographs using pixel feature classification, including a
depth from stereo disparity feature, and compared the segmentation results to glaucoma
experts and glaucoma experts in training [8].

The question whether automated planimetry can be performed directly from close-to-
isotropic SD-OCT scans is open and, to the best of our knowledge, has not been studied
previously although a preliminary version of this research appeared in [9]. The major
contribution of this paper is the presentation of a fast, fully automatic method to segment the
optic disc cup and rim in 3-D SD-OCT volumes and extensive evaluation of its performance.

II. Methods
The method (Fig. 2) starts by segmenting four intraretinal surfaces in the original spectral-
domain OCT volume using a multiscale 3-D graph search-based method (Section II-A). To
obtain a consistent ONH shape, the retina in the original spectral-domain OCT volume was
flattened by adjusting A-scans up and down in the z-direction using the segmented second
intraretinal surface (Section II-B). An OCT projection image was created by averaging in
the z-direction the OCT sub volume between the second and fourth intraretinal surfaces
(Section II-C). The flattened OCT volume and intraretinal surface segmentations, OCT
projection image and vessel probability map from the OCT projection image [10] were used
as features for the classification of the optic disc cup and neuroretinal rim. The optic disc
cup and neuroretinal rim were segmented by a k-NN classifier and a contextual k-NN
classifier incorporating neighboring A-scans (Section II-D). Finally, prior knowledge about
the shapes of the optic disc cup and neuroretinal rim regions was incorporated through the
application of convex hull-based fitting (Section II-E).

A. Intraretinal Surface Segmentation Using Multiscale 3-D Graph Search
There are several reasons for intraretinal surface segmentation in ONH-centered OCT
volumes. The first reason is that at least one intraretinal surface is necessary for flattening
the retina in the original SD-OCT volume to have a consistent ONH shape (Section II-B).
The second reason is that two of the segmented intraretinal surfaces are required to create
the projection image of the OCT volume in which the cup and rim boundary independent
standard is represented after registration with fundus photographs (Section II-C). The image
intensity of the OCT projection image is also utilized as one of the features for the ONH
classification of the OCT volume (Section II-D).

Li et al. had developed a 3-D/4-D graph-based optimal surface detection method which is
capable of detecting multiple interacting surfaces simultaneously [11]. The surface
segmentation problem in 3-D can be directly converted to the minimum closed set detection
problem in a 3-D graph. The minimum closed set detection problem can be solved by
computing the minimum s-t cut of the graph with a low-order polynomial time complexity.
This approach was further extended and used for macular layer segmentation in 2-D and 3-D
OCT images [12], [13].

We developed a fast multiscale extension of 3-D graph search to detect four intraretinal
surfaces in ONH-centered OCT volumes. The basic idea of the multiscale 3-D graph search
is to detect the intraretinal surface in the highest resolution image using the intraretinal
surface segmented in the lower resolution images. Fig. 3 shows an example of our
intraretinal surface segmentation method. To reduce the speckle noise in the OCT volume,
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for each 3 × 3× 3 image neighborhood, the voxel values were first ordered according to their
intensities. The middle 7 values in this ordering were averaged and the resulting value
assigned to the central voxel of the 3 × 3 × 3 neighborhood [Fig. 3(b)]. Therefore, the
speckle-noise reduction approach exhibits combined properties of median filtering and
averaging-based smoothing. As a cost function, the gradient magnitude of the dark-to-bright
transition from top to bottom of the smoothed OCT volume was calculated, and five gradient
magnitude volumes in different resolutions (levels 0,1,2,3, and 4) were created for the
multiscale approach. Level 4 represents full resolution, and the gradient magnitude volume
in level i is subsampled by a factor of 2 in the z-axis from that in level i + 1 (0 ≤ i ≤ 3).

In level 0, the top intraretinal surface (surface 1) and the combined surface of the second and
third intraretinal surfaces (surfaces 2 and 3) were detected by applying a 3-D double surface
graph search method to the cost function consisting of the inverted gradient magnitudes. For
the segmentation of surface 1 in level 1, the gradient magnitude volume to be searched in
level 1 was constrained by surface 1 in level 0. In general, the z-values of the gradient
magnitude volume to be searched in level i are constrained according to the following
equation:

(1)

where zi−1 = fi−1i (x, y) is the surface segmented in level i − 1, and α is a margin in the z-
axis. After finding surface 1 in the constrained, inverted gradient magnitude volume using 3-
D single surface graph search, it was transformed into the original gradient magnitude
volume in level 1. In the same fashion, surfaces 1 in levels 2, 3, and finally 4 were detected.
The segmentation of surfaces 2 and 3 is similar to that of surface 1 except that it uses a 3-D
double surface graph search approach [Fig. 3(c)]. Finally, the inferior intraretinal surface
(surface 4) was detected by applying 3-D single surface graph search to the cost function
composed of inverted gradient magnitudes of the bright-to-dark transitions from top to
bottom of the smoothed OCT volume constrained by surface 3 in level 4 [Fig. 3(d)]. The
advantage of the multiscale 3-D graph search over our prior work [12], [13] is the resulting
faster processing speed by detecting intraretinal surfaces in OCT subvolumes instead of
entire OCT volumes. Fig. 3(e) shows segmentation result with the four final intraretinal
surfaces projected over the original spectral-domain OCT volume, and Fig. 3(f) represents
the 3-D rendering of four segmented intraretinal surfaces. The question of the histological
equivalent of the optical interfaces seen on OCT is still not fully settled, but surface 1
corresponds to the internal limiting membrane (ILM), surface 2 is located at the boundary
between inner and outer segments of the photoreceptors, and surface 4 is the outer boundary
of the retinal pigment epithelium (RPE), while surface 3 was used to constrain the OCT
volume for segmentation of surface 4, and does not seem to have a histological equivalent.
Additionally, surfaces 2 and 3 are not present in the ONH region.

B. Retinal Flattening
The retinal volume in the original SD-OCT volume is deformed because of the position of
the scanner relative to the patient’s pupil and because of eye movement. In order to
normalize the optic nerve head shape across patients, the retina in the original SD-OCT
volume was flattened using the second intraretinal surface (surface 2) segmented in Section
II-A because it has a consistent shape over its surface. Based on a thin-plate spline [14]
fitted to the second intraretinal surface (surface 2, excluding the circular region associated
with the optic nerve head), the retina in the original SD-OCT volume was flattened by
adjusting A-scans up and down in the z-direction [13]. The thin-plate spline was used to
flatten the retina in the ONH-centered OCT scan as well as to reduce eye movement
artifacts. The four intraretinal surfaces segmented in the original spectral-domain OCT
volume were similarly transformed into the flattened OCT volume. Fig. 4 shows the X-Z, Y-
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Z images and top intraretinal surface of the original and flattened OCT volumes. In Fig. 4(f),
some blood vessels are visible in the top intraretinal surface.

C. OCT Projection Image
An OCT projection image is necessary for creating the ONH reference standard in SD-OCT
scans as described in Section III. In contrast with the unprocessed 3-D OCT scan, the retinal
vasculature is visible in the projection image. A previously developed approach [10] was
used to detect vessels in the OCT images. Feature points derived from the vasculature such
as bifurcations can be used to register the fundus image with the OCT volume. Additionally,
the projection image also serves for calculation of a local feature for the cup and rim
classification of the OCT volume as described in Section II-D. The OCT projection image
was created by averaging in the z-direction the OCT subvolume between the second and
fourth intraretinal surfaces segmented in Section II-A (surfaces 2 and 4). These two surfaces
define a layer that, due to its position in the retina and high contrast with the retinal
background, contains a large number of high contrast vessel shadows [10].

D. Optic Disc Cup and Neuroretinal Rim Segmentation Using a k-NN Classifier and
Contextual k-NN Classifier

To segment the optic disc cup and rim from the background, a supervised classification
method was used. This method assigned one of three labels (i.e., background, cup, rim) to
each A-scan (voxel column) in the SD-OCT scan. In order to make all training data as
similar as possible, all left eye (OS) OCT scans were reflected in the x-direction to resemble
scans of the right eye (OD). A set of 15 features, obtained from flattened OCT volumes and
intraretinal surfaces, OCT projection images and vessel probability maps [10] were
calculated for each voxel column in the OCT volume.

• The distance between surface 1 and the thin-plate spline fitted to surface 2. This
measures the depth of the optic disc cup

• The distance between surface 1 and 2

• The gradients of surface 1 (Δz/Δx, Δz/Δy). This is motivated by the fact that the
gradient of the retinal surface (i.e., surface 1) is a feature used by glaucoma
specialists to determine the cup and disc areas in stereo fundus photographs

• The x and y positions with respect to the center of the optic disc cup. The center of
the optic disc cup is defined as the (x, y) position of the lowest point of the top
intraretinal surface in the z-axis

• The probability that the voxel column is part of a vessel, based on the vessel
probability map derived from the vessel segmentation. Vessels can distort the depth
measurements, and knowledge about their position helps to compensate for this

• The intensity of the pixel in the OCT projection image corresponding to the voxel
column. The projection image contains information about the vasculature and the
location of the neuroretinal rim edge

• The average intensity of all voxels in the voxel column

• A 6-bin average voxel column intensity histogram (i.e., 90 voxels above and 90
voxels below the thin-plate spline fitted to surface 2). Each bin represents the
average voxel intensity of 30 voxels around the voxel column

Each feature was normalized to have zero mean and unit variance. A k.-NN classifier [15]
was used to perform the classification. For each voxel column the classifier determined k =
31 nearest neighbors in the feature space and assigned the most common label amongst the
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nearest neighbors to the query voxel column [Fig. 5(b)]. To design the k-NN classifier,
classifier performance considering 11 k-values (k = 1,11,…, 101) was compared (showing
little sensitivity to the k-value), while k = 31 showed the best performance using a holdout
strategy. In all cases, the training and testing sets were completely disjoint

Voxel column classification based on the regular k-NN classifier can result in noisy output
due to the fact the classification is based on individual A-scans, and the classifier does not
take information from neighboring voxel columns into account. It is known from prior
knowledge that the method should find two 8-connected objects (i.e., the neuroretinal rim
and optic cup) surrounded by the background. As such, one can assume that A-scans that are
close together have a high probability of having the same label. This observation led us to
incorporate information from neighboring voxel columns in the classification of the query
A-scan. Instead of just determining the k nearest neighbors for the voxel column under
consideration, all k = 31 nearest neighbors for each of the individual A-scans in the 3 × 3
neighborhood centered on the query voxel column were determined. The most frequent label
amongst these 3 × 3 × 31 = 279 nearest neighbors was assigned to the query voxel column
[Fig. 5(c)]. From this point forward, this classification method is referred to as “9-k-NN”
classification

E. Convex Hull-Based Fitting
To preserve the shapes of the optic disc cup and neuroretinal rim, a local fitting method
using the convex hulls of the segmentation was developed. This postprocessing step was
performed to smooth the segmentation results for both the optic disc cup and neuroretinal
rim. Fig. 6 visually illustrates the procedure. Fig. 6(a) shows the segmentation result
obtained by the 9-k-NN classifier. The optic disc cup is used as an example here but the
same procedure is applied to the neuroretinal rim segmentation. The procedure starts by
determining the convex hull of the segmentation [Fig. 6(b)]. To detect the innermost
boundary of the segmented object we turn it “inside-out.” Each edge point located at
distance r from the center [Fig. 6(c)] is relocated to a position R − r from the center [Fig.
6(d)]. Here, R is the radius of a circle around the segmentation; the circle should be large
enough so that it covers the segmentation. We define it such that R = 2 × max(r). The red
line in Fig. 6(e) indicates the convex hull of the inside-out segmentation edge. The
innermost boundary of the segmentation edge [the red line in Fig. 6(f)] was acquired by
inversely applying the previously described transformation to the convex hull in Fig. 6(e).
The line centered between the inner and outer border [the red line in Fig. 6(h)] formed the
final segmentation result

III. Data
27 spectral-domain OCT scans (14 right eye scans and 13 left eye scans) centered at optic
nerve heads from 14 glaucoma patients at the University of Iowa using Cirrus HD-OCT
(Carl Zeiss Meditec, Inc., Dublin, CA) were acquired. Each SD-OCT scan consisted of 200
× 200 × 1024 voxels, the voxel size was 30 × 30 × 2 μm, and the voxel depth was 8 bits in
grayscale. We also acquired 27 stereo color photograph pairs of the optic disc on the same
day from the same patients, corresponding to the SD-OCT scans, using a stereo-base Nidek
3-Dx stereo retinal camera (Nidek, Newark, NJ). The size of the stereo color photographs
was 4096 × 4096 pixels, and the pixel depth was 3 × 8-bit red, green and blue channels

Since experts are not yet familiar with annotating the optic disc cup and neuroretinal rim
margins directly in spectral-domain OCT scans, the cup and rim annotations were acquired
from the optic disc ground truth based on stereo color photographs assessed by two expert
observers. Two sets of repeated cup and rim tracings by the first glaucoma expert were
averaged and used as the reference standard. Cup and rim tracings by the two glaucoma
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experts were used to determine interobserver variability. Fig. 7 shows how the ONH
reference standard of the SD-OCT volume was created from the tracings obtained from the
stereo color fundus photographs. The left image of the stereo color photographs, on which
the experts had annotated their (stereo-based) cup and rim segmentation [Fig. 7(a)], was
registered to the corresponding OCT projection image [Fig. 7(c)] (Section II-C) by a
similarity transformation using two correspondence points manually indicated in both the
stereo color photograph and OCT projection image [Fig. 7(d)]. After registration, the ONH
reference standard of the SD- OCT scan [Fig. 7(e)] was obtained by applying the same
transformation to the stereo color photograph based reference standard [Fig. 7(b)]. The
entire process of obtaining the annotations on stereo fundus photographs is described in
detail in [8]

IV. Experiments
To evaluate our optic disc cup and rim segmentation approach, a leave-one-subject-out
experiment was performed on the 27 spectral-domain OCT scans. Our ONH segmentation
results were compared with the expert-defined reference standard. The accuracy of cup and
rim segmentation was estimated by Dice similarity coefficient (DSC), as well as using
unsigned and signed border positioning errors. The DSC measures the spatial overlap
between two regions, A and B, and is defined as DSC(A,B) = 2(A ∩ B)/(A + B). The
unsigned border positioning errors of the optic disc cup and neuroretinal rim were calculated
by averaging the closest distances between all boundary points from our segmentation result
and those from the reference standard. Note that these border position difference measures
can only be calculated after convex hull fitting has been applied. The signed error was
calculated as the difference in the distance to the center of the optic disc cup. If the distance
from a boundary point from our segmentation result to the center of the optic disc cup is
shorter than that of a boundary point distance from the reference standard to the center of the
optic disc cup, the signed error is negative, otherwise positive. To validate our ONH
segmentation, the unsigned and signed errors of our segmentation results were compared
with the interobserver variability represented by unsigned and signed border positioning
differences between the manual segmentations from the second observer and the reference
standard from the first observer. A paired t-test was used to compare the two segmentation
results, and a p-value of 0.05 was considered significant

V. Results
From Table I reporting DSC values, in comparison between the k-NN and 9- k-NN
classifiers, the 9- k-NN classifier showed significantly larger DSCs for both the optic disc
cup (p < 0.001) and neuroretinal rim (p < 0.002). While optic disc cup segmentation results
from the 9- k-NN classifier with convex hull-based fitting were not significantly different
from those from the 9- k-NN classifier (p > 0.3), neuroretinal rim segmentation results from
the 9- k-NN classifier with convex hull-based fitting showed significantly larger DSCs than
those from the 9- k-NN classifier (p < 0.001)

Based on the unsigned border positioning errors reported in Table II, optic disc cup
segmentation results from the two classifiers with convex hull-based fitting did not show a
statistically significant difference (p > 0.2). However, in neuroretinal rim segmentation
results, the 9-k-NN classifier with convex hull-based fitting showed significantly smaller
unsigned errors than the k-NN classifier with convex hull-based fitting (p < 0.04). There was
no statistically significant difference between the unsigned error of the 9- k-NN classifier
with convex hull-based fitting and the unsigned border positioning difference of the second
observer for the optic disc cup (p > 0.2) and neuroretinal rim (p > 0.2)
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From the signed border positioning errors reported in Table III (i.e., segmentation bias), the
optic disc cup and neuroretinal rim segmentation results from the 9- k-NN classifier with
convex hull-based fitting had significantly smaller bias for both the optic disc cup and
neuroretinal rim than those from the k-NN classifier with convex hull-based fitting (p <
0.001). The bias of the 9- k-NN classifier with convex hull-based fitting was also
significantly smaller than the (absolute) signed border positioning difference of the second
observer to the reference standard (p < 0.001 for both the optic disc cup and neuroretinal
rim)

Figs. 8 and 9 show our ONH segmentation results of the best and worst performance
obtained by the 9- k-NN classifier with convex hull-based fitting which have the minimum
and maximum sums of unsigned errors of the optic disc cup and neuroretinal rim,
respectively

VI. Discussion and Conclusion
We have presented a method to automatically segment the optic disc cup and rim surfaces in
optic nerve head-centered 3-D spectral-domain OCT volumes. The method uses a multiscale
3-D graph search method to segment the retinal layers and a k-NN classifier that employs
contextual information combined with convex hull fitting to segment the optic disc cup and
neuroretinal rim. The method shows excellent results when compared with our stereo-fundus
photography derived independent standard and interobserver variability

The presented results confirm that the contextual 9- k-NN classifier outperforms the regular
k-NN classifier when no postprocessing is applied. If postprocessing is applied, the9- k-NN
classifier has a significantly better Dice similarity coefficient (p < 0.001) on the rim
segmentation. Even though the difference in Dice similarity coefficients between the 9- k-
NN and 9- k-NN with post processing is much smaller, it is still significant, illustrating the
need for the postprocessing step in the proposed method. In addition, the use of
postprocessing also improves the pixelated appearance of the segmentation result

An additional interesting result was the fact that there was no significant difference (p > 0.2
for both the optic disc cup and the neuroretinal rim) between the unsigned error of the best
performing automatic method and the interobserver variability assessed as unsigned border
positioning difference between the two observers. In fact, the unsigned error of the
automatic method is slightly lower than the unsigned border positioning difference of the
second observer. This is most likely caused by overtraining on a single observer. In this
study, the reference standard was set by a single expert. We have previously shown that
there is substantial interobserver variability of planimetry of the optic disc in stereo color
fundus photographs [2]. By training the automatic method on the segmentations from a
single expert observer, the method produces results that are biased towards the opinion of
this observer. This hypothesis seems to be confirmed by the signed errors in Table III that
show that the computer method has a lower bias with respect to the reference standard
(based on observer 1) than with respect to the second observer. Training the system using a
reference standard that is based on the opinion of multiple experts should alleviate this issue

Overall, the method shows very good performance. Some issues remain with the ability of
the method to adapt to normal anatomical variations inside the optic nerve head. The shape
of the optic nerve head in 3-D is similar across the patients in this study. However the width
and depth of the cup can vary considerably across subjects. The optic nerve head in the
worst performing case (Fig. 9) has a very wide optic disc cup, and a vessel is running along
the cup disturbing the optic disc cup depth measurement. This example illustrates one of the
largest issues for the current method. Vessels near the optic nerve head tend to be wide, and
they can run partially along the optic disc cup disturbing the local geometry and depth
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measurements. This in turn can lead to misclassified A-scans on the vessels and a less
accurate rim or cup border location after postprocessing. We have attempted to alleviate this
problem by including the output of a vessel segmentation system applied to the projection
image in the feature set. It is likely that the method would benefit from additional processing
steps to compensate for the presence of vessels in and around the optic nerve head

There are a number of other possible improvements to the system. The layer segmentation
results are a possible source of errors. When large variations in the surface are present,
segmentation errors can occur, and this can influence the depth measurements within the
optic nerve head. This is primarily an issue for the top surface. Several additions to the basic
graph search algorithm used in this work can be considered. The addition of regional
information to the edge-based cost function for 3-D graph search could potentially increase
the segmentation accuracy [12], [13]. Feature selection is often used in pattern recognition to
select the most important features in a set. However, due to the limited amount of data
available and the leave-one-subject-out nature of the performed experiment, which would
mean we needed to perform feature selection 14 times, we decided not to perform feature
selection. In the future, the use of an independent set to select the most important features
may lead to a faster system with a further improved performance. As a general comment,
close-to-isotropic SD-OCT is preferable for this type of classification given its higher
sample ratio; however, 3-D-OCT is not necessarily superior to 2-D-OCT in general, see for
example [16]

The average processing time of the complete method is 132 s. The segmentation of the four
intraretinal surfaces using the multiscale 3-D graph search approach takes approximately 80
s, and the feature extraction and classification require 52 s. The method was implemented
using C + + on a PC (Microsoft Windows XP Professional x64 edition, Intel Core 2 Duo
CPU at 3.00 GHz, 4 GB RAM). As the implementation was not optimized for speed,
additional speed improvements can be expected

To summarize, we have presented a method for the segmentation of the optic disc cup and
neuroretinal rim from 3-D spectral OCT scans of the optic nerve head. The unsigned error of
the method is not significantly different from the interobserver variability
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Fig. 1.
Cross-sectional images of the spectral-domain OCT volume in glaucoma. (a) X-Y image of
the OCT volume. (b) X-Z image of the OCT volume corresponding to the horizontal line in
(a). (c) Y-Z image of the OCT volume corresponding to the vertical line in (a).
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Fig. 2.
Block diagram of our ONH segmentation method.

Lee et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Intraretinal surface segmentation. (a) Original ONH-centered OCT volume. (b) Smoothed
OCT volume. (c) Gradient images across scales with segmented surfaces 1, 2, and 3
overlaid. The 2 panels above the gradient images in multiscale levels i (1 ≤ i ≤ 4) show the
inverted gradient magnitudes constrained by the surfaces already determined in the
immediately-lower-scale level i − 1. The top panel part shows the constrained search space
for surface 1, the second panel portion from top shows the constrained space for
simultaneously detecting the pair of surfaces 2 and 3. The gradient images are gray-level
stretched for visualization purposes. (d) The segmentation of surface 4 using 3-D single
surface graph search, shown overlaid on the image gradient data. The search space for
surface 4 is constrained by the previously segmented surface 3 in level 4 as shown in the top
portion of this panel. (e) Our intraretinal surface segmentation result overlaid on the original
OCT volume. (f) 3-D rendering of four segmented intraretinal surfaces. The regions of
surfaces 2, 3, and 4 around the optic nerve head were ignored since intraretinal surfaces are
ambiguous in these regions.
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Fig. 4.
Retinal flattening of the ONH-centered OCT volume. (a) X-Z image of the original OCT
volume. (b) Y-Z image of the original OCT volume. (c) 3-D rendering of the top intraretinal
surface in the original OCT volume shows eye movement artifacts in the y-axis (parallel
ridges across the surface, arrows). (d) X-Z image of the flattened OCT volume. (e) Y-Z
image of the flattened OCT volume. (f) 3-D rendering of the top intraretinal surface in the
flattened OCT volume. The eye movement artifacts are reduced so that major blood vessels
are visible.
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Fig. 5.
Example of our optic disc cup and neuroretinal rim segmentation. (a) OCT projection image.
(b) Our segmentation result using a k-NN classifier. The optic disc cup is in white, the
neuroretinal rim is in gray, and the background is in black. (c) Segmentation result using a
9-k-NN classifier. (d) Segmentation result using the 9-k-NN classifier with convex hull-
based fitting. (e) OCT projection image overlapped with the reference standard. The optic
disc cup is in red, and the neuroretinal rim is in green. (f) OCT projection image overlapped
with (b). (g) OCT projection image overlapped with (c). (h) OCT projection image
overlapped with (d)
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Fig. 6.
Convex hull-based fitting. (a) Optic disc cup segmentation result obtained by a 9-k-NN
classifier. (b) Outermost region surrounded by the convex hull of the segmentation in (a). (c)
Boundary of the segmentation in (a). Here, r is the distance between the center of the optic
disc cup and the boundary of (a), and R is the radius of the circle whose origin is the center
of the optic disc cup. The R is the maximum r multiplied by 2. (d) Boundary after an
“inside-out” transformation that replaced r with R − r based on the center of the optic disc
cup. (e) B-spline (red line) connecting the convex hull of (d). (f) Innermost boundary (red
line). (g) Innermost region. (h) The middle boundary (red line) forms the final segmentation
result
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Fig. 7.
Acquisition of the ONH ground truth of the spectral-domain OCT scan. (a) One of a pair of
stereo color photographs. (b) Optic disc ground truth of (a), which is manually segmented by
a glaucoma expert through planimetry on one (left) of the pair of stereo fundus photographs
while viewing the pair through a stereo viewer. The optic disc cup is in white, and the
neuroretinal rim is in gray. (c) OCT projection image. (d) Fundus photograph (panel a)
registered onto OCT projection image (panel c). (e) OCT projection image overlapped with
the ONH ground truth. The optic disc cup is in red, and the neuroretinal rim is in green
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Fig. 8.
Example of the best ONH segmentation performance case [unsigned error for the optic disc
cup = 1.26 pixels (0.038 mm) and unsigned error for the neuroretinal rim = 0.87 pixels
(0.026 mm)]. From top to bottom, left stereo color photograph, X-Z image at the center of
the OCT volume and 3-D rendering of the top intraretinal surface mapped with the left
stereo color photograph. (a) Without any overlap. (b) Overlapped with the result from the 9-
k-NN classifier with convex hull-based fitting. The optic disc cup is in red and the
neuroretinal rim is in green. (c) Overlapped with the reference standard. (d) Overlapped with
the manual segmentation from the second observer
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Fig. 9.
Example of the worst segmentation performance case [unsigned error for the optic disc cup
= 4.19 pixels (0.126 mm) and unsigned error for the neuroretinal rim = 3.30 pixels (0.099
mm)]. From top to bottom, left stereo color photograph, X-Z image at the center of the OCT
volume and 3-D rendering of the top intraretinal surface mapped with the left stereo color
photograph. (a) Without any overlap. (b) Overlapped with the result from the 9-k-NN
classifier with convex hull-based fitting. The optic disc cup is in red and the neuroretinal rim
is in green. (c) Overlapped with the reference standard. (d) Overlapped with the manual
segmentation from the second observer
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TABLE I

Dice Similarity Coefficients (Mean ± SD)

k-NN k-NN + Convex 9-k-NN 9-k-NN + Convex

Cup 0.841 ± 0.054 0.850 ± 0.054 0.851 ± 0.058 0.853 ± 0.057

Rim 0.603 ± 0.137 0.617 ± 0.146 0.637 ± 0.136 0.646 ± 0.139
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TABLE II

Unsigned Border Positioning Errors (Mean ± SD)

Cup (pixel) Cup (mm) Rim (pixel) Rim (mm)

k-NN + Convex vs. Ref. standard 2.621 ± 0.912 0.079 ± 0.027 2.438 ± 1.178 0.073 ± 0.035

9-k-NN + Convex vs. Ref. standard 2.525 ± 0.869 0.076 ± 0.026 2.043 ± 0.858 0.061 ± 0.026

2nd observer vs. Ref. standard 2.536 ± 1.028 0.076 ± 0.031 2.144 ± 0.804 0.064 ± 0.024
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TABLE III

Signed Border Positioning Errors (Mean ± SD)

Cup (pixel) Cup (mm) Rim (pixel) Rim (mm)

k-NN + Convex vs. Ref. standard 0.481 ± 1.932 0.014 ± 0.058 0.990 ± 2.080 0.030 ± 0.062

9-k-NN + Convex vs. Ref. standard 0.008 ± 1.904 0.000 ± 0.057 −0.062 ± 1.602 −0.002 ± 0.048

2nd observer vs. Ref. standard 2.211 ± 1.280 0.066 ± 0.038 1.728 ± 1.091 0.052 ± 0.033
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