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Abstract
This article expands upon recent interest in Bayesian hierarchical models in quantitative genetics
by developing spatial process models for inference on additive and dominance genetic variance
within the context of large spatially referenced trial datasets of multiple traits of interest. Direct
application of such multivariate models to large spatial datasets is often computationally infeasible
because of cubic order matrix algorithms involved in estimation. The situation is even worse in
Markov chain Monte Carlo (MCMC) contexts where such computations are performed for several
thousand iterations. Here, we discuss approaches that help obviate these hurdles without
sacrificing the richness in modeling. For genetic effects, we demonstrate how an initial spectral
decomposition of the relationship matrices negates the expensive matrix inversions required in
previously proposed MCMC methods. For spatial effects we discuss a multivariate predictive
process that reduces the computational burden by projecting the original process onto a subspace
generated by realizations of the original process at a specified set of locations (or knots). We
illustrate the proposed methods using a synthetic dataset with multivariate additive and dominant
genetic effects and anisotropic spatial residuals, and a large dataset from a scots pine (Pinus
sylvestris L.) progeny study conducted in northern Sweden. Our approaches enable us to provide a
comprehensive analysis of this large trial which amply demonstrates that, in addition to violating
basic assumptions of the linear model, ignoring spatial effects can result in downwardly biased
measures of heritability.
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1. INTRODUCTION
Increasing international carbon credit markets and demand for wood fiber to supply
burgeoning bioeconomies has spurred interest in improving forest ecosystem services. Much

NIH Public Access
Author Manuscript
J Am Stat Assoc. Author manuscript; available in PMC 2010 July 29.

Published in final edited form as:
J Am Stat Assoc. 2010 June 1; 105(490): 506–521. doi:10.1198/jasa.2009.ap09068.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of this demand will be met by large plantation forests and, as a result, foresters seek methods
to improve the productivity of these plantations. Tree breeding is one of the most important
methods to improve productivity. Here, the focus is on increasing the genetic gain in future
generations of certain traits by identifying and mating superior individuals that have high
breeding values. In plantation settings, foresters are typically interested in improving traits
which increase wood production (e.g., increasing both stem height and diameter).
Depending on the anticipated use of the wood, there are other traits considered such as those
that determine stem quality (e.g., the number and form of knots produced by branches from
the stem). The principal objective is to reveal whether interrelationship among these various
traits of primary or secondary interest are favorable or unfavorable for future selection (i.e.,
evaluating if traits are positively or negatively correlated depending on the objectives of the
study). Henderson and Quaas (1976) introduced the multitrait animal (or tree or individual)
model in quantitative genetics. Efficient breeding requires accurate estimates of the genetic
variance and covariance parameters within the multitrait animal model and individual
breeding values (Lynch and Walsh 1998).

Quantitative genetics studies the inheritance of polygenic traits, focusing upon estimation of
additive genetic variance and heritability often estimated as the proportion of additiuve
variance out of the total genetic and unexplained variation. A high heritability should result
in a larger selection response, that is, a higher probability for genetic gain in future
generations. A feature common to genetic trials in forestry and agriculture is the presence of
systematic heterogeneity among observational units. If this spatial heterogeneity is neglected
in the model, estimates of the genetic parameters might be biased (Dutkowski et al. 2002;
Cappa and Cantet 2007). For spatially arranged observational units, heterogeneity typically
results from small-scale environmental conditions (e.g., soil characteristics, microclimates,
light availability, etc.) that might cause correlation among units as a function of distance
and/or direction. While traditional randomized designs sought to negate any confounding
spatial correlation, recent interest has shifted to models accounting for spatial correlation
that, most often, incorporate spatial correlation through differencing or by constructing
covariates using residuals from neighboring units (see, e.g., Zimmerman and Harville 1991;
Cullis et al. 1998).

Hierarchical random effects models implemented through Markov chain Monte Carlo
(MCMC) methods have recently gained popularity within quantitative genetics (see, e.g.,
Sorensen and Gianola 2002; Waldmann and Ericsson 2006; and references therein). Both
single-component and blocked Gibbs samplers have been proposed. However, the former
suffer from slow mixing and the latter often involve matrix decompositions whose
complexity increases as O(n3) in the number of observations, n, at every iteration of the
MCMC algorithm. These computationally intensive matrix calculations limit inference to
small datasets insufficient for breeding purposes. Recently, Finley et al. (2009a) proposed a
class of hierarchical models for a single outcome variable with genetic and spatial random
effects that are suited for large datasets. A regular spectral decomposition of genetic
covariance matrices together with a reduced-rank spatial process enable full Bayesian
inference using MCMC methods.

The current article extends the work of Finley et al. (2009a) to a multivariate spatial setting,
where georeferenced trees with known pedigrees have been observed. Multiple traits of
breeding interest are measured on each tree. We posit that the variation within and between
these traits can be explained by heredity, spatial variation (e.g., soil characteristics or small
scale topographic attributes), and some unstructured measurement error. Here we focus upon
three traits that are vitally important in the production of trees for lumber and biomass:
height (H), diameter at 1.4 meters from the ground (D), and branch angle (B). The first two
traits describe the amount of wood produced by a tree (i.e., the wood volume) and the third
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describes both the wood quality (i.e., due to knots resulting from branches connecting to the
tree bole) and structural integrity of the tree (i.e., susceptibility to breakage due to heavy
snow loadings). By estimating the variability of each trait’s additive and, to some extent,
nonadditive effects while adjusting for their associations within a location, along with the
breeding values, plantation tree nurseries are better able to choose among breeding stock to
produce seed with the greatest genetic potential for the desired traits.

One approach builds hierarchical multivariate spatial models by exploiting conditional
relationships (spatial regressions) between the variables (Royle and Berliner 1999). This can
accrue some computational benefits (see, e.g., Banerjee, Carlin, and Gelfand 2004, section
7.2.2) and can be useful in situations where there is a natural chronology, or causality, for
the conditioning. For genetic traits, however, such chronology is often absent or, at best,
controversial and one seeks joint multivariate models (e.g., Gelfand et al. 2004; Jin,
Banerjee, and Carlin 2007).

For the genetic effects we make use of separable association structures and derive a
multivariate eigen-decomposition that separates heredity from association among the traits
and produces significant computational benefits. For multivariate spatial dependence, a
computationally feasible choice is “separable” or “intrinsic” association structures (see, e.g.,
Banerjee, Carlin, and Gelfand 2004, chapter 7). Here each trait is assigned the same spatial
correlation function. It is unlikely that the strength and nature of association will be the same
for the different traits and we seek more flexible correlation structures that accommodate a
different spatial correlation function for each trait.

A “linear model of coregionalization” (Gelfand et al. 2004) yields arbitrarily rich
multivariate correlation models, but its estimation for large datasets is onerous. A reduced-
rank multivariate “kriging” model can help achieve dimension reduction. One possibility is
to use low-rank smoothing splines that have been fairly conspicuous in univariate settings
(Kamman and Wand 2003; Ruppert, Wand, and Carroll 2003; Crainiceanu, Diggle, and
Rowlingson 2008). With multiple traits we require multivariate splines whose specifications
may be awkward. A reduced-rank multivariate spatial process is arguably more natural and
at least as flexible here with the nice interpretability of correlation functions (see Banerjee et
al. 2008; Cressie and Johannesson 2008).

A key point here is to address the issue of systematic biases in the estimates of variance
components that arise in low-rank kriging or spline models. Since most existing low-rank
methods focus upon prediction and smoothing, this has remained largely unaddressed in the
aforementioned literature. Here we offer further insight into this systematic bias and
improve the predictive process model with a bias-adjustment that easily applies to
multivariate applications. Again, the spatial process approach that we adopt here facilitates
in understanding and rectifying these biases that, arguably, would have been more difficult
to resolve with multivariate splines.

In Section 2, we develop the multivariate spatial models for the data. Section 3 discusses the
dimension-reducing predictive process models, systematic biases in estimating variance
components from such models and their remedy. Section 4 outlines the implementation
details for the genetic and spatial effects. A synthetic data analysis and the scots pine
analyses are presented in Section 5. Finally, Section 6 concludes the article with a brief
discussion.

2. MULTIVARIATE SPATIAL MODELS FOR PROGENY TRIALS
For our subsequent development we consider a finite collection of spatial locations, say  =
{s1, …, sn}, referenced by Easting–Northing, where m phenotypic traits of a tree have been
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observed. Let Yj(si) denote the outcome variable corresponding to the jth trait at location si
and Y(si) = (Y1(si), …, Ym(si))′ is the collection of the outcome measures in site si. Models
for trait outcome measures, that is, the Yj(si)’s, should account for inherent association
between the traits within each location and between observations across locations.

2.1 Multivariate Trait Model With Structured Random Effects
Finley et al. (2009a) (also see references therein) discussed structured random effect models
for a single trait. Here we extend their work to multivariate traits over spatial domains. The
following multivariate spatially referenced trait model

(1)

Here X(si)′ is an m × p block-diagonal matrix ( ), with lth diagonal element being

the 1 × pl vector xl(si)′ and  is a p × 1 vector of regression coefficients, with
each βl a pl × 1 vector of regression coefficients corresponding to xl(si)′. This specifies the
mean structure that accounts for large-scale variation in the outcome. Finer-scale variation in
the dependent variable at each location si is modeled using three structured random effects.
The first is an m × 1 vector of additive effects ai = (ai1, …, aim)′, the second is an m× 1
vector of dominance effects di, defined analogously to ai, and the third is an m × 1 vector of
spatial processes w(si). Finally, we account for the unstructured residuals ε(si) that follow a
zero-centered multivariate normal distribution with zero mean and an m × m diagonal

matrix, denoted , as its dispersion matrix. Therefore, each outcome variable
accommodates its respective variability in measurement—a phenomenon not uncommon in
progeny trial datasets.

While ai and di play the role of correlated random effects to capture extraneous variation in
the outcome attributable to additive and dominant effects, the spatial effects are assumed to
arise from realizations of a spatial stochastic process. Conceptually, w(s) is an unknown
function of space and exists at every every location s residing in our spatial domain . The
realizations of this process over a finite set of locations, such as , yields spatially correlated
random effects, but w(s), being an unknown, perhaps arbitrarily complex, function of space
can also act as a surrogate for missing spatially informative predictors in the model. A
challenge is to specify computationally feasible multivariate spatial processes. We discuss
this in Section 2.3.

In modeling these multivariate effects, we need to model associations between the outcome
variables within a site as well as association across sites. The m × 1 additive and dominance
vector effects, ai and di, are assumed to have the m × m dispersion matrices Σa and Σd to
model within-site association between the different types. These associations are assumed to
remain invariant across the locations. One approach is to “separate” the correlation between
the different trees from the association between the traits within a location. For example, we
can specify cov{ai, aj} = ãijΣa, where Σa is a m × m dispersion matrix capturing the
association attributable to additive effects between the traits. This specification produces
valid probability models whenever Σa is positive definite and the A = {ãij} is a positive-
definite matrix. The dominance effects di is modeled analogously as cov{di, dj} = d̃ijΣd
where Σd is the dispersion matrix modeling association between the traits attributable to
dominance effects and D = {d̃ij} is positive definite. Lynch and Walsh (1998) detail
calculation of A and D from pedigree information.
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Estimating (1) from large datasets can be a computationally onerous task as it involves the

inverses of the dispersion matrices of , d defined analogously and w = (w(s1)′,
…, w(sn)′)′. For the genetic effects, separability simplifies computations through the
Kronecker products var{a} = A ⊗ Σa and var{d} = D ⊗ Σd. Modeling the multivariate
spatial effects flexibly in a computationally feasible manner is, however, more challenging
and we explore this in the subsequent sections.

2.2 Spatial Cross-Covariance Functions for Multivariate Processes
Spatially structured dependence is introduced in (1) through a multivariate (m × 1) spatial
process w(s) ~ GP(0, Cw(·, ·; θ)) (e.g., Cressie 1993), where the cross-covariance function
Cw(s1, s2) is defined to be the m × m matrix with (i, j)th entry cov{wi(s1), wj(s2)}. The cross-
covariance function completely determines the joint dispersion structure implied by the
spatial process. Specifically, for any n and any arbitrary collection of sites  = {s1, …, sn}
the nm × 1 vector of realizations w = (w(s1)′, …, w(sn)′)′ will have the variance–covariance
matrix given by Σw, an nm × nm block matrix whose (i, j)th block is the cross-covariance
matrix Cw(si, sj). Since Σw must be symmetric and positive definite, it is immediate that the
cross-covariance function must satisfy (i) Cw(si, sj) = Cw(sj, si)′ for any pair of locations and

(ii)  for all xi, xj ∈ ℜm\{0}.

The first condition asserts that Σw be symmetric, although the cross-covariance function
itself need not be. The second ensures the positive definiteness of Σw and is in fact quite
stringent: this condition must hold for any arbitrary set of distinct locations. The above
definition implies that Cw(s, s) is symmetric and positive definite. In fact, it is precisely the
variance–covariance matrix for the elements of w(s) within site s. We say that w(s) is
stationary if Cw(si, sj) = Cw(hij), where hij = si − sj, while w(s) is isotropic if Cw(si, sj) =
Cw(||hij||), that is, the cross-covariance function depends only upon the distance between the
sites. For stationary processes, condition (i) above implies that Cw(−h) = Cw(h)′, so that
symmetric cross-covariance functions are even, that is, Cw(−h) = Cw(h). For isotropic
processes, the cross-covariance function will be even and the matrix is necessarily
symmetric.

One possibility for Cw(s1, s2) is a separable specification, ρ(s1, s2; φ)Σw, where Σw is an m ×
m covariance matrix between the traits and ρ(s1, s2; φ) is a spatial correlation function (e.g.,
Zimmerman and Harville 1991; Cressie 1993; Stein 1999). This implies var(w) = R(φ) ⊗
Σw, where R(φ) = {ρ(si, sj; φ)}. Correlation functions must be positive definite, that is, the
matrix R(φ) must be positive definite for any finite collection of sites. When this function
depends only upon the separation (difference) between the coordinates, we say the function,
or the spatial process, is (weakly) stationary. Moreover, if the function depends only upon
the distance between the locations, then we say that the process is isotropic. A well-known
result due to Bochner (e.g., Cressie 1993; Stein 1999) characterizes all real-valued positive-
definite functions as characteristic functions of symmetric random variables. A separable
spatial association structure is rather restrictive here, assigning a single set of spatial
correlation parameters φ to be shared by all the traits. This can be inappropriate: why should
all the traits have, for example, the same strength of spatial association?

More general cross-covariance functions are not routine to specify since they demand that
for any number of locations and any choice of these locations the resulting covariance
matrix for the associated data be positive definite. Various constructions are possible. One
possibility is the moving average approach of Ver Hoef, Cressie, and Barry (2004). The
technique is also called kernel convolution and is a well-known approach for creating rich
classes of stationary and nonstationary spatial processes (e.g., Higdon 2002). Yet another
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approach could attempt a multivariate version of local stationarity, extending ideas in
Fuentes (2002). The primary characterization theorem for cross-covariance functions
(Yaglom 1987) says that real-valued functions, say Cij(h), will form the elements of a valid
cross-covariance matrix  if and only if each Cij(h) has the cross-spectral
representation Cij(h) = ∫ exp(2πιt′h) d(Cij(t)), where , with respect to a positive
definite measure C(·), that is, the cross-spectral matrix  is positive definite
for any Borel subset B ⊆ ℜd. The cross-spectral representation provides a very general
representation for cross-covariance functions. Matters simplify when Cij(t) is assumed to be
square-integrable ensuring that a spectral density function cij(t) exists such that d(Cij(t)) =

cij(t) dt. Now one simply needs to ensure that  are positive definite for all t ∈ ℜd.
Corollaries of the above representation lead to the approaches proposed by Gaspari and
Cohn (1999) and Majumdar and Gelfand (2007) for constructing valid cross-covariance
functions as convolutions of covariance functions of stationary random fields. For isotropic
settings the development is very similar; customary notations use Cw(hij) where hij = ||si −
sj|| is the distance between any two sites.

2.3 A Simple Construction of Valid Cross-Covariance Functions
Cross-spectral forms are often computationally infeasible resulting in integral
representations with embedded parameters that are difficult to estimate. We motivate an
alternative approach as follows. For the separable model, notice that we can write Cw(s1, s2;
θ) = LΘ(s1, s2; φ)L′ where Σw = LL′ is a Cholesky factorization and Θ(s1, s2; φ) = ρ(s1, s2;
φ)Im. More generally, any valid cross-covariance matrix can be expressed as Cw(s1, s2; θ) =
L(s1)Θ(s1, s2; φ)L(s2)′. We call Θ(s1, s2) the cross-correlation function which must satisfy
the two conditions for a cross-covariance function and, in addition, must satisfy Θ(s, s) = Im.
This implies that Cw(s, s) = L(s)L(s)′ and L(s) identifies with a matrix square root (e.g.,
Cholesky) of Cw(s, s). A flexible and computationally feasible approach generalizes the
spatial correlation function Θ(s1, s2; φ) as a diagonal matrix with ρk(s1, s2; φk), k = 1, …, m,
as its diagonal elements. This incorporates a set of m correlation parameters, or even m
different correlation functions, offering an attractive, easily interpretable and flexible
approach. This approach resembles the linear model of coregionalization (LMC) as in, for
example, Wackernagel (2006), Gelfand et al. (2004), and Zhang (2007). See, also, Reich and
Fuentes (2007) for a Bayesian non-parametric adaptation.

For modeling L(s), without loss of generality one can assume that  is a lower-
triangular square root; the one-to-one correspondence between the elements of L(s) and
Cw(s, s) is well known (see, e.g., Harville 1997, p. 229). Therefore, L(s) determines the
association between the elements of w(s) within s. Choices for modeling L(s) include an
inverse spatial-Wishart process for L(s)L(s)′ (Gelfand et al. 2004), element-wise modeling
with Gaussian and log-Gaussian processes, or using parametric association structures
suggested by the design under consideration. When stationarity is assumed, so that Cw(s, s)
= Cw(0) and L(s) = L, we could assign a prior, for example, inverse Wishart, to LL′.
Alternatively, instead of a lower-triangular Cholesky factor, we could opt for a spectral
square root, setting L(s) = P(s) Λ (s)1/2, where Cw(s, s) = P(s) ΛP(s)′ is the spectral
decomposition for Cw(s, s). We can further parameterize the orthogonal m × m orthogonal
matrix function P(s) in terms of the p(p − 1)/2 Givens angles θij(s) for i = 1, …, p − 1 and j

= i + 1, …, p (Daniels and Kass 1999). Specifically,  where i
and j are distinct and Gij(θij(s)) is the p × p identity matrix with the ith and jth diagonal
elements replaced by cos(θij(s)), and the (i, j)th and (j, i)th elements replaced by ± sin(θij(s)),
respectively. Given P(s) for any s, the θij(s)’s are unique within range (−π/2, π/2). These
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may be further modeled by means of Gaussian processes on a suitably transformed function,

say .

2.4 Choice of Correlation Function
Finally, we turn to the choice of the spatial correlation functions. The nonstationary Matérn
correlation function (Paciorek and Schervish 2006),

offers a very flexible choice for ρ(si, sj; φ(si, sj)). Here φ(si, sj) = (ν, Σ(si), Σ(sj)) varies
across the domain (nonstationary), Γ(ν) is the Gamma function, κν is a Bessel function of the

second kind and  is the Mahalanobis distance between
si and sj. When Σ(s) = Σ is constant over space, we have

, where d(si, sj) = (si − sj)TΣ−1(si − sj).
This yields a stationary but anisotropic process which can be parameterized as Σ = G(ψ) ×
Λ2GT(ψ) where G(ψ) is a rotation matrix with angle ψ and Λ is the diagonal matrix with
positive diagonal elements, the λ’s. Thus, φ = (ν, ψ, Λ). The parameter ν controls the
smoothness while the rate of spatial decay is controlled by the λ2’s. Finally, a stationary and

isotropic process results with Σ = I, whence 
with Σ−1 = I and where φ = (ν, λ) with λ controlling spatial decay. This is further simplified
by fixing ν = 0.5, yielding the familiar exponential correlation ρ(si, sj; λ) = exp(−λd(si, sj)).

Once a valid cross-covariance function is specified for a multivariate Gaussian process, the
realizations of w(s) over the set of observed locations  are given by N(0, Σw(θ)), where
Σw(θ) is an mn × mn block matrix whose (i, j)th block is the m × m cross-covariance Cw(si,
sj; θ), i, j = 1, …, n. Without further specifications, estimating (1) will involve factorizations
that yield the inverse and determinant of the mn × mn matrix Σw(θ). Such computations
invoke linear solvers or Cholesky decompositions of complexity O(n3m3), once every
iteration, to produce estimates of θ. With large n, this is computationally infeasible and we
resort to a class of dimension-reducing models in the next section.

3. PREDICTIVE PROCESS MODELS FOR LARGE SPATIAL DATASETS
3.1 Approaches for Modeling Large Spatial Datasets: A Brief Review

Modeling large spatial datasets have received much attention in the recent past. Vecchia
(1988) proposed approximating the likelihood with a product of appropriate conditional
distributions to obtain maximum-likelihood estimates. Stein, Chi, and Welty (2004) adapt
this effectively for restricted maximum likelihood estimation. Another possibility is to
approximate the likelihood using spectral representations of the spatial process (Fuentes
2007). These likelihood approximations yield a joint distribution, but not a process that
facilitate spatial interpolation. Furthermore, these approaches do not seem to extend easily to
multivariate settings, especially in the presence of other structured dependencies such as
genetic traits. Yet another approach considers compactly supported correlation functions
(Furrer, Genton, and Nychka 2006; Kaufman, Schervish, and Nychka 2008; Du, Zhang, and
Mandrekar 2009) that yield sparse correlation structures. More efficient sparse solvers can
then be employed for kriging and variance estimation, but the tapered structures may limit
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modeling flexibility. Also, full likelihood-based inference still requires determinant
computations that may be problematic.

In recent work Rue, Martino, and Chopin (2009) propose a promising Integrated Nested
Laplace Approximation (INLA) algorithm as an alternative to MCMC that utilizes the
sparser matrix structures to deliver fast and accurate posterior approximations. This uses
conditional independence to achieve sparse spatial precision matrices that considerably
accelerate computations, but relaxing this assumption would significantly detract from the
computational benefits of the INLA and the process needs to be approximated by a Gaussian
Markov Random Field (GMRF) (Rue and Held 2006). Furthermore, the method involves a
mode-finding exercise for hyper-parameters that may be problematic when the number of
hyperparameters is more than 10. Briefly, its effectiveness is unclear for our multivariate
genetic models with different structured random effects and unknown covariance matrices as
hyperparameters.

We opt for a class of models that emerge from representations of the spatial process in a
lower-dimensional subspace and that easily adapt to multivariate processes. These are often
referred to as low-rank or reduced-rank spatial models and have been explored in different
contexts (Kamman and Wand 2003; Stein 2007, 2008; Banerjee et al. 2008; Crainiceanu,
Diggle, and Rowlingson 2008; Cressie and Johannesson 2008). Many of these methods are
variants of the so-called “subset of regressors” methods used in Gaussian process
regressions for large datasets in machine learning (e.g., Rasmussen and Williams 2006). The
idea here is to consider a smaller set of locations, or “knots,” say , where the
number of knots, n*, is much smaller than the number of observed sites, and to express the
spatial process realizations over  in terms of its realizations over the smaller set of knots. It
is reasonable to assume that the spatial information available from the n sites could be
summarized in terms of a smaller, but representative, set of locations—the knots. This is
achieved by an optimal projection of w(s) using the information available from the knots.

3.2 Predictive Process Models
A process-based reduced-rank formulation has recently been explored by Banerjee et al.
(2008). We call w(s) the parent process and consider its realizations over an arbitrary set of

n* locations  with n* ≪ n. Letting  be the realizations
of the parent process over , we formulate a multivariate predictive process defined as

(2)

where (s; θ)′ is a 1× n* block matrix, each block being m× m, Cw(s, s*; θ) is the ith block,
and Σ*(θ) is the n*m × n*m dispersion matrix of w*, that is, with  as its (i, j)th
block. Equation (2) reveals w̃(s) to be a zero mean m × 1 spatial process with cross-
covariance matrix given by Cw̃(si, sj; θ) = (si; θ)′Σ*(θ)−1 (sj; θ). The appeal here is that
every spatial process (parent) model produces a corresponding predictive process version.
Thus, the predictive process counterpart of the parent model in (1) is given by

(3)
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No new parameters are introduced and the cross-covariance function of the predictive
process derives directly from that of the parent process.

Unlike many other knot-based methods, the predictive process model does not introduce
additional parameters or in having to project the data onto a grid. Also, some approaches
(e.g., Cressie and Johannesson 2008) require obtaining an empirical estimate of the
covariance function. This may be challenging for the hierarchical models we envision here
as the variability in the “data” is assumed to be a sum of different structured effects. Hence
we cannot use variograms on the data to isolate the empirical estimates of the covariance
function from the other random effects. These effects are identified through the second-stage
specifications of their dispersion structures. In addition, the predictive process enjoys several
desirable theoretical properties in terms of approximating the parent process. For instance, w̃
(s), being a conditional expectation, can be regarded as an orthogonal projection of w(s) on
an appropriate linear subspace (e.g., Stein 1999). Other properties are discussed in Banerjee
et al. (2008).

3.3 Biased Estimates and the Rectified Predictive Process
For multivariate spatial processes, we have the following inequality:

(4)

where var{·} denotes the variance–covariance matrix and ≥ 0 indicates nonnegative
definiteness. Equality holds only when s ∈  and thus the predictive process coincides with
the parent process.

To understand the implications of the inequality in (4), let us momentarily focus upon a
univariate predictive process. For the univariate process (i.e., with m = 1), let w(s) follow a
spatial process with covariance function parameterized as . The

corresponding covariance function for w(̃s) is given by ,
where  now represents the variance of the spatial process, r(s; φ) is the n* × 1 vector with
the spatial correlation between s and , that is, , as its ith element and R*(φ) is the n*

× n* correlation matrix of the realizations of the parent process over . In particular, the
variance of the predictive process at any location s is given by

. The inequality in (4) implies  at every location s.

The above argument reveals the lower variability of the predictive process which leads to
oversmoothing by predictive process models. This, in turn, would lead to overestimation by
the predictive process model of the residual (unstructured) variance, τ2, as it attempts to
absorb the remaining variability. Furthermore, note that the predictive process is inherently
nonstationary. This calls for care in interpreting the parameter  in predictive process
models. In fact, it may be tempting to conclude that the oversmoothing caused by the
predictive process would lead to underestimation of . The matter, however, is somewhat
more subtle and in practice we tend to see an upward bias in the estimation of both the
spatial and unstructured residual variance components (see Section 5.1).

To explain this, consider a single trait Y(s) in a univariate version (i.e., m = 1) of the model
in (1). Let  = {s1, …, sn} denote the set of observed data locations and assume (for
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convenience) that  ∩  is empty, that is, the knots are completely exclusive of the data
locations. Then, standard multivariate normal calculations reveal

where w = (w(s1), …, w(sn))′,  is the n × n* cross-correlation matrix between
the realizations over the locations and over the knots, and > 0 denotes positive definiteness.
This implies that R(φ) + γ2 In > (φ)′R*(φ)−1 (φ) + γ2In (A > B denotes A − B is positive
definite), where γ2 = τ2/σ2, or the noise–signal ratio. Since A > B implies B−1 > A−1

(Harville 1997, theorem 18.3.4, p. 434), we have ( (φ)′R*(φ)−1 (φ) + γ2In)−1 > (R(φ) +
γ2In)−1. Therefore,

(5)

where u = y − Xβ − a − d. Here , and  are n × 1 vectors of the
observed outcomes, the additive and dominant effects respectively. Conditional upon the
genetic effects and the regression parameters, Equation (5) reveals a systematic upward bias
in likelihood-based estimates of the spatial variance parameter from the predictive process
model as compared to the parent model. An analogous argument holds for estimates of τ2.

If  and  denote the likelihood-based estimates from the predictive process model (3)
and the parent model (1), respectively, then using standard eigen-analysis (Appendix A) we

obtain , where λmax(A) denotes
the maximum eigen-value of the matrix A. Arguments analogous to the above can be used to
demonstrate biases in variance component estimation in other low-rank spline models as
well.

Using equivalence of Gaussian measures and fixed domain asymptotics Zhang (2004)
proved that the spatial covariance parameters cannot all be estimated consistently in
classical geostatistical settings with the isotropic Matérn correlation function (see Section
2.4), although the function σ2(λ2ν) is consistently estimable. However, assigning priors to
such reparametrizations may not always be straightforward. From a Bayesian perspective,
this implies that the effect of the priors on the inference of the variance components may not
be easily overwhelmed by the data—even when the datasets are large.

In lieu of the above, the biases we point out are derived holding the parameters in φ as
constant. In such settings, our simulation experiments reveal that both the parent model and
the predictive process model often tend to estimate the regression coefficients β and γ2 = τ2/
σ2 in a stable manner. However, while γ2 is estimated in a stable manner both τ2 and σ2 are
systematically over-estimated. We point out that we regard the predictive process as a model
in its own right, specifically suited for large spatial datasets, and not as an approximation to
some model. In other words, its parameters should be interpreted with respect to (3) and not
(1).

The key point is that the predictive process, univariate or multivariate, introduces
nonstationarity in the spatial variance component. The variance component parameters,
therefore, have different interpretations for stationary parent process models and their
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nonstationary predictive process counterparts. To adjust for the nonstationary spatial
variance component, we need to introduce a nonstationary unstructured variance while
making sure not to incur computational expenses.

Returning to the more general m× 1 multivariate processes, a rectification is obtained by
adding a spatially adaptive “nugget” process to the predictive process w̃(s). More precisely,

we introduce w̃ε̃(s) = w̃(s) + ε̃(s), where .
We call w̃ε̃(s) the bias-adjusted predictive process and the model in (3) is now modified to

(6)

Notice that var{w̃ε̃(s)} = Cw(s, s; θ) = var{w(s)} and ε̃(s) also acts as a nonstationary
adjustment to the residual process eliminating the systematic bias in variance components.
Section 5.1 demonstrates these biases and their rectification.

We provide some brief remarks on knot selection (see Finley et al. 2009b, for details). With
a fairly even distribution of data locations, one possibility is to select knots on a uniform
grid overlaid on the domain. Alternatively, selection can be achieved through a formal
design-based approach based upon minimization of a spatially averaged predictive variance
criterion (e.g., Diggle and Lophaven 2006). However, in general, the locations are highly
irregular, generating substantial areas of sparse observations where we wish to avoid placing
knots, since they would be “wasted” and possibly lead to inflated predictive process
variances and slower convergence. Here, more practical space-covering designs (e.g., Royle
and Nychka 1998) can yield a representative collection of knots that better cover the
domain. Another alternative is to apply popular clustering algorithms such as k-means or
more robust median-based partitioning around medoids algorithms (e.g., Kaufman and
Rousseeuw 1990). User-friendly implementations of these algorithms are available in R
packages such as fields and cluster and have been used in spline-based low-rank kriging
models (Ruppert, Wand, and Caroll 2003; Crainiceanu, Diggle, and Rowlingson 2008).

4. HIERARCHICAL MODEL SPECIFICATION AND IMPLEMENTATION
Let Y = (Y(s1)′, …, Y(sn)′)′ be mn×1 and X = (X(s1), …, X(sn))′ be mn × p. We assume that
a and d follow zero-centered multivariate normal distributions with dispersion matrices A ⊗
Σa and D ⊗ Σd, respectively, where A = {aij} and D = {dij} and let F(θ) = (θ)′Σ*(θ)−1,
where (θ)′ is the n × n* block-matrix whose (i, j)th block is the m × m matrix  with
i = 1, …, n and j = 1, …, n*. Also, let Σε̃ denote the n × n block-diagonal matrix with ith
block being the m × m matrix Cw(si, si; θ) − (si; θ)′Σ*(θ)−1 (si; θ). The hierarchical model
corresponding to (6) can be written in terms of the joint density

(7)
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The matrices A and D are fixed, while Σa and Σd are assigned inverse-Wishart priors. The

prior on β is N(β|μβ, Σβ) and is often taken as “flat,” setting  to be the null matrix. One
could either assume an inverse-Wishart prior for Ψ or take  with

, where IG is the inverse-Gamma distribution [mean = sεj/(rεj −
1)]. The spatial covariance parameters are collected into θ.

Assuming stationary cross-covariances [i.e., L(s) = L in Section 2.3], we have θ = {L, φ}
and the cross-covariance matrix of the predictive process can be written as (In ⊗ L)Θ̃
(θ)Σ*(θ)−1Θ̃(θ)′(In* ⊗ L′), where Θ̃(θ) is a block matrix with Θ(si, sj) as the (i, j)th block.
We induce a prior on L by assigning p(LL′) = IW(η, SL), while all the elements in φ = (ν, ψ,
Λ) are assigned weakly informative uniform priors (see Section 5 for details). Therefore, we

write p(θ) in (7) as . Using matrix differentials, we can show that the

induced prior on L is given by , where L = {lij}, and

 is the required jacobian of the transformation.

Estimation proceeds using MCMC employing a Gibbs sampler with Metropolis–Hastings
(MH) steps (Gelman et al. 2004); see Appendix B for details. Briefly, the full conditional
distributions for each of the parameters’ regression coefficients, the additive, dominant and
spatial effects are all normal, while those for the matrices Σa, Σd, and Ψ are conjugate
inverse-Wishart. The spatial variance covariance parameters θ = {L, φ} do not have closed-
form full conditionals and are updated using MH steps. Observe that the likelihood [i.e., the
last term in (7)] does not involve L or any of the spatial covariance parameters in θ and need
not be evaluated for the Metropolis steps. These parameters are updated using Metropolis
steps, possibly with block-updates (e.g., all the parameters in φ in one block and those in L
in another). Typically, a random walk MH algorithm with (multivariate) normal proposals is
adopted.

Gibbs updates still requires computing  for updating a and a
similar matrix for d, defined analogously, that are both nm × nm. A brute-force approach
will not be computationally feasible, so we derive the following multivariate eigen-
decomposition (Appendix C) to obtain

(8)

Here  and  are the spectral decompositions of A−1 and

, and  denotes the eigenvalues of A. Massive computational gains are achieved since
the matrix A is fixed, so the spectral decomposition, which delivers the eigenvalues, needs
to be evaluated only once, preceding the Gibbs sampler. All the other matrix inversions on
the right hand expression in (8) involve the much smaller m × m matrices. The setting for
Σd|· is exactly analogous.

A useful strategy for estimating spatial hierarchical models is to replace the conditionally
independent likelihood in (7) with the marginalized likelihood obtained after integrating out
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the spatial effects (e.g., Banerjee et al. 2008;Finley et al. 2009b). However, this becomes
problematic in the presence of other structured random effects as we are unable to arrive at
forms such as (8). Instead, we integrate out the w* from (7) and design the Gibbs sampler to
obtain the realizations of the predictive process w̃ε̃. More specifically, this leads to replacing
N(w*|0, Σ*(θ)) × N(w̃ε̃|F(θ)w*, Σε̃) in (7) with N(w̃ε̃|0, Σw̃ε̃(θ)), where Σ w̃ε̃(θ) = Σε̃+
F(θ)Σ*(θ)F(θ)′.

Updating w̃ε̃ requires the inverse of Σw̃ε̃(θ)−1+ In ⊗ Ψ−1, an nm × nm matrix. Substantial
computational benefits accrue from using the Sherman–Woodbury–Morrison (SWM) matrix

identities (Henderson and Searle 1981). We first write ,

where  is n*m × nm and M(θ) = Σ*(θ)−1 + V(θ)Σε̃ V(θ)′ is n*m × n*m. After
some algebra, we obtain

where H(θ) is block-diagonal with [Ψ−1 + (Cw(si, si; θ) − (si; θ)′Σ*(θ)−1 (si; θ))−1] as its
m × m diagonal blocks, and J(θ) = M(θ) − V(θ)H(θ)−1V(θ)′. The determinant of Σw̃ε̃(θ) is
required for updating the spatial covariance parameters in the MH steps. This can be
evaluated avoiding nm × nm matrices using the identity (derived similarly to the SWM
identity)

This setup still allows us to recover full posterior inference on the two components of w̃ε̃,

viz. w* and ε̃. Specifically, given each posterior sample  and θ(k), k = 1, …, K, we draw

w*(l) from a multivariate normal distribution with mean 
and variance–covariance matrix Σw*|·(θ(k)) = Σ*(θ(k))−1 + F(θ(k))′Σε̃(θ(k))−1 × F(θ(k)))−1.

Next, we can obtain w̃(k) = F(θ(k))w*(k). Finally, if desired,  gives the
posterior samples of ε̃.

5. ANALYSIS OF DATA
5.1 Synthetic Illustration of Bias-Adjustment

To supplement the discussion on the predictive process bias-adjustment in Section 3.3, we
offer a brief analysis of a synthetic univariate dataset. This dataset comprises 500 locations
distributed randomly within a unit square domain. The univariate outcome Y(s) is generated
over these 500 locations from a zero-centered isotropic Gaussian process, with covariance

, where , τ2 = 5, and φ = 12 [i.e., the
spatial correlation drops to 0.05 at a distance of 0.25 units]. To illustrate the relationship
between bias and knot intensity over the domain, we fit regular (unadjusted) and bias-
adjusted predictive process models to these data based on 11 knot intensities between 0 and
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500. For each model, , τ2, φ, and the model intercept β0 were estimated using three
MCMC chains of post burn-in 25,000 iterations.

For brevity, we present only the results for the variance parameters of interest. Results for
the unadjusted models are presented in the top subfigures in Figure 1 which illustrates the
upward bias in  and τ2 estimates as a function of knot intensity. Here, we see a large bias
in  and τ2 estimates when knot intensity is low. Increasing knot intensity does reduce the
bias, but only marginally for τ2 which fails to recover the true parameter value even as the
number of knots approaches the number of observations. In comparison, the bias-adjusted
predictive process recovers the true  and τ2 values even at low knot intensities, as
illustrated in the bottom subfigures in Figure 1. For the analyses offered in Sections 5.2 and
5.3 only the bias-adjusted models are considered.

5.2 Synthetic Data Analysis
One replicate of full-sib families (800 offspring in total) were constructed by crossing 50
unrelated parents according to a partial diallel design (see Kempthorne and Curnow 1961,
for design details). The 850 individuals were assigned randomly to intersections of a 34 × 25
unit grid. The values of three traits of interest were generated for each individual. The
synthetic population mean of each trait was described with an intercept and single slope
coefficient [with corresponding variable drawn from N(0, 1)] and the multitrait random
polygenic effects a and d were drawn from MVN(0, A ⊗ Σa) and MVN(0, D ⊗ Σd),
respectively.

We estimate the hierarchical model in (7) using a stationary but anisotropic Matérn
correlation function as described in Section 2.4. The mean fixed effects and lower-triangles
of Σa and Σd are provided in the column labeled True within Table 1. In addition to the
genetic effects, random spatial effects w were also added. Here, w was drawn from MVN(0,
Σw), where Σw is the multivariate dispersion matrix defined in Section 2. The spatial
processes associated with each response variable arise from an anisotropic Matérn
correlation function. The estimates of the stationary process cross-covariance matrix (see
Section 2.3), LL′ = Cw(0) ≡ Cw, along with the correlation functions’ parameters are
provided in Table 2. These correlation parameters define the processes’ primary axis with an
effective spatial range of ~21, that are oriented to ±45° and a second axis, perpendicular to
the first, with an effective spatial range of ~9.5. Here, effective range is defined as the
distance at which the correlation drops to 0.05 [i.e., when ν = 0.5 the effective range is −
log(0.05)λ]. Further, the off-diagonal values in Cw define a strong negative correlation
between the first and second process and zero correlation between the first two and the third
process. The measurement error was drawn from MVN(0, In ⊗ Ψ), with Ψ = 5.0I3. The
multitrait phenotypic values, Y, for each of the 800 individuals were then generated by
model (1). The top left image in Figure 2 illustrates the planting grid and the interpolated
surfaces of the synthetic spatial random effects follow down the left column. The phenotypic
values of the 50 unrelated parents are assumed unknown and are therefore treated as missing
data in the subsequent analysis.

The synthetic dataset is used to illustrate the extent to which the proposed methods can
recover genetic parameters of interest. Assuming ignorance about the partitioning of the
variance in Y, we assign an IW(m + 1, Im) prior to each genetic dispersion matrix, while
each diagonal element of Ψ received an IG(2, ·) with the scale hyperparameters being set to
yield a mean comparable with the residual variances from fixed effects only linear model.
The maximum distance across the synthetic domain is about 40; hence, for the anisotropic
Matérn models, we assign λi ~ U(0.5, 20) for i = 1, 2, 3, which corresponds to an effective
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range between 1.5 to 60 distance units (when ν = 0.5). Each smoothness and rotation
parameter in ν and ψ were assigned U(0, 2) and U[π/2, −π/2) priors, respectively.

Four candidate models were considered: the nonspatial model with only genetic effects and
three models with genetic effects and predictive process based random spatial effects. For
the spatial models, we considered knot intensities of 80, 101, and 125. Knot configuration
followed a lattice plus close pairs design (see Diggle and Lophaven 2006). This design
consists of a regular k × k lattice of knots intensified by a set of m′ knots placed at random
adjacent to the lattice knots—say within a circle having the knot point as center and a radius
that is some fraction of the spacing on the lattice. This design is illustrated in the top right
panel in Figure 2.

For each model, three MCMC chains were run for 25,000 iterations. The sampler was coded
in C++ and leveraged threaded BLAS and LAPACK routines for matrix computations. The
code was run on an Altix 350 SGI with two 64-bit 1.6 GHz Intel Itanium processors. Each
chain of 25,000 iterations took less than 2 hours to complete. The CODA package in R
(http://cran.r-project.org/web/packages/coda/) was used to diagnose convergence by
monitoring mixing using Gelman–Rubin diagnostics and autocorrelations (Gelman et al.
2004, section 11.6). Acceptable convergence was diagnosed within 10,000 iterations and
therefore 45,000 samples (15,000 × 3) were retained for posterior analysis.

Tables 1 and 2 offer parameter estimates and associated credible intervals for the nonspatial
and predictive process models based on 80 and 125 knot intensities. The nonspatial model is
not able to estimate correctly three of the six fixed effects (as identified in bold text in Table
1). Interestingly, despite the misspecification of the model (i.e., missing spatial effects), the
additive and dominance dispersion matrices are estimated correctly, but for Σd;2,2. However,
apportioning of spatial variation to pure error causes the 95% credible intervals of two
diagonal elements in Ψ to not cover their true values, Table 2. This can cause a downward
bias in the measures of heritability. The true heritability for the three traits are Σa;1,1/(Σa;1,1
+ Σd;1,1 + Ψ1,1) = 25/(25 + 25 + 5) = 0.45, Σa;2,2/(Σa;2,2 + Σd;2,2 + Ψ2,2) = 0.48, and Σa;3,3/
(Σa;3,3 + Σd;3,3 + Ψ3,3) = 0.9, and the nonspatial model estimates with 95% credible
intervals are 0.43 (0.32, 0.51), 0.45 (0.35, 0.55), and 0.69 (0.55, 0.78), as provided in the
Table 2. A similar downward bias is seen in the dominance ratio when calculated.

The spatial models provide improved estimates of the fixed and genetic random effects as
well as estimates of heritability and dominance ratio. For example, at the 80 knot intensity
the heritability estimates for the tree traits are 0.43 (0.31, 0.54), 0.49 (0.36, 0.63), and 0.97
(0.88, 0.99). We note that two parameters fall outside of the 95% credible interval in the 80
knot model (i.e., Σd;3,3 and Cw;1,2 in Tables 1 and 2, respectively). However, beyond the 80
knot intensity, all parameters are estimated correctly. The discrepancies in estimates for the
lowest knot intensity are likely due to excessive smoothing of the random effects surfaces,
as seen in the right column of Figure 2. Here, the response-specific anisotropic rotation and
range of dependence are clearly matched between the true (left column) and estimated (right
column); however, the 80 knot intensity is forced to smooth over some local variation.
Again, more knots allow the model to better conform to the residual surface.

5.3 Scots Pine Data Analysis
Field measurements from a 26-year-old scots pine (Pinus sylvestris L.) progeny study in
northern Sweden serve as a trial dataset for our proposed methods. The original design
established in 1971 (by Skogforsk; trial identification S23F7110264 Vindeln) consisted of
8160 seedlings divided into two spatially disjoint trial sites (i.e., denoted as northern and
southern trial site). The analysis presented here focuses on the northern planting site. At
planting, this site was subdivided into 105 8.8 m × 22 m blocks each containing 40 seedlings
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placed on a 2.2 m × 2.2 m grid. Parent stock was crossed according to a partial diallel design
of 52 parent trees assumed unrelated and seedlings were planted out on the grids with
unrestricteded randomization. In 1997, the 2598 surviving trees were measured for various
traits of breeding interest, including diameter (D) (measured at 130 cm above ground), total
tree height (H) and branch angle (B). The branch angle was scored such that an average tree
was given score 5, and the range 1–9 reflect desirable to undesirable branch angle (i.e.,
horizontal branches were given low scores and upwards vertical branches high scores). The
top panel in Figure 3 shows the location of the surviving trees use in the subsequent
analysis.

As in Section 5.2, we fit both nonspatial and spatial models with random spatial effects
estimated with varying knot intensities. Specifically, we fit a nonspatial model with a single
intercept and additive and dominance effects for each trait. Then random spatial effects were
added with knot intensities of 78, 124, and 160. An initial exploratory analysis with an
omnidirectional semivariogram of the nonspatial additive and dominance model residuals
showed no evidence of an anisotropic process for any of the response variables; therefore,
we consider only the spatial isotropic models here.

The left column of Figure 3 shows clear spatial association among the residuals, which is
further affirmed by the empirical semivariogram for the trait of interest (not shown).
Specifically, in the left column of Figure 3, we see that D and H are strongly associated and
have a relatively longer spatial range compared to the surface for B. Inspection of the
semivariogram supports this observation, showing an effective range of ~50 for D and H,
while B’s spatial range is less than 10. This disparity in effective range suggests that a
separable model, with a single spatial range parameter, would be inappropriate. Further, the
relatively short spatial range of B, will require a knot configuration where the distance
between knots is less than the residual spatial range. We again use the lattice plus close
pairs design to help estimate small scale variability and local dependence. Using the
isotropic Matérn correlation function, the decay parameters were set to φ ~ U(0.03, 3) and
smoothness ν fixed at 0.05. This implies an effective spatial range of about 1 to 100 meters.
Again, assuming ignorance about the partitioning of the variance in Y, we assign an IW(m +
1, Im) prior to each dispersion matrix with the exception of Ψ which received IG(2, ·) on the
diagonal elements. The respective IG scale hyperparameters were set to the residual variance
of the multivariate intercept-only model.

For each model, three MCMC chains were run for 25,000 iterations and 45,000 post burn-in
samples (15,000 × 3) were retained for posterior analysis. The parameter estimates for the
nonspatial additive and dominance model as well as the spatial models based on 78 and 160
knots are provided in Table 3. Here, overlapping 95% credible intervals suggest agreement
among the nonspatial and spatial models’ fixed and genetic dispersion parameters (i.e., β,
Σa, and Σd). However, the 160 knot model does generally estimate greater additive variance
for several diagonal and off-diagonal elements in Σa.

We compare the candidate models using Deviance Information Criterion (DIC)
(Spiegelhalter et al. 2002). With Ω denoting the generic set of parameters being estimated

for each model, we compute , the expected posterior deviance,
where L(Data|Ω) is the first stage likelihood from the respective model and the effective

number of parameters (penalty) is , where Ω ̄ is the posterior mean of the
model parameters. The DIC is then computed easily from the posterior samples as 
with lower values indicating better models.
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Table 4 provides DIC scores and associated pD for the non-spatial and predictive process
models. Here, we see a large decrease in DIC moving from the nonspatial to the spatial
models. As the knot intensity increases the models become more responsive to local
variation in the residual surface and, as a result, we see the DIC scores incrementally
decrease.

From a breeding point of view, it is encouraging that the additive genetic correlations
between branch angle (B) and growth traits (H and D) are small or negative, which means
that faster growing trees develop more desirable branching characteristics (lower B scores
denote more favorable branch angles). For instance the 160 knot model estimates the median
and 95% credible intervals ρa;H,B = −0.40 (−1.00, −0.06) and ρa;D,B = −0.09 (−1.01, 0.25).
For all models, we see a significant positive correlation between H and D, for example, the
160 knot model estimates ρa;H,D = 0.56 (0.45,0.75). Again, when the nonspatial model is
forced to bring the spatial variation into the Ψ we see lower estimates of heritiability result,
compared to those of the spatial models, specifically the 160 knot model. The panels in the
middle and right columns of Figure 3 depict the estimated spatial effects surfaces for the 78
and 160 knot models. Comparing these columns to the left-most column, we see that global
and local trends in the residual surfaces are captured even when the dimensionality of the
problem is reduced from 2598 to 78 knots. Finally, the large disparity in the spatial range
estimates, given in Table 3, supports the use of the nonseparable model.

Ultimately, interest turns to estimation and subsequent ranking of the breeding values (i.e.,
additive effects) and specifically disparities in the ranking order given by the different
models. Figure 4 offers a trait specific comparison between the ranking of the top 100
breeding values from the nonspatial and 160 knot predictive process models. Here,
departures from the 1: 1 line indicate different ranking. These dispersed scatters suggest the
addition of the spatial effect substantially influences breeding preference.

This analysis supports the idea that ignoring spatial variability in these models can lead to
biased estimates of genetic variance parameters and ranking of breeding values, which could
result in nonoptimal selection response and lower genetic gain (Magnussen 1993). Analysis
of the scots pine data reveals that tree height and diameter are highly genetically correlated,
have relatively low heritability, and display similar long distance effective spatial range. In
contrast, branch angle seems to be more influenced by genetic components, as indicated by a
higher heritability and shorter effective spatial range. Comparison between the nonspatial
and spatial predictive process models also shows that the nonspatial model estimates lower
heritability for all three traits, although the effect is less pronounced for height. Similar
results have been found in other spatial genetic studies of trees. Zas (2006) reported that
application of an iterative kriging method increased heritability in Pinus pinaster from a
95% confidence interval of 0.04–0.11 to 0.10–0.17 for diameter, and from 0.13–0.18 to
0.17–0.33 for height growth. In Cappa and Cantet (2007), the heritability of diameter at
breast height in Eucalyptus globulus increased from 0.08 to 0.27 when a spatial spline
component was included in the model. Moreover, both Zas (2006) and Cappa and Cantet
(2007) showed a dramatic increase in accuracy of breeding values for spatial models, a trend
that is likely also seen in the scots pine analysis presented here.

6. SUMMARY
While modeling of large spatial datasets have received much attention in the literature,
estimation of variance components in reduced-rank kriging models have been explored less.
Here we proposed computationally feasible multivariate spatial genetic trait models that
robustly estimate variance components in datasets of sizes that normally are out of range
because of prohibitive matrix computations. The process-based approach laid out here not
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only helps us identify a bias in the estimates of variance components that plagues most
reduced-rank spline models but also leads to a remedy that neither involves additional
computational burden, nor introduces any additional parameters. Future work may include
extending predictive process models to space-time dynamic models and exploration of
variance components in temporal contexts (see, e.g., Pourahmadi 1999; Ghosh et al. 2009).

Our simulated and field analysis reveals the spatial component to demonstrably improve the
model’s ability to recapture correct estimates of fixed and genetic random effects as well as
estimates of heritability and dominance ratios. The spBayes package in R
(http://cran.r-project.org/web/packages/spBayes/) now include functions for these bias-
adjusted multivariate predictive process models. Functions specifically geared for spatial
quantitative genetics are being planned.

Finally, selecting the “knots” (Section 3) is an integral part of any reduced-rank spatial
methodology. Since our field trials are conducted over a fairly regular configuration of plots,
fixed knots on a regular grid provided robust inference. An arguably better strategy is to
allow the knots to vary in their positions and/or their number. In particular, the knots can
learn from the realizations and while they will change with each MCMC iteration, the
number of adaptive knots required to deliver robust inference will likely be far smaller.
These will form a part of future explorations.
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APPENDIX A: BOUND FOR VARIANCE COMPONENT ESTIMATES

That the ratio  is bounded can be seen as follows. Let A = ( (φ)′R*(φ)−1 (φ) +
γ2In)−1 and B = (R(φ) + γ2In)−1; thus, both are symmetric and positive-definite matrices.
Then, there exists a nonsingular matrix C such that B = C′C. Writing Cu = z, where u = y −
Xβ − a − d, we have

Note that the eigenvalues of C−1′AC−1 are all real and are the same as those of C−1C−1′A =
B−1A (applying Theorem 21.10.1, pp. 545–546, Harville 1997) This shows that

.

Banerjee et al. Page 20

J Am Stat Assoc. Author manuscript; available in PMC 2010 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



APPENDIX B: FULL CONDITIONAL DISTRIBUTIONS
The full conditional distributions are listed below:

For the full conditional distribution of the dispersion matrices, we have conjugate Wishart
distributions. Assuming that Σa ~ IW(ra, ϒa) is the Inverse-Wishart prior, that is,

and Σd ~ IW(rd, ϒd), we obtain the full conditionals,

where A−1 = {ãij} and D−1 = {d̃ij}. Finally, with , with each ,
with mean rεj/sεj, we obtain the full conditionals

for j = 1, …, m, where aij, dij, and wε̃̃j(si) are the jth elements of ai, di, and w̃ε̃(si)
respectively.
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APPENDIX C: DERIVATION OF (8)

In the above expressions, we can simplify  as

where  is the ith diagonal element of ΛA. Note that PA is the only n × n matrix here but it
needs to be computed only once. Instead of having to invert a big mn × mn matrix, we now
require n inversions of m × m matrices. Note that both Σa and Ψ will need to be updated in
each iteration of the Gibbs.
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Figure 1.
The top row shows estimates of univariate model’s spatial variance σ2 (left) and residual
variance τ2 (right) given increasing number of knots. The second row provides
corresponding estimates from the bias-adjusted predictive process model.
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Figure 2.
The left column shows the interpolated surfaces of the three response variables over the 850
synthetic data points (overlaid on top left surface). The right column shows the associated
estimates of the random spatial effects based on 80 knots (overlaid on the top right surface).
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Figure 3.
First row: Each point represents a scots pine tree location. The left column shows
interpolated surface of nonspatial model residuals for stem height (H), diameter (D), and
branch angle (A), respectively from top to bottom. The middle and right columns show
associated estimated surfaces of spatial random effects for the 78 and 160 knot intensities
modeled with the stationary isotropic Matérn correlation function. Note that to reduce
clutter, the knots are overlaid on only the 78 knot H surface.
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Figure 4.
Comparative ranking of the additive genetic effects for scots pine height (left), diameter
(middle), and branch angle (right) from the nonspatial and 160 knot predictive process
models. The x-axis plots the nonspatial model estimated position of the 100 highest ranked
individuals and the y-axis plots the corresponding ranking from the spatial model. The
straight line indicates no discrepancy in rank between the two models.
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Table 1

Parameter credible intervals, 50% (2.5%, 97.5%) for the synthetic dataset nonspatial and spatial predictive
process models. Credible intervals that do not include the parameter’s true value are bolded

Parameter True Nonspatial

Anisotropic predictive process

80 knots 125 knots

β1,0 1 7.76 (6.77, 8.87) 2.04 (0.93, 4.69) 1.40 (−0.39, 3.75)

β1,1 5 5.32 (4.72, 5.89) 5.28 (4.78, 5.74) 5.22 (4.83, 5.66)

β2,0 10 3.72 (2.10, 5.09) 10.32 (8.41, 11.90) 13.20 (8.92, 16.60)

β2,1 15 14.99 (14.20, 15.64) 14.99 (14.44, 15.51) 15.01 (14.42, 15.60)

β3,0 20 27.61 (25.86, 29.38) 20.48 (18.34, 22.85) 22.18 (19.69, 30.61)

β3,1 25 25.07 (24.49, 25.64) 24.95 (24.43, 25.49) 24.91 (24.48, 25.39)

Σa;1,1 25 31.26 (22.35, 40.24) 21.58 (15.39, 29.48) 21.20 (13.35, 30.07)

Σa;1,2 25 26.61 (17.98, 35.77) 25.60 (17.85, 35.20) 22.17 (15.31, 30.08)

Σa;1,3 25 27.88 (19.37, 36.34) 25.02 (17.39, 33.95) 23.74 (15.45, 35.87)

Σa;2,2 50 55.65 (41.04, 73.43) 50.37 (33.40, 69.94) 42.03 (30.37, 56.79)

Σa;2,3 50 56.96 (40.23, 70.59) 51.29 (33.84, 63.76) 47.48 (35.00, 62.20)

Σa;3,3 75 75.43 (55.17, 93.81) 77.19 (50.74, 94.29) 84.04 (58.76, 99.72)

Σd;1,1 25 27.54 (19.90, 37.89) 26.70 (20.56, 35.14) 27.29 (20.68, 35.83)

Σd;1,2 25 19.51 (13.84, 28.78) 22.39 (16.04, 28.31) 24.27 (17.76, 31.56)

Σd;1,3 0 −2.39 (−16.28, 8.38) −2.15 (−5.87, 3.32) 2.87 (−2.23, 6.62)

Σd;2,2 50 25.12 (7.69, 46.12) 50.26 (36.58, 60.02) 51.55 (41.26, 62.59)

Σd;2,3 0 0.59 (−8.71, 9.79) −1.31 (−5.80, 8.63) −1.32 (−8.38, 4.53)

Σd;3,3 4 1.79 (0.28, 9.57) 0.93 (0.19, 2.70) 1.31 (0.16, 4.69)
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Table 2

Parameter credible intervals, 50% (2.5%, 97.5%) for the synthetic dataset nonspatial and spatial predictive
process models (continuation of Table 1). Credible intervals that do not include the parameter’s true value are
bolded

Parameter True Nonspatial

Anisotropic predictive process

80 knots 125 knots

Cw; 1,1 25 – 36.49 (15.51, 54.58) 32.66 (4.89, 89.72)

Cw; 1,2 −25 – −31.98 (−55.09, −27.19) −30.19 (−75.42, −16.18)

Cw; 1,3 0 – −0.57 (−6.85, 1.37) −1.16 (−12.03, 10.18)

Cw; 2,2 26 – 31.11 (25.44, 34.09) 30.92 (18.71, 40.23)

Cw; 2,3 0 – 0.26 (−4.31, 2.21) 1.42 (−9.23, 6.03)

Cw; 3,3 25 – 55.79 (13.12, 108.21) 38.26 (3.98, 68.04)

Ψ1,1 5 13.58 (3.52, 24.65) 1.46 (0.17, 5.93) 1.54 (0.14, 6.89)

Ψ2,2 5 43.64 (21.27, 67.24) 0.85 (0.15, 7.22) 4.15 (0.80, 11.31)

Ψ3,3 5 31.02 (22.80, 41.83) 1.56 (0.40, 7.07) 5.40 (1.55, 19.22)

ψw1 45° – 38.39 (22.06, 81.36) 42.23 (8.08, 58.96)

ψw2 45° – 57.30 (9.13, 84.63) 47.21 (13.52, 86.00)

ψw3 45° – 33.17 (1.03, 78.04) 48.07 (4.87,76.89)

Λw1,1 50 – 49.35 (47.94, 50.41) 50.31 (49.17, 52.96)

Λw1,2 10 – 9.79 (8.22, 11.03) 10.05 (8.28, 11.72)

Λw2,1 50 – 50.31 (49.00, 51.04) 51.19 (49.67, 52.09)

Λw2,2 10 – 9.67 (8.93, 10.32) 9.81 (7.78, 10.68)

Λw3,1 10 – 10.58 (9.84, 11.46) 10.82 (9.49, 12.79)

Λw3,2 50 – 49.60 (48.60, 50.38) 49.51 (48.27, 53.06)

νw1 0.5 – 0.57 (0.27, 0.92) 0.62 (0.09, 1.00)

νw2 0.5 – 0.68 (0.40, 0.90) 0.60 (0.29, 0.84)

νw3 0.5 – 0.36 (0.15, 0.55) 0.68 (0.39, 1.16)

0.45 0.43 (0.32, 0.51) 0.43 (0.31, 0.54) 0.42 (0.27, 0.54)

0.48 0.45 (0.35, 0.55) 0.49 (0.36, 0.63) 0.43 (0.33, 0.53)

0.9 0.69 (0.55, 0.78) 0.97 (0.88, 0.99) 0.92 (0.76, 0.97)
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Table 3

Parameter credible intervals, 50% (2.5%, 97.5%) for the scots pine dataset nonspatial and spatial predictive
process models

Parameter Nonspatial

Isotropic predicted process

78 knots 160 knots

βH,0 72.56 (70.45, 74.68) 73.68 (70.70, 76.78) 70.78 (68.39, 73.28)

βD,0 119.64 (117.01, 122.63) 119.19 (112.35, 126.14) 120.31 (113.96, 126.22)

βB,0 4.89 (4.75, 5.05) 4.78 (4.59, 4.95) 4.93 (4.66, 5.22)

Σa;H 29.38 (19.43, 38.19) 21.25 (15.80, 30.79) 33.12 (21.41, 46.57)

Σa;H,D 17.73 (6.76, 29.45) 13.21 (3.79, 30.36) 30.64 (10.81, 58.05)

Σa;H,B −0.99 (−1.79, −0.50) −1.04 (−1.57, −0.66) −1.05 (−2.09, −0.24 )

Σa;D 43.30 (14.85, 67.31) 52.94 (25.47, 119.27) 89.23 (26.80, 129.97)

Σa;D,B −0.55 (−1.24, 0.12) −0.18 (−1.14, 0.77) −0.38 (−2.02, 1.57)

Σa;B 0.22 (0.17, 0.31) 0.23 (0.16, 0.33) 0.21 (0.15, 0.30)

Σd;H 1.22 (0.80, 2.46) 7.91 (1.40, 15.15) 2.56 (0.14, 9.29)

Σd;H,D 0.21 (−1.66, 1.09) 0.37 (−1.35, 4.29) −2.25 (−4.53, 5.84)

Σd;H,B −0.08 (−0.36, 0.08) −0.13 (−0.64, 0.10 ) −0.12 (−0.52, 0.02)

Σd;D 2.50 (1.48, 3.88) 2.76 (1.70, 8.10) 5.27 (2.35, 12.46)

Σd;D,B 0.05 (−0.22, 0.25) −0.01 (−0.21, 0.38) 0.17 (−0.23, 0.59)

Σd;B 0.19 (0.13, 0.29) 0.18 (0.13, 0.26) 0.17 (0.12, 0.25)

Cw;H – 28.41 (19.88, 52.32) 22.83 (19.69, 28.32)

Cw;H,D – 0.56 (−0.12, 1.91) 0.40 (−0.64, 2.24)

Cw;H,B – −0.47 (−0.88, −0.01) −0.28 (−0.80, 0.15)

Cw;D – 64.29 (49.62, 86.89) 62.39 (43.32, 163.98)

Cw;D,B – 0.41 (−0.01, 1.05) 0.23 (−0.46, 1.08)

Cw;B – 0.16 (0.11, 0.19) 0.16 (0.14, 0.24)

ΨH 134.37 (125.55, 142.99) 87.93 (79.68, 96.13) 86.08 (75.62, 94.43)

ΨD 954.38 (901.96, 1011.65) 790.73 (725.24, 854.88) 777.79 (716.86, 847.03)

ΨB 0.41 (0.32, 0.48) 0.26 (0.19, 0.35) 0.28 (0.20, 0.34)

φwH – 0.05 (0.03, 0.06) 0.07 (0.05, 0.09)

φwD – 0.06 (0.03, 0.08) 0.06 (0.03, 0.07)

φwB – 0.59 (0.57, 0.61) 0.60 (0.58, 0.62)

0.18 (0.12, 0.22) 0.18 (0.14, 0.26) 0.27 (0.18, 0.37)

0.04 (0.02, 0.07) 0.06 (0.03, 0.14) 0.10 (0.03, 0.15)

0.27 (0.21, 0.36) 0.34 (0.26, 0.45) 0.32 (0.24, 0.45)
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Table 4

Model comparisons using the DIC criterion for the scots pine dataset

Model pD DIC

Non-spatial 1862.1 34,121.5

Spatial bias-adjusted predictive process

 78 knots 3574.6 31,682.1

 124 knots 3614.8 31,195.7

 160 knots 3685.7 31,098.4
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