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Abstract
Interventions of intracranial pressure (ICP) elevation in neurocritical care is currently delivered
only after healthcare professionals notice sustained and significant mean ICP elevation. The
present work used the Morphological Clustering and Analysis of Intracranial Pressure (MOCAIP)
algorithm to derive 24 metrics characterizing morphology of ICP pulses and tested the hypothesis
that pre-intracranial hypertension (pre-IH) segments of ICP can be differentiated, using these
morphological metrics, from control segments that were not associated with any ICP elevation.
Furthermore, we investigated whether a global optimization algorithm could effectively find the
optimal sub-set of these morphological metrics to achieve better classification performance as
compared to using full set of MOCAIP metrics. The results showed that Pre-IH segments, using
the optimal sub-set of metrics found by the differential evolution (DE) algorithm, can be
differentiated from control segments at a specificity of 97% and sensitivity of 78% for those Pre-
IH segments 5 minutes prior to the ICP elevation. While the sensitivity decreased to 68% for Pre-
IH segments 20 minutes prior to ICP elevation, the high specificity remained. The performance
using the full set of MOCAIP metrics was shown inferior to results achieved using the optimal
sub-set of metrics. The present work demonstrated that advanced ICP pulse analysis combined
with machine learning could potentially lead to the forecasting of ICP elevation so that a proactive
ICP management could be realized based on these accurate forecasts.
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1. Introduction
Intracranial pressure (ICP) elevation occurs frequently in traumatic brain injury (TBI) and
aneurysmal subarachnoid hemorrhage (aSAH) patients as well as in some patients with
idiopathic headache. This condition needs immediate treatment for preventing secondary
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brain injury in patients undergoing intensive care. Invasive ICP monitoring remains the gold
standard adopted by clinicians for detecting ICP elevation. However, the detection of ICP
elevation is established primarily by noticing mean ICP changes. Typically, reactive
measures are taken, such as drainage of ventricular cerebrospinal fluid (CSF) or
administering osmotic diuretics, if the mean ICP exceeds a set value for longer than a
defined duration (typically 20 mm Hg for 5 minutes)[1]. Relying solely on mean ICP is an
accurate way of detecting ICP elevation but it may carry a significant risk of delaying the
treatment. The delays from the occurrence of ICP elevation to its successful abatement may
be caused by failure to notice the mean ICP change, the five-minute observing period, and
the delay for any treatment to take effect. Given the significance and success of ICP
management in improving patient outcome for brain injury patients, it is thus a significant
endeavor to further optimize the detection process of ICP elevation so that a more proactive
ICP management can be achieved to reduce the aforementioned time delay.

Given the continuous nature of ICP monitoring, a viable way of improving ICP elevation
detection is to establish precursors to ICP elevation that can be extracted from continuous
ICP signals so that pending ICP elevation can be recognized prior to its occurrence. In an
early study, several ICP metrics other than mean ICP were investigated for differentiating
the transient ICP elevation from refractory ICP elevation[2]. Despite this study was not
conducted from the perspective of searching for precursors of ICP elevation, it resembles
one of the early attempts to extract additional ICP metrics beyond mean ICP for classifying
different ICP patterns. ICP plateau wave as described in the original publication in 1960s[3]
is a severe form of ICP elevation. Czosnyka et al. studied the hemodynamic and intracranial
volumetric compensatory characteristics associated with the ICP plateau wave[4]. It was
found in this study that ICP plateau wave was associated with a preserved cerebral blood
flow (CBF) autoregulation and decreased intracranial volumetric compensatory reserve.
However, no further effort has been reported to investigate whether these characteristics can
be used as unique precursors of ICP elevation. A more recent effort[5] applied statistical
signal analysis methods to search for precursors of acute ICP elevation. However, no clue
about the specificity of the studied ICP metrics can be obtained from this preliminary study.
Further efforts in searching for precursors of ICP elevation were also conducted using
advanced signal analysis methods originated in the field of nonlinear dynamic analysis of
time series. Approximate entropy is a widely used metric for characterizing the complexity
of a time series and was applied to study ICP elevation where it was found that both ICP
pulse[6] and slow-wave components of ICP signals[7] showed a decreasing trend of
complexity prior to ICP elevation. However, no further effort has been found in quantifying
how unique the observed complexity decreasing of ICP signals is related to ICP elevation.
Another attempt towards early recognition of ICP elevation was reported in a recent
publication[8] where a single ICP metric was studied, which quantifies the ratio between the
amplitudes of the second and the first sub-peaks of an ICP pulse. This P2/P1 ratio was
chosen to hopefully capture a long-established phenomena associated with ICP elevation,
i.e., the rounding of ICP pulse as ICP elevation develops. However, disappointing results
were reported that elevation of P2/P1 ratio above 0.8 was not uniquely associated with ICP
elevation because it was also observed in TBI patients without any episodes of ICP
elevation.

In summary, there exist prior efforts on researching precursors to ICP elevation. However, a
commonly missed item in these previous studies is the incorporation of an experiment that
can quantitatively assess the quality of proposed precursors in terms of the important
performance metrics including sensitivity, specificity, and positive predictivity. Apart from
this, a comprehensive and systematic analysis of ICP signal is needed for extracting
precursors that are beyond what have been reported so far. The present work attempts to
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move forward the frontier of research in predicting ICP elevation by addressing these two
issues.

We have recently proposed and validated a method to analyze ICP pulse morphology[9].
This algorithm can reliably identify the three well-established sub-peaks of a processed ICP
pulse so that its morphology can be characterized using a comprehensive set of metrics to be
introduced in next Section. Our attention to a possible utilization of ICP morphological
metrics for predicting ICP elevation is justified by the long-established phenomenon of ICP
pulse transiting from a normal 3-peak configuration to a more rounding form as ICP
elevation develops. This new algorithm has provided a more comprehensive set of metrics
for a complete characterization of these morphological changes than what have been
reported in this field [2,8,10,11]. Therefore, our hypothesis is that ICP elevation can be
forecasted by morphological changes, captured by this new algorithm, of ICP pulses
preceding the eventual increase of ICP.

The remaining challenge is therefore related to how an experiment can be set up to
systematically test this hypothesis. We selected a dataset that contains data of both types of
patients: one with ICP elevation and controls without any ICP elevation episodes from a
group of non-traumatic brain injury patients (idiopathic intracranial hypertension, Chiari
syndrome, and slit ventricle patients with clamped shunts) with known risks of intracranial
pressure elevation. Then all ICP elevation episodes were found by manual screening.
Corresponding control episodes were generated in a random and unbiased way from control
patients as well as from the recordings at least one hour ahead of the start of ICP elevation.
With this data set constructed, we can then proceed with a classic cross-validation
experiment on evaluating the performance of a two-class classifier to establish the
quantitative metrics of how well ICP elevation and its pre-elevation episodes can be
differentiated from normal control episodes. With these metrics, one could objectively
assess the ICP prediction problem itself and the usefulness of the ICP pulse morphological
metrics.

2. Methods
2.1 Patient and Data Preparation

The study cohort consisted of 36 subjects selected from 38 patients undergoing continuous
intracranial pressure monitoring at the UCLA Medical Center for: 1) headache evaluation in
patients with suspected idiopathic intracranial hypertension or shunt malfunction, and 2)
management of adult slit ventricle syndrome in which CSF flow from an externalized CSF
shunt was purposefully stopped. 3) pre- or post-treatment of Chiari. Based on our
experience, spontaneous intracranial hypertension can occur for all three patient populations.
Two patients were excluded because no waveform data archival for them could be found.

The ICP recordings were screened to identify episodes of intracranial hypertension defined
as elevated ICP (> 20 mmHg) over a period of at least five minutes. As a result, we found 13
patients who had at least one such intracranial hypertension episode and the total number of
episodes is 70. Five patients had 1 episode, one patient had 2 episodes, and three patients
had 4 episodes of ICP elevation. The number of IH episodes for the remaining four patients
is 7, 8, 14, and 22, respectively. These include 6 headache, 6 slit ventricle, and 1 Chiari
patient.

Based on the manually tagged starting positions of ICP elevation episodes, signal segments
prior to Intracranial Hypertension (termed pre-IH segments) were generated based on five
timing choices as illustrated in Fig.1. The length of each segment is 3 minutes long. For
segment Pre-IH(0), we started data selection two minutes past the annotated starting
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positions of ICP elevation. For the rest of the Pre-IH segments, we started selection 4.5
minutes prior to the chosen timing point so that there is a 1.5 minutes interval from the last
sample of the selection to the timing points. Based on this schema, we generated 70 Pre-
IH(0), 67 Pre-IH(5), 66 Pre-IH(10), 62 Pre-IH(15), and 54 Pre-IH(20) segments. The
number of selected Pre-IH segments decreases because ICP elevation could recur at a
frequency shorter than the prescribed timing interval to the start of ICP elevation.

Two types of control episodes were generated. We first chose a random 3-minute noise-free
ICP segment for every 30 minutes of ICP recordings of the 23 control patients who did not
have a single episode of ICP elevation. The total number of such control segments is 234.
The second control set was constructed in a similar fashion but from ICP recordings that
were at least one hour prior to ICP elevation episodes. This resulted in 166 segments. Then
both types of control episodes were mixed as the final control set. It should be noted that the
evaluation of classification perform in the present work was segment-based as it is relevant
to detect the occurrence of each ICP elevation episode.

Each of these 3-minute segments was then processed by the ICP pulse analysis algorithm to
be described in next sub-section that resulted in 24 morphological metrics listed in Table 1.

This retrospective analysis of the data set was approved by the Institutional Review Board
committee of the UCLA Medical Center.

2.2 MOCAIP Algorithm
We developed a technique[9,12], termed Morphological Clustering and Analysis of
Intracranial Pressure (MOCAIP), for recognizing the locations of the three ICP sub-peaks
and then calculating the 24 MOCAIP metrics illustrated in Table 1. These metrics allows a
comprehensive quantitative characterization of ICP pulse morphology including pulse
amplitude, time intervals among sub-peaks, curvature, slope, and decay time constants.
Briefly, this technique accomplishes this detailed analysis of ICP pulse by sampling a
discrete period of a digital ICP recording, and then in order: 1) performing individual ICP
pulse detection, 2) segregating ICP pulses using cluster analysis, and then 3) rejecting
individual illegitimate (incomplete, bizarre, etc) waveforms. The latter step is facilitated by
comparison to a library of legitimate ICP pulses derived from our large patient database as
described in[9]. Representative ICP waveforms from each cluster group are derived by an
averaging process, which greatly improves the signal-to-noise ratio. The representative
waveform from this dominant cluster is then used for sub-peak detection and designation.

Pulse Detection—We adopted a previously developed method for detecting each ICP
pulse[13] using both ECG and ICP signals. As a result, the start of individual ICP pulses is
defined at the corresponding QRS peak of ECG.

Pulse Clustering—Clinical ICP recordings are often contaminated by noise and artifacts
including instrument noise, transient perturbation, sensor detachment, and quantization noise
by the digitization process. These noises and artifacts result in poor quality of individual ICP
pulses hampering a detailed analysis of their morphological features. We therefore reason
that a sensible tradeoff can be made to conduct the analysis of ICP pulse morphology by not
using individual pulse but rather using a representative cleaner pulse to be extracted from a
sequence of consecutive raw ICP pulses. The MOCAIP algorithm uses a clustering method
to extract this representative ICP pulse. A sequence of raw ICP pulse is first clustered into
distinct groups based on their morphological distance. The largest cluster is then identified.
An averaging process is conducted to obtain an averaged pulse for this largest cluster. In the
context of MOCAIP, we call this average pulse of the largest cluster the dominant ICP
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pulse. Subsequent analysis of ICP morphology will be only conducted for this dominant
pulse.

Legitimate Pulse Recognition—A dominant pulse is immune to noises of transient
natures. However, it could still be artifactual because the complete segment it represents
could be noise, e.g., sensor detachment can cause several minutes or even hours of ICP
recording to be invalid. To identify legitimate dominant ICP pulses in an automated fashion,
we propose to use a reference library of validated ICP pulses to aid the recognition of non-
artifactual ones. This library of reference ICP pulses was constructed with legitimate pulses
of diverse shapes as described in our original publication[9].

Detection of ICP Sub-peaks—Instead of using the strict condition xi–1 < xi < xi+1 to
define position i as a peak, the MOCAIP algorithm performs a comprehensive search for all
landmark points on an ICP pulse as candidates for designating the three sub-peaks. For
notational simplicity, these landmarks are still called peaks in MOCAIP. The first step to
find the landmarks is to find the second derivative of an ICP pulse. Based on the sign of the
second derivative, an ICP pulse can be segmented into concave and convex regions. We
treat the intersection of a concave to a concave region on the ascending portion of the pulse
as a landmark. On the descending portion of the pulse, the intersection of a convex to a
concave region is treated as a landmark.

Assignment of Detected Peaks—The objective of this last step of the MOCAIP
algorithm is to obtain the best designation of the three well-recognized ICP sub-peaks,
denoted as P1, P2, and P3 respectively, from an array of detected candidate peaks plus an
empty designation. Let a1, a2,..., aN represent an array of N detected peak candidates and a0
represent an empty designation such that if a0 is assigned to one of P1, P2, and P3, it means
that no corresponding sub-peak is present. The solution to this peak designation problem is
found by a divide-and-conquer procedure that selects the optimal configuration based on the
prior distributions of each of the three peaks as determined from the same ICP reference
pulse library.

2.3 Calculating MOCAIP metrics for pulses with less than three peaks
For a small number of segments whose number of sub-peaks is less than three, we adopted
the following simple rules to calculate the morphological metrics: 1) If only P1 is missing,
we consider P1 and P2 coincide; 2) if only P2 is missing, we consider P1 and P2 coincide; 3)
if only P3 is missing, we consider P2 and P3 coincide; 4) if only one peak is present, we
consider that all three peaks are merged into one.

2.4 Classification Experiment
We designed a classification experiment to test the hypothesis that Pre-IH ICP waveform as
selected in Section 2.1 can be differentiated from ICP waveform from controls. This is
essentially a two-class classification problem and we adopted the four conventional
measures to quantify the classification performance. These measures include sensitivity
(Sen), specificity (Spe), positive predictivity (PPV), and accuracy (AC). A simple
regularized quadratic discriminator[14] was chosen as the classifier. Apart from these
standard elements of a classification experiment design, a novel aspect of the present study
was that we used an optimal feature selection algorithm to automatically select the best
combination of MOCAIP metrics as an input feature vector to the quadratic decision
function.

As no prior knowledge is available with regard to what constitutes the most useful MOCAIP
metrics for differentiating Pre-IH and control segments, one attempt is to use the full set of

Hu et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MOCAIP metrics to compose a feature vector. The risk of doing so is that the correlation
among MOCAIP metrics will decrease classification performance, especially when the
classifier is trained over a finite set of training data. In addition, the classification problem is
unnecessarily complicated by having a high-dimensional feature vector.

Therefore, an automated and unbiased feature selection process is necessary. Indeed, this
process can be abstracted as an optimization process. The variable to be optimized is the
combination of MOCAIP metrics and the objective function can be constructed as a function
of classification performance measures. The challenge to find the optimal solution is the
inhibitive computational cost if a brute force search over set of candidate solutions is taken.

Given 24 MOCAIP metrics, there will be  possible combinations of
MOCAIP metrics to comprise a feature vector. Due to this huge number of possible
solutions, brute force search is therefore not an option.

Instead, we adopted an efficient global random search strategy called differential evolution
(DE) [15] to locate the best possible solution within a finite amount of time. Our previous
experience [16] with the DE algorithm indicates that it is a highly efficient global search
algorithm so that one can reasonably be certain that the solution provided by the DE is
probably the best possible one given an equivalent computational expenditure to other
search algorithms.

We chose the average of the sensitivity and positive predictivity as the objective function for
the DE algorithm to maximize, whose values are found by the standard leave-one-patient-
out cross-validation procedure [14].

A binary encoding schema was chosen to represent whether a MOCAIP metric is selected
using a real number between [0, 1] so that any value ≥ 0.5 would indicate that the
corresponding metric is selected. In addition, the regularized quadratic classifier has two
tunable parameters whose range is also [0, 1]. We incorporated these two parameters into
the optimization process as well. In summary, there are 24 variables to be optimized for
classifying Pre-IH(0) from normal controls that include 22 MOCAIP metrics and two
tunable parameters for the regularized quadratic classifier. Mean and diastolic ICP have to
be excluded as part of the classier features for classifying Pre-IH(0) because mean ICP
should be elevated already. For classifying the rest of Pre-IH segments, all 24 MOCAIP
metrics can be engaged and hence the dimension of the variable to be optimized is 26.

After finding the best combination of MOCAIP metrics and the optimal values for the two
classifier parameters, we used a standard bootstrapping cross-validation procedure[14] to
evaluate the performance of classification under this optimal setup. To investigate the
variability of this classification experiment, we independently run the above the
optimization and bootstrapping processes for five times.

As a comparison, we also evaluated the classification performance using the full set of
MOCAIP metrics as the feature vector. In this case, the two tunable parameters of the
regularized quadratic classifier were still optimized using the DE algorithm.

2.5 Simulating online execution of the algorithm
Despite our focus in the present work is the classification of different pre-IH segments
against the control segments, it is necessary to do a preliminary assessment of forecasting
ICP elevation in a real-scenario using the proposed classification algorithm. This was done
as the follows. We arbitrarily chose the optimal MOCAIP metrics combination and classifier
parameters found in the first of the five classification experiments conducted at each Pre-IH
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segment. For the reason of prediction, we excluded Pre-IH(0). We then collected all
available data for 23 control patients and 13 patients with IH. The MOCAIP algorithm was
executed for every 3-minute non-overlapped signal segment of these data and the quality of
the dominant pulse was visually evaluated to exclude all noisy 3-minute segments.

Then a leave-one-out schema was adopted to construct classifiers and test them on the these
3-minute segments, i.e., the four Pre-IH classifiers were constructed by excluding training
data that are from the patient being tested. We report the performance of in terms of false
positive rate, hourly false positive count, and sensitivity. Two types of control segments
were constructed. The first type includes those segments from control patients and is
denoted as Control(o) and the second type includes those segments that were from patients
with IH episodes but were at least one-hour prior to an ICP elevation episode. To assess
sensitivity, we used IH segments within an one-hour window prior to ICP elevation in a
format specified in Fig.1. These 3-minute segments were numbered as 1, 2, 3, ... starting
from the time of ICP elevation.

We adopted the following algorithm to calculate false positive rate and hourly false positive
count. A false positive is counted as long as any of the four Pre-IH classifiers outputs a
positive indicator on control segments. Then the false positive rate was calculated per
patient by dividing the total number of false positives by the total number of valid segments
of the patient. Hourly false positive count was also calculated per patient simply by
multiplying the false positive rate by 20 considering that each segment represents 3 minutes
of data. It should be noted that the maximal hourly count would be 20 in the current setting.

To calculate the sensitivity, we focused on the non-control segments. Each of these
segments associated with each ICP elevation episode has sequential number (Fig.1). An ICP
elevation episode (total number = 70) was considered as a true positive detection if a
positive classification outcome was achieved by applying one of the Pre-IH classifiers on the
segments with sequential number between 2 and 9. In essence, we are satisfied with
predicting ICP elevation at least 3 minutes prior to its occurrence using any of the four Pre-
IH classifiers.

3. Results
Table 2 summarizes basic demographical characteristics of the studied cohort. Of the
thirteen patients who exhibited intracranial hypertension, six of them were slit ventricle
patients with shunt clamped, one of them was a Chiari patient, and the patients admitted for
idiopathic headache evaluation account for the remaining six. Eleven out of these thirteen
patients are males. No difference in terms of age was found between IH and the normal
group for any diagnosis.

Tables 3 and 4 summarizes, for the optimal sub-set and the full-set of MOCAIP metrics
respectively, the mean and standard deviation of the four performance metrics of classifying
pre-IH segments from control ones. These results were pooled from five independent runs of
the classification experiment. In each table, values from both the leave-one-out (LOO) and
the bootstrapping (BS) cross-validation processes are given. In the following, we will be
primarily concerned with the bootstrapping results because the LOO results may
overestimate the performance because the optimization process was driven by the LOO
based cross-validation. However, this does not seem to be the case as the BS and LOO
results for the optimal subset of metrics are very close while the BS results for the full set of
metrics are larger than those from LOO.

Also as expected, the performance of differentiating the Pre-IH(0) group from the controls,
even after excluding mean ICP and diastolic ICP as part of classification features, was the
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best with a sensitivity of 90.5%, a high specificity of 99.8%, a positive predictivity of
98.6%, and an overall accuracy of 98.4%. For more challenging problems of differentiating
pre-IH segments other than pre-IH(0), the classification performance considerably decreases
in terms of the sensitivity while a high specificity is retained even for differentiating pre-
IH(20) and controls. A trend of decreasing performance can be also observed as the Pre-IH
segments are further away from the episodes of intracranial hypertension, particularly by
comparing performance of Pre-IH(20) with those of Pre-IH(5) and Pre-IH(10).

By comparing bootstrapping results between the optimal sub-set and the full-set approaches,
it can be clearly seen that using the optimal sub-set of MOCAIP metrics was able to obtain a
better result by comparing accuracy and the values of the objective function.

Table 5 provides further details about the statistics of each of the 24 MOCAIP metrics and
the number of times when a particular metric was selected. One can immediately identify
that different MOCAIP metrics were selected for different Pre-IH segments. Seventeen
metrics were selected at least once for classifying Pre-IH(0) that include both amplitude,
latency, and curvature based metrics. However, only 9 of them were selected for at least
three times, which indicates that they were selected in majority of runs. A fewer number of
metrics were selected for other Pre-IH segments. For example, only six MOCAIP metrics
were selected for classifying Pre-IH(10) for majority of times, which include dP23, dP2, dP3,
diasP, Curv2, and Curv23.

An unpaired t-test shows that majority of the MOCAIP metrics were statistically different
between the Pre-IH segments and the control except the cases marked in the Table with ‘*’.
For example, Curv1 and Curv3 were found not statistically different between control and any
of the Pre-IH segments. We also observed a disassociation between whether a metric is
statistically different between normal and Pre-IH groups and whether it will be selected as a
classification feature. A metric can be among the selected ones for classification while it is
not statistically different between the two groups to be classified, e.g., Curv23. On the other
hand, a statistically significant feature may not be necessarily selected, e.g., Lx for Pre-
IH(10) and Pre-IH(15).

Figure 2 displays the distributions of false positive rate (Panel A) and hourly false positive
counts (Panel B) for both Control(i) and Control(o) groups. One can observe that false
positive rate and false positive count are both higher for the Control(i) group. The average
false positive rate for Control(o) and Control(i) is 1.71±4.27% and 3.14±2.92%,
respectively. However, we had to exclude one patient from Control(i) group because the ICP
elevation associated with this patient was of a repetitive nature with a very short cycle.
Therefore, the control segments of this patient were all classified as one of Pre-IH segments.
In terms of the hourly false positive counts, 0.342±0.853 and 0.627±0.585 were obtained,
respectively.

4. Discussion
Our ICP waveform morphology analysis methodology combined with an optimally
constructed classifier was potentially able to forecast ICP elevation 5-minute prior to its
onset with a high specificity (> 97%) and an acceptable sensitivity (~ 80%). Despite this
performance decreases as one tries to increase the forecasting horizon, a high specificity,
around 97% at a time horizon of 20 minutes, is still retained. Prospective studies are
underway to investigate this technique for brain injury patients undergoing critical care.
Such studies are needed before generalizing our results because these patients may have
completely different pathological mechanism behind intracranial pressure elevation from
what was responsible for ICP elevation in the patients studied in the present work.
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Additionally, our analysis could not fully address the issue of mechanism, i.e., what do these
detected, and admittedly subtle, changes in ICP waveform morphology correspond to?

In the following, we will first address some observations from the classification experiment
and then discuss what these morphological changes capture.

The Pre-IH(0) segment corresponds to ICPs that are already elevated. Without using mean
and diastolic ICP, the optimal set of features contains MOCAIP metrics comprised of the
amplitude, interval, curvature, and slope indicating the whole array of morphological
characteristics of an ICP pulse were engaged for classification.

As compared to the Pre-IH(0), combinations with fewer MOCAIP metrics were determined
useful for classifying other Pre-IH segments despite an inferior performance was obtained.
This indicates that the optimization algorithm indeed selected what were just necessary for
classifying the Pre-IH segments. Using additional metrics as feature may not necessarily
improve classification performance. However, the fact that a particular metric is not selected
does not mean that the metric is not useful for the classification. This could be explained by
the mutual correlation this metric may have with other metrics and as a result it may not be
selected as a classification feature. This is best illustrated by comparing the t-test results
with feature selection profile. As demonstrated in Table 5 and Fig. 2, MOCAIP metrics that
were deemed important by the traditional t-test were not selected and the ones that were
selected were not deemed important by the t-test. While t-test assesses the importance of a
single metrics, the feature selection process emphasizes more the prediction power of
combination of metrics. Figure 3 shows the ROC curve for using a single mean ICP
parameter for classifying Pre-IH(5). The superiority of using multi-metric feature over using
mean ICP alone is clearly shown by comparing the performance at its optimal tradeoff point
where mean ICP equals 12 mmHg with what was achieved using the optimal sub-set of
MOCAIP metrics, which had a higher specificity without compromising the sensitivity.

Based on existing literature, risk factors associated with developing spontaneous ICP
elevation include blocked cerebrospinal fluid outflow resistance [17], reduced intracranial
compliance [18], increased cerebral blood flow (CBF) in the context of impaired
autoregulation [19], and cerebral venous hypertension [20,21]. The identified MOCAIP
metrics are predictive of ICP elevation probably because they reflect some aspects of those
identified risk factors. We found that the amplitude of individual ICP peaks and the derived
ratios are predictive of ICP elevation. In addition, the curvatures of the peaks were also
predictive of ICP elevation. Without a priori assumptions, these above findings were
reached in an automated and data-driven fashion. Consequently, they most likely reflect the
true physiology. Unfortunately despite more than forty years of research, the origin of the
three ICP sub-peaks has yet to be established. Therefore, the interpretation of these findings
is intrinsically difficult and some of them may need further confirmative studies.

With regard to the finding that metrics, including dP23, L13, L23, Curv23, and Curv13,
associated with the third peak are important, one consideration is that the third peak reflects
a venous-related origin of the ICP waveform. It has been suggested by some recent
modeling studies that in idiopathic intracranial hypertension[21], ICP elevation is associated
with cerebral venous pathological changes. The most important finding of these modeling
studies is that the sudden spontaneous ICP elevation is a manifestation of an unstable
intracranial dynamic system, which alternates between high and low pressure states.
Therefore, if the supposition that the third sub-peak has a venous origin is correct, then the
association of venous changes with idiopathic intracranial hypertension might result in the
third sub-peak changes, i.e., the elevation of the dP3 and shortening of L23 as found in the
present work.
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We have previously speculated that waveform morphology is a derivative of the intracranial
passage of the cerebral blood pressure wave[22-25]. Specifically, the mean ICP is directly
proportional to the cerebral capillary blood pressure. Elevation in the mean ICP, such as
with a plateau wave, might be reflected as a predominant capillary phase component
(between the arterial and venous phases), which might correspond to one of the ICP sub-
peaks. It is therefore conceivable that changes in arterial compliance, subarachnoid CSF
compartment compliance, and/or venous hypertension, might affect the respective ICP sub-
peak amplitude as well as individual sub-peak curvatures (which may reflect relative
compliance of different vascular compartments).

The Lx measure represents the time it takes for the peak of an ICP pulse descends to
approximately 37% of its peak value. Lx thus resembles the familiar RC time constant in a
simple RC circuit, a classical model for bulk CSF flow [26], and hence it reflects both the
CSF resistance and intracranial compliance. However, this metric has not been selected for
classifying any Pre-IH segments. This observation may be explained by the fact that some
other metrics reflect the same aspect of the intracranial dynamics and overshadow the
usefulness of Lx. Alternatively, a low compliant intracranial compartment may not be the
primary factor for the observed ICP elevation in this non-traumatic patient population. The
later explanation seems to be supported by the fact that the slope of ascending edge of an
ICP pulse was also only selected for classifying Pre-IH(0). This slope measure is also a
classical indicator of intracranial compliance[27]. However, one should bear in mind that it
should have been ideally normalized by the degree of the input arterial pulsation before
using it as an indicator of intracranial compliance.

5. Conclusion
We present one of the first efforts towards systemically researching methods for forecasting
ICP elevation. Our goal is to achieve a clinically useable forecasting system to enable a
potential but significant paradigm shift from a reactive ICP management to a proactive one.
The preliminary results obtained in the present work indicate that an unbiased and
automated searching of a comprehensive set of ICP pulse morphological metrics may
provide necessary information for forecasting ICP elevation. The performance can be further
improved by collecting more cases and adopting more advanced classifier algorithms.
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Figure 1.
Illustration of constructing pre-intracranial hypertension segments at different time intervals
relative to the start of ICP elevation for an episode of ICP plateau wave.
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Figure 2.
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Table 1

Illustration of ICP MOCAIP metrics that can be extracted by the current MOCAIP algorithm.

MOCAIP Metric Group Metrics

Amplitude

Absolute mICP, dP1,
dP2, dP3,
diasICP

Ratio dP2/
dP1(dP12),

dP3/
dP1(dP13),

dP3/ dP2(dP23)

Time Interval

Absolute LT, L1, L2, L3

Relative L2 - L1(L12),
L3 - L1(L13),
L3 - L2(L23)

Pulse Curvature

Absolute Curv1, Curv2,
Curv3, Curvm

Ratio Curv2/
Curv1(Curv12),

Curv3/
Curv1(Curv13),

Curv3/
Curv2(Curv23)

Slope (P1- diasICP)/
L1 (k1)

Decay time constant Lx where dPx
= 0.37 dP3
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Table 2

Characteristics of the patients we studied in the present work.

Group Dx Age (years)
N

F M

IH Slit Ventricle 40.0 ± 24.0 1 5

Chiari 40 0 1

Headache 32.0 ± 10.2 1 5

Normal Slit Ventricle 39.2 ± 14.3 0 9

Chiari 38.3 ± 8.1 0 4

Headache 42.3 ± 15.0 3 7
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