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I N T R O D U C T I O N

The recording of the force response of skinned muscle 
fiber preparations to step-like changes in muscle length 
(i.e., quick stretch and quick release) has long been a 
standard experimental procedure in the study of muscle 
contractile function. Early use of this force response was 
to interpret the mechanical manifestation of underlying 
biophysical and biochemical theories of actin–myosin 
interaction (Huxley and Simmons, 1971; Ford et al., 
1977). These and other more recent attempts to repre-
sent the force response in terms of mathematical models 
of muscle based on underlying biochemical events have 
been reviewed (Kawai and Halvorson, 2007). In addition 
to validating biophysical theories of muscle contrac-
tion, the descriptive features of the force response have 
proven to be useful for characterizing the contractile 
function of one muscle as different from another. This is 
particularly true when this force response has been used 
for characterizing cardiac muscle (Steiger, 1977; Stelzer 
et al., 2006a,b, 2007, 2008). Characterization of cardiac 
muscle behavior based on the force response profile typi
cally involves the fitting of a mono- or bi-exponential 
function to specific phases of a single step response.
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One prominent feature that is missed using single-
feature analysis is accounting for the fact that both the 
overall shape as well as the amplitude of the force re-
sponse waveform depend on the magnitude of stretch 
or release, particularly in cardiac muscle. For example, 
the force responses to large-amplitude stretch and to 
large-amplitude release are qualitatively very different 
in shape, whereas the force responses to small-ampli-
tude stretch and to small-amplitude release are similar 
in shape. This amplitude and directional dependence 
of the force response demonstrate the existence of a 
nonlinear contractile feature of cardiac muscle. Such 
nonlinear features represent an essential aspect of 
contractile function. Thus, contractile information can 
be extracted not only by analyzing the force response 
waveform to a single perturbation, but also by analyzing 
the overall behavior of the family of force responses 
to a range of stretches and releases. An appropriately 
formulated mathematical model could, in principle, 
capture most of the information contained in the col-
lective family of force responses and allow a general 
interpretation of the contractile behavior of experi-
mental preparations.
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Motivated by the need for an analytical tool that can be used routinely to analyze data collected from isolated, de-
tergent-skinned cardiac muscle fibers, we developed a mathematical model for representing the force response to 
step changes in muscle length (i.e., quick stretch and release). Our proposed model is reasonably simple, consist-
ing of only five parameters representing: (1) the rate constant by which length change–induced distortion of elas-
tic elements is dissipated; (2) the stiffness of the muscle fiber; (3) the amplitude of length-mediated recruitment 
of stiffness elements; (4) the rate constant by which this length-mediated recruitment takes place; and (5) the 
magnitude of the nonlinear interaction term by which distortion of elastic elements affects the number of re-
cruited stiffness elements. Fitting this model to a family of force recordings representing responses to eight ampli-
tudes of step length change (±2.0% baseline muscle length in 0.5% increments) enabled four things:  
(1) reproduction of all the identifiable features seen in a family of force responses to both positive and negative 
length changes; (2) close fitting of all records from the whole family of these responses with very little residual error; 
(3) estimation of all five model parameters with a great degree of certainty; and (4) importantly, ready discrimination 
between cardiac muscle fibers with different contractile regulatory proteins but showing only subtly different con-
tractile function. We recommend this mathematical model as an analytic tool for routine use in studies of cardiac 
muscle fiber contractile function. Such model-based analysis gives novel insight to the contractile behavior of car-
diac muscle fibers, and it is useful for characterizing the mechanistic effects that alterations of cardiac contractile 
proteins have on cardiac contractile function.
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model. Thus, we refined the model to be able to pro-
vide meaningful distinctions between these families of 
force responses.

We found that nonlinearity was an important feature 
of the step response and that the previous linear model 
could be expanded with the addition of a nonlinear 
term to approximate these nonlinear behavioral fea-
tures. The nonlinear term consisted of a single, one-
parameter expression representing interaction between 
XB distortion and recruitment processes. This single-
term addition resulted in a model that could account 
for most of the nonlinear response. Parameters of this 
nonlinear RD (NLRD) model were estimated by fitting 
to data, and these model-estimated parameters pro-
vided meaningful distinction between the two groups of 
cardiac muscle bundles. The remarkable outcome of 
this work is an NLRD model of constantly activated car-
diac muscle that can be used effectively to identify con-
tractile dynamics of muscle bundles responding to step 
changes in length.

M AT E R I A L S  A N D  M E T H O D S

Animal treatment protocols
Heart tissue from which cardiac muscle bundles were dissected 
was obtained from young adult Sprague-Dawley rats according to 
a protocol approved by the Washington State University Institu-
tional Animal Care and Use Committee. All animals in this study 
received humane care in compliance with the animal use princi-
ples of the National Academy of Sciences Guide for the Care and 
Use of Laboratory Animals.

Preparation of detergent-skinned cardiac muscle fiber bundles
Procedures for the preparation of skinned cardiac muscle fiber 
bundles have been described elsewhere (Chandra et al., 2007). 
In brief, rats were anesthetized by inhalation of isoflurane. Hearts 
were rapidly excised and placed in an ice-cold relaxing solu-
tion containing (in mM): 20 BDM, 50 N,N-bis(2-hydroxyethyl)- 
2-amino-ethane-sulfonic acid (BES), 20 EGTA, 6.29 MgCl2, 6.09 
Na2ATP, 30.83 potassium propionate, 10 sodium azide, 1.0 DTT, 
and 4 benzamidine-HCl. The pH of the solution was adjusted to 
7.0 with KOH. A fresh cocktail of protease inhibitors (in µM: 
5 bestatin, 2 E-64, 10 leupeptin, 1 pepstatin, and 200 PMSF) was 
added to the ice-cold buffered solution. Papillary muscles from 
these hearts were dissected into bundles 0.2-mm wide and  
2-mm long. Cardiac muscle bundles were demembranated at 4°C 
overnight in a relaxing solution containing 1% Triton X-100. 
Approximately six bundles were studied from each rat heart.

Reconstitution of recombinant troponin into detergent-
skinned rat cardiac muscle fiber bundles
Procedures for reconstitution of endogenous troponin in adult 
rat cardiac muscle fiber bundles was done based on methods pre-
viously described (Chandra et al., 1999, 2006). Endogenous tro-
ponin complexes were replaced in skinned cardiac muscle fiber 
bundles by exposing the fibers to recombinant rat cardiac tropo-
nin I (cTnI) and either WT-cTnT or cTnTS199E/T204E variants of 
rat cTnT for 4 h. The extraction solution contained (in mM): 
50 BES (pH 7.0 at 20°C), 180 KCl, 10 2,3-butane-dione monoxime, 
5 EGTA, 6.27 MgCl2, 1.0 DTT, 0.01% NaN3, and 5 MgATP2. A fresh 
cocktail of protease inhibitors was also added. Bundles were 

We previously developed a linear mathematical model 
to describe the force response of constantly activated car-
diac muscle to small-amplitude sinusoidal changes in 
muscle length (Campbell et al., 2004). This model is ca-
pable of extracting information pertaining to myofilament 
contractile dynamic processes and was used as a tool to 
determine how alterations in cardiac contractile proteins 
affected myofiber contractile dynamics. For example, we 
used the model to demonstrate that rat cardiac troponin 
T (cTnT) modulates sarcomere length-dependent cross-
bridge (XB) recruitment (Chandra et al., 2006), and 
that interaction between myosin heavy chain and tropo-
nin isoforms modulates cardiac myofiber contractile 
dynamics (Chandra et al., 2007).

The linear model consisted of two dynamic variables: 
(1) a recruitment variable that represents the number of 
force-bearing XBs; and (2) a distortion variable that rep-
resents the average distortion among the population of 
force-bearing XBs. The recruitment variable varied with 
muscle length and also varied with the level of Ca2+-
dependent activation. The distortion variable underwent 
transient changes after changes in muscle length. The 
linear model possessed only four constant-valued pa-
rameters: one scaling factor and one rate constant for 
each of the recruitment and distortion variables. When 
fit to the data, this simple four-parameter model rou-
tinely captured >99% of the variation in force produced 
by small-amplitude sinusoidal length changes over a 
broad range of frequencies. All four model parameters 
were estimated with a high degree of confidence; i.e., 
there was certainty in the uniqueness of the estimated 
parameter values. Therefore, this model, when fit to the 
force response to small-amplitude sinusoidal length per-
turbations, was recommended as a means for identifying 
the contractile dynamics of constantly activated cardiac 
muscle. However, sinusoidal length perturbation analy-
sis is restricted to small-amplitude perturbations and 
does not elucidate the important nonlinear behaviors 
described above.

We sought to determine whether our simple linear  
recruitment–distortion (RD) model could be modified 
with a nonlinear term for application to characterize the 
family of force responses to graded amplitude quick 
stretches and quick releases in constantly activated car-
diac muscle. Importantly, could the model be formulated 
with parameters that allowed effective discrimination 
between the contractile behaviors of two groups of car-
diac muscle bundles whose step responses were not obvi-
ously different? We compared step response data from 
rat cardiac muscle reconstituted with either wild-type 
rat cTnT (WT-cTnT) or protein kinase C phosphoryla-
tion mimetic S199E and T204E mutations in cTnT 
(cTnTS199E/T204E). Descriptive features of the family of 
step responses were poorly interpreted and not easily 
discriminated between the two types of cardiac muscle 
bundles based on model fits using the simple linear 
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groups, which made observable discrimination between 
the F(t) from each group difficult. However, careful 
examination of the profiles of F(t) from each group 
reveals subtle differences between the contractile be-
havior of rat cardiac muscle bundles containing WT-cTnT 
and those containing mutant cTnTS199E/T204E. Before 
discussing these differences, we highlight some impor-
tant features of F(t) that have been traditionally identi-
fied by previous investigators (Ford et al., 1977) and 
which we observed as well in each F(t) recorded from 
both groups.

These features can be illustrated in the force response 
to large-amplitude quick stretch (Fig. 2). This response 

rinsed after exposure to recombinant cTnI and cTnT with the 
extraction solution, and then exposed to recombinant rat cardiac 
troponin C (cTnC).

Measurement of force responses to various amplitude quick 
length changes in detergent-skinned cardiac muscle  
fiber bundles
Skinned muscle fiber bundles were attached to the arm of a dis-
placement motor (model 308B; Aurora Scientific Inc.) on one 
end and to a force transducer (AE 801; Sensor One Technologies 
Corporation) on the other end using aluminum T-clips. Mounted 
bundles were placed in a 15-µl well, where they were bathed in ei-
ther activating or relaxing solutions. Sarcomere length, SL, was 
measured by laser light diffraction methods. Visual display of the 
first-order laser light diffraction allowed judgment as to the accu-
racy of the SL assessment and the quality of the preparation. SL in 
all preparations was set to 2.2 µm before Ca2+ activation. Fiber 
bundle length at SL 2.2 µm was recorded as baseline muscle 
length (ML). Fiber bundle cross-sectional area was calculated 
from optical measurements of major and minor axes using an as-
sumption of an elliptical cross section.

Ca2+-activated force was measured at maximal level of activation 
(pCa 4.3). The amount of free [Ca2+] in solution and correspond-
ing pCa value was determined using methods described previ-
ously (Fabiato and Fabiato, 1979). Once steady-state isometric 
force was achieved, the length of the constantly activated muscle 
was commanded to change according to the following step length 
change protocol. A command was given to the motor for the mus-
cle to increase its length by 0.5% of ML in a step-like fashion. This 
length was maintained for 5 s at which time the muscle was com-
manded to rapidly return to ML. After another 5 s, a command 
was given to increase muscle length to 1.0% of ML, which was 
held for 5 s before rapidly returning to ML. This procedure was 
repeated for additional step increases in muscle length of 1.5 and 
2.0%. All step-like changes in muscle length were essentially com-
pleted in 1–2 ms. Measurements of force and muscle length were 
digitally sampled every 1 ms during the entire procedure. In all 
cases, force stabilized to a steady-state value within 1.5 s after a 
change in length. The first 1.5 s of the force response to the in-
crease in muscle length was taken as a response to quick stretch, 
and the first 1.5 s of force response after the return of muscle 
length to ML was taken as a response to quick release. All force 
and muscle length records were normalized to their respective 
values just before length change.

cDNA clones, expression, and purification of recombinant rat 
cardiac troponin subunits
Full-length cDNA clones for adult rat cTnI, rat cTnT, and rat 
cTnC were obtained as described previously (Chandra et al., 
2006). The cTnTS199E/T204E gene was created using site-directed 
mutagenesis techniques. cDNA for WT-cTnT (adult rat) was pro-
vided by J.P. Jin (University of Iowa, Iowa City, IA). Rat WT-cTnT, 
cTnTS199E/T204E, cTnI, and cTnC proteins were expressed in 
BL21*(DE3) cells and purified as described previously (Chandra 
et al., 2006).

R E S U LT S

Representative families of force responses, F(t), to four 
amplitudes of stretch and four amplitudes of release 
from rat cardiac muscle fiber bundles reconstituted with 
troponin containing either WT-cTnT or cTnTS199E/T204E 
are shown in Fig. 1. The force response patterns were 
qualitatively similar when comparing F(t) from both 

Figure 1.  Representative families of force responses to various 
amplitudes of quick stretch and quick release. Families of force 
responses, F(t), to four amplitudes of quick stretch and four am-
plitudes of quick release in two maximally Ca2+-activated cardiac 
muscle bundles reconstituted with troponin containing either 
WT-cTnT (A) or cTnTS199E/T204E (B). F(t) has been normalized to 
initial force, F0, before step change in muscle length, L(t). Aver
age F0 from WT-cTnT–containing muscle fiber bundles was  
69.5 ± 4.0 mN/mm2; F0 from cTnTS199E/T204E-containing bundles 
was 40.3 ± 6.1 mN/mm2. (C) L(t) is expressed as a fraction of 
initial muscle length (ML). Magnitudes of step changes are ±0.5, 
±1.0, ±1.5, and ±2.0% of ML.
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force response to large-amplitude quick release. Con-
versely, some of these characteristics of the large- 
amplitude response were not present or occurred at a 
different time during the response to release, indicat-
ing a departure from linear dependence of the shape of 
the force response to the magnitude of length change. 
Thus, there was both linear and nonlinear behavior in 
the family of force responses of both WT-cTnT– and 
cTnTS199E/T204E-containing muscle fiber bundles to vari-
ous amplitude changes in length. We identified and 
quantified these behaviors as described below.

Linear response features are identified as those 
whose amplitudes scale linearly with the amplitude of 
an input. As a consequence, in linear systems, the re-
sponse to a positive input of given amplitude will be a 
mirror image of the response to a negative input of the 
same amplitude. Examples of linear behavior were that 
of F1 and FSS responses, whose values scaled linearly 
with the magnitude of the length change (L) (Fig. 3). 
The slope of the relationship between F1 and L is an 
index of the stiffness (ED) of the population of bound 
XBs at the instance of the length change, and it is pro-
portional to the total number of strongly bound XBs at 
the time of L. The slope of the relationship between 
FSS and L (ER) is an index of the sensitivity of length-
mediated recruitment of additional XBs into the force-
bearing state, and it is proportional to the incremental 
change in the number of force generators in response 
to L.

exhibited characteristic phases and points that have 
been previously identified by other investigators (Huxley 
and Simmons, 1973; Abbott and Steiger, 1977; Ford  
et al., 1977; Steiger, 1977), with each event interpreted 
as follows. During steady-state Ca2+ activation, muscle 
bundles reach a steady-state force (F0) as a result of  
increased acto-myosin interactions. Ca2+ releases the in-
hibition of the troponin–tropomyosin complex on 
acto-myosin interactions, and through subsequent in-
teractions between myofilament proteins, it promotes 
the formation of several force-bearing XBs. Bound XBs 
contain elastic regions; power stroke–induced distor-
tion of these elastic regions is the fundamental source 
of muscle force generation (Huxley, 1957; Huxley and 
Simmons, 1971; Ford et al., 1977). Rapid stretch of the 
constantly activated muscle fiber bundle resulted in an 
immediate increase in force (phase 1), to a value F1, due 
to rapid distortion of the elastic regions of bound XBs. 
Force then rapidly decays as distorted XBs rapidly  
detach to reequilibrate into the nondistorted state 
(phase 2). A slow, but eventual increase in force pro-
duction (phase 3) then ensues as the increase in muscle 
length results in a length-induced recruitment of addi-
tional XBs into the force-bearing state. Muscle force 
slightly overshoots (phase 4) and then approaches a 
steady-state value, FSS, as the additional length-recruited 
XBs equilibrate into the force-bearing state. Some of 
the characteristics observed in the force response to 
large-amplitude stretch were also observed in the 

Figure 2.  Traditionally identified phases and nontraditionally identified nonlinearities in the force-response patterns to varied amp-
litude step-like changes in length. (A) Force responses to largest amplitude (±2% ML) length change. (B) Force responses to smallest 
amplitude (±0.5% ML) length change. Traditional phases 1, 2, 3, and 4 were identifiable only in the response to the largest quick stretch. 
Features present in all responses included: F1, the magnitude of the immediate response; FSS, the magnitude of the steady-state response. 
Features present in just the quick-stretch subfamily included: F23, the value of force at the nadir or dip in the response; T23, the time 
taken to reach this nadir. Note the small overshoot demarcating phases 3 and 4 in the response to the largest amplitude quick stretch is 
not observed in the smallest-amplitude quick stretch. Features present in just the quick-release subfamily included: T90, the time taken 
to recover 90% of the difference between F1 and FSS. Note a zenith seen in the response to the smallest amplitude quick release is not 
observed in the response to the largest quick release. Dashed horizontal lines indicate initial force and eventual steady-state force (FSS) 
in responses to largest-amplitude length change. Vertical dashed lines demarcate intervals for T23 and T90.
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the transient in the force response to small-amplitude 
quick release (Fig. 2 B). These observations are a result 
of the more global observation that the pattern of the 
shape of the transients in force responses to stretches 
was different than the pattern of the shape of the tran-
sients in force response to releases. For example, the 
transients in the force responses to stretch each dipped 
toward one another at a nadir (point F23 in Fig. 2 A), 
whereas the shape of the transients in the force re-
sponses to releases diverged from another and did not 
possess a common zenith. Therefore, the shape of the 
transient between F1 and FSS was considered to have a 
nonlinear dependence on the magnitude of L because 
the patterns of these shapes in stretch and release were 
not mirror images of one another.

Nonlinearities can be further demonstrated by exam-
ining how specific periods and phases of F(t) scale with 
the magnitude of L. Such analysis was used in a histori-
cal study by Ford et al. (1977) to identify and account 
for nonlinear behavior in skeletal muscle, whereby both 
the magnitude of tension approached at an early recov-
ery phase (T2) and the rate at which tension approached 
T2 in the force response to quick release varied with 
the amplitude of length change. In the present study, 
we note that the time to reach the dip in responses to 
stretch, T23, and the time to reach 90% of FSS, T90, in re-
sponses to release also varied with the magnitude of L 
(Fig. 4). This indicates nonlinear behavior in F(t) be-
cause the time course, and thus the shape, of the F1-FSS 
transient was different at different magnitudes of L. 
Both the L-T23 and the L-T90 relationships were  
different in rat cardiac muscle bundles containing 
WT-cTnT and those containing cTnTS199E/T204E, indicat-
ing that the nonlinear behavior was different in these 
different muscle preparations. Additionally, the mag-
nitude of F23 scaled curvilinearly with the magnitude of 
L (Fig. 5). Fig. 5 shows additional distinction between 
bundles containing the WT-cTnT and those containing 

Both ED and ER were significantly greater in muscle  
fiber bundles containing WT-cTnT than in those contain
ing cTnTS199E/T204E (Table I). The increased ED observed 
in bundles containing WT-cTnT correlates well with an 
observed increase in F1 because both ED and F1 can be 
correlated to the number of parallel, force-generating 
XBs bound at steady-state activation before stretch 
(Campbell et al., 2004).

Nonlinear behavior can be identified as that in which 
the amplitude or shape of a characteristic does not scale 
linearly to a given input. Examples of nonlinear con-
tractile behavior were observed in the transient of the 
force response between F1 and FSS. Such nonlinear be-
havior is illustrated in the observation that the shape 
and pattern of the force responses to quick stretch were 
different than that of the force responses to quick re-
lease. For example, the shape of the transient in the 
force response to large-amplitude quick stretch was dif-
ferent than the shape of the transient in the force re-
sponse to large-amplitude quick release. The transient 
to quick stretch possessed a well-defined valley or nadir 
separating a quick component of the transient from a 
slow component. In contrast, the transient in a quick-
release response did not have a corresponding feature, 
and the transition from the quick component to a slow 
component was less well defined (Fig. 2 A). In compari-
son, the shape of the transient in the force response to 
small-amplitude quick stretch roughly mirrored that of 

Figure 3.  Relationship between F1 and FSS and L. The magnitude of F1 and FSS scale linearly with the magnitude of length change, L. 
The dependence of F1 and FSS on L was steeper in fiber bundles containing WT-cTnT (A) when compared with the dependence of F1 
and FSS on L in fibers containing cTnTS199E/T204E (B).

Tab  l e  I

Stiffness estimates from L-F1 relationship and L-FSS relationship

Stiffness parameter WT-cTnT cTnTS199E/T204E p-value

ED (mN mm3) 747.7 ± 40.9 522.9 ± 69.6 0.0175

ER (mN mm3) 226.7 ± 15.7 114.3 ± 21.3 0.0019

Muscle fiber bundles containing the cTnTS199E/T204E variant exhibited 
significantly lower stiffness parameters, ED and ER, when compared to 
bundles containing the WT-cTnT.
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tion as independent. Rather, we formulated muscle 
force to be equal to the product of a recruitment vari-
able, (t), and a distortion variable, x(t), as is consistent 
with their physical meaning; i.e., (t) represents the net 
stiffness of a population of parallel stiffness elements, 
and x(t) represents the average elastic distortion among 
these elements. Thus,

	 F t t x t( ) = ( ) ( )η . 	  (1)

The RD concept arises directly from considering lin-
early elastic myosin XBs as the elemental force genera-
tors in muscle. We refer to earlier publications for the 
origins of these concepts and for the intellectual bridge 
between myofilament kinetics and RD fiber bundle dy-
namics (Campbell et al., 2004; Chandra et al., 2007).

The product of (t) and x(t) in Eq. 1 to produce force 
is a nonlinear combination of variables. In our earlier 
work (Campbell et al., 2004; Chandra et al., 2006, 2007), 
we linearized Eq. 1 to predict linear small-signal behav-
ior. Here, however, we will start with the product combi-
nation of (t) and x(t), as this nonlinear combination 
may be important to explaining some of the nonlinear 
behaviors we observed in the recorded step response. 
We now examine dynamic expressions for the length-
induced changes in (t) and x(t).

After muscle length change during constant Ca2+ acti-
vation, net stiffness, (t), changes as more or fewer stiff-
ness elements, XBs, are recruited into or out of the 
stiffness pool. Because of length-dependent activation 
kinetics and XB cycling, length-mediated recruitment  
is a dynamic process requiring time to complete after  
a change in length. In our earlier work (Campbell  
et al., 2004; Chandra et al., 2006, 2007), we successfully 
approximated these recruitment dynamics with the first-
order linear differential equation:

cTnTS199E/T204E, further indicating that nonlinear behav-
ior was different in these muscle preparations contain-
ing different variants of cTnT.

Characterization of nonlinear behavior, as presented 
above, only allowed subtle discrimination between the 
two muscle preparations (note that the scale and mag-
nitude of variation between groups in Figs. 4 and 5 are 
<10%). Thus, the aim of this study was to characterize 
the nonlinearities contained in the entire family of 
force responses to various amplitude step-like length 
changes in such a way as to easily discriminate contrac-
tile behavior of muscle preparations containing differ-
ent contractile elements. Our goal was to formulate a 
mathematical model that is able to account for both the 
linearities and nonlinearities described above, and that 
is able to discriminate between nonlinear behaviors of 
different muscle preparations. Both linear and nonlin-
ear features of the family of F(t) represent important as-
pects of the contractile behavior of the myofilament. 
Linear features represent linearly elastic properties  
related to the number of bound XBs based on L-induced 
distortion and recruitment of force-bearing XBs, whereas 
nonlinear features represent other mechanisms of 
length-mediated contractile activation.

Model Development
Mechanistic considerations. Model development began 
with an RD formulation that we used successfully to de-
scribe the force response to sinusoidal length change 
(Campbell et al., 2004; Chandra et al., 2006, 2007). In 
these sinusoidal force responses, only linear behaviors 
of the muscle were observed, and a linear combination 
of independent effects due to distortion and recruit-
ment was used. However, because obvious nonlinear  
behaviors were observed in the step response, we no 
longer treated the effects of the recruitment and distor-

Figure 4.  Time to selected features of response waveforms as they varied with amplitude of the stretch, L. Open symbols are data from 
muscle fiber bundles containing WT-cTnT; filled symbols are data from muscle fiber bundles containing cTnTS199E/T204E. (A) The time, 
T90, taken to recover 90% of the difference between F1 and FSS in responses to quick releases. (B) The time, T23, to nadir in responses to 
quick stretches. Dashed lines represent trend lines, and error bars are SEM. If the muscle bundle behaved as a linear system, neither T23 
nor T90 would show any dependence on L. Both T23 and T90 change with the magnitude of L, indicating nonlinear behavior.
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These solutions allow calculation of an immediate re-
sponse as:

	 F
l

x1
0

1= + ∆
, 	  (6)

and a steady-state response after all transients have died 
out as:

	 F
l

l lss
d

= +
−

1
∆

, 	  (7)

where both F1 and FSS are normalized with respect to F0, 
F x0 0 0= η . From Eq. 6, we see that the starting model pre-
dicts that F1 is linearly dependent on L, even though 
(t) and x(t) combine nonlinearly to determine F(t) in 
Eq. 1. This model-predicted linear relationship between 
F1 and L, which is consistent with what was observed 
experimentally, demonstrates that distortion by itself is 
the determinant of the immediate response, and re-
cruitment does not play a role in this very early part of 
the step response. Further, the starting model also pre-
dicts that FSS too is linearly dependent on L in spite of 
the nonlinear character of Eq. 1, which is also consistent 
with the experimental results. This result demonstrates 
that recruitment is the determinant of the steady-state 
response, and stretch-induced distortion does not play a 
role in the late parts of the response.

The starting model adequately predicts the immedi-
ate and steady-state aspects of the step response and 
now needs to be examined in terms of its ability to 
predict the transition between these two extremes. 
Does the nonlinear combination of the recruitment 
and distortion variables through the multiplication of 
Eq. 1 produce any of the nonlinear behaviors that 
were noted in the experimentally observed responses? 
We examine two cases: (1) the rate constants of re-
cruitment, b, and distortion, c, are equal; and (2) the 
rate constant of distortion is 10 times greater than that 
of recruitment.

	 d t
dt

b t l t ld
η

η β( ) = − ( ) + ( ) − 0 , 	  (2)

where b is the recruitment rate constant, 0 is a scaling 
factor, and ld is a length at which no recruitment occurs.

Also, muscle length change causes a change in the av-
erage elastic distortion, x(t), of stiffness elements. This 
change happens immediately; i.e., XB stiffness elements 
are immediately stretched at the moment the muscle  
fiber is stretched. However, XB cycling results in the 
breaking of stretched XBs and the replacement of these 
broken XBs with new XBs that did not experience the 
stretch event. We have successfully approximated the dy-
namics of this transient distortion change with the lin-
ear differential equation:

	 dx t
dt

c x t x
dl t

dt
( ) = − ( ) −  + ( )

0 , 	  (3)

where c is the distortion rate constant, x0 is a baseline 
isometric distortion imposed on the XB by the power 
stroke, and

dl t
dt
( )

is the time rate of length change or the muscle fiber 
velocity.

Qualitative predictions
For an idealized step in which length change occurs 
instantaneously, analytical solutions of the recruit-
ment and distortion equations can be derived and are 
helpful in interpreting the response. For an idealized 
step of magnitude L, the solutions of Eqs. 2 and 3 
are, respectively,

	 η η β
t

a
e la t( ) = + −( )−

0
0

0

1 0 ∆ 	  (4)

	 x t x le g t( ) = + −
0

0∆ . 	  (5)

Figure 5.  The value of the force at the nadir in the 
response to quick stretches, F23, as it varied with am
plitude of the stretch, L. Open points and dashed 
line are data from muscle fiber bundles containing 
WT-cTnT; solid points and line are data from mus-
cle fiber bundles containing cTnTS199E/T204E. The 
dashed horizontal line represents the steady-state  
force value before stretch (F0), normalized to 1. 
Error bars are SEM. Curvilinearity in this rela-
tionship in both groups of muscle fiber bundles is 
evidence of dynamic nonlinearity. This nonlinearity 
is exhibited differently in the two groups of muscle 
fiber bundles.
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starting model, especially in the decomposition of the 
response into its recruitment and distortion compo-
nents (see Fig. A1), led us to focus on the recruitment 
equation as the most likely place in the model where 
variations could bring about improvement. Two general 
schemes for variation were attempted: (1) variants of 
Eq. 2 in which velocity had a negative effect on recruit-
ment; and (2) variants in which there was nonlinear in-
teraction between (t) and x(t).

In brief, all attempts to introduce velocity effects on 
recruitment were unsuccessful in improving model per-
formance. This was due, in part, to the fact that these 
velocity effects preferentially and severely degraded the 
immediate or F1 response turning the F1 versus L rela-
tionship from a linear shape (which was experimentally 
observed) into a curvilinear shape (which was not ex-
perimentally observed). In contrast, a nonlinear term 
with an interaction between (t) and x(t) had a power-
ful effect on the transition between F1 and FSS without 
affecting the F1 and FSS aspects of the response, which 
were already satisfactorily reproduced by the starting 
model. The challenge became one of identifying the 
correct form of the (t)–x(t) interaction term. We ap-
proached this challenge as follows.

The interaction term was incorporated into the dif-
ferential equation for (t) as:

	 d t
dt

b t t f x l t l
η

η γη β( ) = − ( ) − ( ) ( ) + ( ) − 0 0 , 	  (8)

where f(x) was one of several competing functions of 
x(t) (see Table A1). Actually, x(t) was normalized as

 

x t x
x

( ) − 0

0

,

which had the effect of confining distortion effects to 
situations where x(t) deviated from its isometric value, 
x0 (refer to Appendix for model in normalized form). 
Further, by dividing this deviation by x0, physical units 
were removed from this term and the interaction coeffi-
cient, , carried units of s1, which then allowed  to be 
compared with the b coefficient. As with the starting 
model, the equation for distortion in these model vari-
ants remained as given by Eq. 3.

Because of the nonlinear interaction term in Eq. 8,  
an analytical solution for (t) during the transient 
between F1 and FSS could not readily be obtained. Con-
sequently, we used numerical integration methods to 
solve for (t) during this transient. However, the steady-
state solution for (t) was not affected by the nonlinear 
term, and the solution for x(t) was as before (i.e., Eq. 5). 
Thus, analytical solutions were found for both F1 and 
FSS, and these were identical to the linear solutions 
found for the starting model (e.g., Eqs. 6 and 7). As has 

The starting model predicts that transition between F1 
of the immediate response and FSS of the steady-state re-
sponse is greatly affected by the relative values of b and c 
(see Fig. A1). When the rate constants for distortion and 
recruitment are equal (c = b), the transition occurs 
monotonically with no feature in the trajectory to distin-
guish various phases of the response. However, when the 
rate constants differ by an order of magnitude (c = 10*b), 
the transition trajectory shows two distinct phases: a fast 
phase as x(t) quickly recovers to its isometric value and a 
slow phase as (t) rises (or falls depending on whether 
stretch or release) to its eventual new steady-state value 
as a result of length-mediated recruitment effects. Sepa-
ration of the fast and slow phases produces a nadir in the 
response to stretch and a zenith in the response to re-
lease. Thus, some aspects of the experimentally observed 
trajectory between F1 and FSS can be recreated with the 
starting model by separating the values of the rate con-
stants of distortion and recruitment.

However, despite the appearance of a nadir in the tra-
jectory and a clear demarcation of a point in the trajec-
tory that distinguishes the x(t) recovery from the (t) 
approach to a new steady state, many of the notable 
nonlinear features in the experimentally observed step 
response are absent: (1) for all intents and purposes, 
the response to a stretch is a mirror image of the re-
sponse to a release at all step amplitudes, unlike what 
was observed experimentally where the transition from 
F1 to FSS was very different for stretches than for releases; 
(2) trajectories at the various step amplitudes tend to 
converge on a F23 transition point in responses to both 
stretches and releases, whereas transitions in the experi-
mentally observed responses to releases followed widely 
separated trajectories; (3) although the F23 transition 
point occurs earlier in the response when c is made pro-
gressively larger than b, for a given value of c and b it oc-
curs at the same time in the response, regardless of the 
step amplitude (not depicted); and (4) the force value 
at the F23 transition point scales linearly with step ampli-
tude and never dips below the initial force, no matter 
how large the difference between rate constants.

In summary, although the starting model generates 
many overt features of the experimentally observed step 
response, the nonlinear product combination of (t) 
and x(t) in Eq. 1 does not produce any of the promi-
nent or subtle nonlinear features in the experimentally 
observed step response.

Model variations to qualitatively reproduce  
observed nonlinearity
Because the starting model, with its nonlinear combina-
tion of (t) and x(t) in the force calculation (Eq. 1), did 
not produce any of the nonlinear behaviors that were 
noted in the experimental results, we examined variants 
of this starting model in terms of their ability to repro-
duce aspects of these nonlinear effects. Results from the 
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2. The trajectory pattern among responses to different 
L amplitudes was very different for quick stretches 
than for quick releases, with the trajectories of the four 
transients to quick stretches at different amplitudes 
tending to all approach one another at a nadir, while 
the trajectories of the four transients to quick releases 
at different amplitudes exhibited no nadirs and re-
mained apart and distinct from one another through-
out the transient.
3. Within the subfamily of the four responses to quick 
stretches, the value of the force at the time of the nadir 
in the transient, F23, did tend to converge on a common 
point and they scaled curvilinearly with the magnitude 
of length change, and the time to the nadir, T23, varied 
with length change magnitude.
4. Within the responses to quick release, the shape of 
the response changed from one with an overshoot for 
the smallest length change to one without an over-
shoot and a monotonic approach to FSS for the largest 
length change.

There are only two features of these model predic-
tions that differ from what was seen experimentally: 
(1) the curvilinearity in the F23 versus L relationship 

already been pointed out, these F1 and FSS solutions 
were consistent with what was observed experimentally.

Model results for three variants of f(x) are summarized 
in the Appendix (Table A1). Of these, only one variant 
was successful in generating the prominent aspects of the 
experimentally observed nonlinear response:

	 f x
x t x

x
( ) = ( ) −









0

0

2

. 	  (9)

We demonstrate results from this model variant in the 
following figures.

The time course of the predicted step response of this 
model-variant is shown in Fig. 6. The outstanding result 
is that this model-variant reproduced many of the most 
prominent nonlinear features of the experimentally ob-
served response transient including:
1. The shape of the transient of responses to large-am-
plitude quick stretches was very different than the shape 
of the transient of responses to large-amplitude quick 
releases. However, the response to the smallest-amplitude 
quick stretch roughly resembled the response to the 
smallest-amplitude quick release.

Figure 6.  Predicted step response of model variant. The addition of the second-order interaction term produces a family of force re-
sponses (A) similar to experimentally observed responses to various amplitude quick stretch and release. (B) Each component of the 
model response to the largest amplitude (2% ML) quick stretch. Transients in responses to stretches that are unlike those in responses 
to releases at large-amplitude L (C), but responses to stretch and release that are similar in shape at small-amplitude L (D). These 
interaction effects do not affect the F1 or FSS versus L relationships (see Model development).
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fitted to data records using a Levenberg-Marquardt re-
gression method to minimize sum of square errors (SSE). 
Results of fitting were obtained not only for the RD and 
NLRD models described above, but also for all the com-
peting variants of the model shown in the Appendix 
(Table A2). Comparisons of models were based on sev-
eral criteria.

Criterion 1: Reproduction of the shape of F(t). An impor-
tant criterion in model validation was that the model, 
when fit to data, reproduced the essential shape of F(t). 
As shown in Figs. 6 and A1, and Table A1, the starting 
RD and NLRD models were capable of reproducing the 
general shape of F(t). As a qualitative assessment of 
how well the model was able to reproduce the essen-
tial shape, we inspected the likeness of ˆ( )F t  to F(t) and 
inspected the time course of the residual errors after 
data fitting.

Criterion 2: Goodness of fit. Good fit was indicated by low 
SSE and an R2 value close to 1. SSE and R2 were deter-
mined by the following calculations:

	 R
SSE
SST

2 1= − 	

is in a different direction in the experimental data 
(curvilinear up with increasing L) than what it is in 
the model predictions (curvilinear down with increas-
ing L); and (2) there is no overshoot in the response 
to large-amplitude quick stretches preceding the final 
approach to FSS.

The RD model containing the nonlinear interaction 
term in the recruitment equation (Eq. 9) reproduced 
the qualitative nonlinear features observed experimen-
tally in the step response. Thus, it served as the model 
for validation using the family of force responses to 
various amplitude quick stretches and quick releases.  
To make this validation, we fit the model to each of the 
records of the F(t) family taken from rat cardiac bundles 
containing either the WT-cTnT or cTnTS199E/T204E variant. 
We then compared the fits to the F(t) family by the sim-
ple RD model with those by the NLRD model predic-
tions. Substantial improvement of fits by the NLRD that 
could be attributed to reproduction of the observed non-
linear traits was taken as evidence of model validity.

Model validation and application
Model fitting and selection methods. Model predictions 
were computed using fourth-order Runge-Kutta numer-
ical integration. Computed model predictions were 

Figure 7.  Representative model-predicted F(t) when fit to data from muscle fiber bundles reconstituted with troponin containing  
WT-cTnT or cTnTS199E/T204E. When fit to data, the NLRD model reproduced the essential shape of the waveform of F(t) in both fiber bundles 
reconstituted with WT-cTnT or cTnTS199E/T204E (B or D, respectively) more accurately than the RD model did (A or C, respectively).
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ing either WT-cTnT or cTnTS199E/T204E. This was done by 
comparing parameter estimates obtained in each group 
using a two-tailed t test ( = 0.05).

Model validation and application results
Criterion 1: Reproduction of the shape of F(t). Representa-
tive fits of RD and NLRD models to F(t) records col-
lected from WT-cTnT– or cTnTS199E/T204E-containing 
muscle fiber bundles are shown in Fig. 7. The waveforms 
of the responses in the NLRD predicted responses were 
qualitatively closer to those in observed data, reproduc-
ing the essential phases and nonlinearities of F(t) de-
scribed previously, than were those of the RD prediction 
(Fig. 7). This was substantiated by the observation that 
the time course of residual errors showed lesser varia-
tion when the NLRD model was used to fit data than 
was observed in the time course of residual errors when 
the RD model was used to fit data (not depicted). This 
decrease in residual error due to the addition of the 
nonlinear interaction term into the recruitment com-
ponent of ˆ( )F t  suggests that the shape of NLRD pre-
dicted ˆ( )F t  was closer to that of F(t) than was the shape 
of simple RD model–predicted ˆ( )F t . Therefore, the 
NLRD model was more accurate in the reproduction of 
the essential shape of F(t) than was the RD model, sug-
gesting that the NLRD model is more appropriate for 
describing data based on criterion 1.

Criterion 2: Goodness of fit. Models were fitted to 11 fami-
lies of force responses to various amplitude stretches 
and releases of maximally activated bundles (n = 6 
from WT-cTnT–containing bundles; n = 5 from  
cTnTS199E/T204E-containing bundles; nobs = 8,800 in each 
F(t)). Both the RD and NLRD models met the first cri-
terion in model selection and validation reasonably 
well, producing high R2 values and low sum of square 
residual errors (Fig. 8 and Table II). R2 ranged from 
0.881 to 0.966 in simple RD model fits and ranged from 
0.971 to 0.993 in NLRD models fits. The NLRD model 
resulted in lower overall SSE and higher R2 values than 
did the simple RD model when fit to data records from 
rat bundles containing either WT-cTnT or cTnTS199E/T204E 
variants. The observed decrease in SSE and increase in R2 
from the NLRD model fits compared with fits from the 
RD model was highly significant (Table II). This suggests 
that the addition of the nonlinear interaction term into 

	 SSE F t F t= −( )∑ ˆ( ) ( )
2 	

	 SST F t F= −( )∑ ( ) ,
2 	

where ˆ( )F t  is the model predicted force response, F(t) 
is the measured force response, and F  is the mean 
value of F(t). Goodness of fit was also estimated by R2 
value given by the linear regression of the relationship 
between F(t) and ˆ( )F t .

Criterion 3: Confidence in the model parameter estimates. 
Low standard errors relative to the parameter estimates 
(coefficient of variation <0.05) suggest that the model 
parameters were independent in their effects on the 
predicted force response. A fit resulting in a low stan-
dard error of the parameter estimate would suggest that 
the parameters in the recruitment and distortion equa-
tions had independent effects on ˆ( )F t  and were there-
fore estimated uniquely. Therefore, suitable models were 
those that, when fit to data, produced low SSE and high 
R2 values and resulted in low standard errors in the esti-
mation of model parameters.

Distinguishing between competing models. From the 
group of competing models (Tables A1 and A2), the 
best model was determined based on respective Akaike’s 
information criterion (AIC). AIC of each model predic-
tion was computed using the following equation:

	 AIC n n
SSE

nparam obs
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where nparam is the number of parameters in the model, 
and nobs is the number of observations in the entire F(t) 
data record. AIC was calculated for each model fit and 
was used to rank the models for each data record. The 
model that consistently gave the lowest AIC value was 
considered the best model out of the group of compet-
ing models.

Model application. The models were used to describe the 
contractile behavior of the experimental preparations. 
Fitted parameters were used to distinguish contractile 
behavior between rat cardiac muscle bundles contain-

Tab  l e  I I

SSE and R2 values from fitting of RD and NLRD models to F(t)

Measures of goodness of fit WT-cTnT cTnTS199E/T204E

RD NLRD p-value RD NLRD p-value

SSE 3.255 ± 0.293 0.729 ± 0.093 9.25 × 106 4.665 ± 0.413 1.092 ± 0.129 3.49 × 105

R2 0.949 ± 0.004 0.988 ± 0.001 6.30 × 106 0.904 ± 0.008 0.978 ± 0.003 3.31 × 105

Model estimates fit the data reasonably well, giving low SSE and high R2. The addition of the nonlinear interaction term significantly enhanced the goodness 
of fit by decreasing SSE and increasing R2. p-value is that of the comparison between the RD and NLRD model fits in each experimental group.
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each parameter estimate, the relative standard error was 
always <5%. This was consistent across fits to all data re-
cords using both RD and NLRD models. Because CoV 
were consistently low for each parameter in each model, 
we were able to assume that each of the model parameters 
had independent effects on the overall model-pre-
dicted ˆ( )F t . Therefore, both models provided confidence 
in the uniqueness of the estimated parameter values.

Between the two models, the NLRD model obtained 
significantly lower CoV of each parameter estimate 
when compared with those obtained by the RD model, 
despite the presence of an additional parameter. Over-
parameterized models, when fit to data, often result in 
non-unique solutions and contain parameters that are 
estimated with little confidence. In this case, however, 
the addition of the nonlinear interaction term was not 
damaging to our confidence in parameter estimation, 
but instead increased the confidence by which parame-
ters were estimated.

Discriminating between competing models. Because both 
models to a large degree satisfied criteria 1–3, we looked 
at the AIC to provide an objective index to rank the 

the recruitment component of ˆ( )F t  resulted in a better 
descriptor of the data from both experimental groups 
because doing so improved the goodness of fit.

The result of the F(t)  ˆ( )F t  regressions are shown in 
Fig. 8. In WT-cTnT–containing muscle fiber bundles, 
regression fits are ˆ( ) . ( ) .F t F t= +0 9258 0 0778  for the RD 
model and ˆ( ) . ( ) .F t F t= +0 9650 0 0326  for the NLRD model. 
In cTnTS199E/T204E-containing bundles, regression fits 
are ˆ( ) . ( ) .F t F t= +0 8751 0 1291  for the RD model and 
ˆ( ) . ( ) .F t F t= +0 9488 0 0493  for the NLRD model. Therefore, 

the slope of these regressions approached 1 and the in-
tercepts approached 0; slope and intercept were more 
close to ideal values in the NLRD model than in the RD 
model (P < 0.0001). Collectively, these results suggest 
that the addition of the nonlinear interaction term to 
(t) was appropriate for fitting to data because NLRD 
resulted in better fits of ˆ( )F t  to F(t) and, therefore, satis-
fied criterion 2 better than the RD model did.

Criterion 3: Confidence in the model parameter estimates. 
The standard errors of the parameter estimates relative 
to the respective parameters (coefficients of variation 
[CoV]) were satisfactorily low, as shown in Table III. For 

Figure 8.  Relationship between observed F(t) and model-predicted F(t). The relationship between observed F(t) and RD-predicted F(t) 
values is nearly linear from cardiac muscle fiber bundles containing either WT-cTnT (A) or cTnTS199E/T204E (C). Adding the nonlinear 
interaction term makes the trend between observed F(t) and NLRD-predicted F(t) more linear when fit to data from muscle fiber bun-
dles containing either WT-cTnT (B) or cTnTS199E/T204E (D). The NLRD model resulted in regression slope (m) and R2 values closer to 1 
and regression intercept (b) values closer to 0 than the RD model did.
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recruitment in bundles containing the cTnTS199E/T204E 
than in muscle fiber bundles containing the WT-cTnT, 
contributing to a more pronounced nonlinearity in F(t) 
that was observed in bundles containing cTnTS199E/T204E. 
Although this unique characteristic of the cTnTS199E/T204E-
containing group was easily identifiable using the NLRD 
model, the RD model was unable to distinguish between 
the nonlinear behaviors of groups containing either 
WT-cTnT or cTnTS199E/T204E.

Therefore, the NLRD model can be used to provide a 
more detailed interpretation of the effects that altera-
tions in the structure of contractile proteins have on the 
contractile function of cardiac muscle fiber bundles. 
The NLRD model contains the nonlinear interaction 
term, which is formulated as an effect by which the state 
of bound XBs influences the recruitment of other XBs. 
Because XBs do not directly interact with one another, 
this interaction describes cooperative and/or allosteric 
mechanisms translated along the thick or thin filaments. 
Here, our study shows that the thin filament is involved 
in the transduction of the XB strain-dependent effect on 
other XBs because different variants of cTnT affect this 
nonlinear interaction process differently. Modifying 
cTnT and, in turn, the thin filament structure modified 
the mechanisms by which XBs influence the recruitment 
of other XBs, as measured by . This suggests that thin 
filament proteins (e.g., cTnT) play an important allo-
steric regulatory role in XB-mediated XB recruitment, a 
process that underlies prominent nonlinear contractile 
behavior in cardiac muscle.

competing models (Tables A1 and A2). In every fit of 
F(t) from both WT-cTnT– and cTnTS199E/T204E-contain-
ing cardiac muscle fiber bundles, the AIC index was less 
for the NRLD model than it was for the RD model. 
Based on this index, the NLRD model was always a bet-
ter descriptor of F(t) than was the RD model.

Model application. Fitted model parameter estimates from 
RD and NLRD are shown in Figs. 9 and 10, respectively. 
The RD model was unable to distinguish any difference 
in the rate constant of length-mediated XB recruitment, 
b, between groups containing either WT-cTnT or 
cTnTS199E/T204E (Fig. 9 A). The RD model was, however, 
capable of distinguishing a faster rate constant of strain-
induced XB detachment, c, in cardiac muscle fiber bun-
dles containing the cTnTS199E/T204E when compared with 
muscle fiber bundles containing WT-cTnT (Fig. 9 B).

Similarly, the NLRD model was not able to distinguish 
differences in the XB recruitment rate constant be-
tween muscle fiber bundles containing either WT-cTnT 
or cTnTS199E/T204E, but it readily distinguished a faster 
dynamic rate constant of strain-induced XB detachment 
in muscle fiber bundles containing cTnTS199E/T204E 
(Fig. 10, A and B). However, the NLRD model provided 
further distinction between the contractile behavior of 
the two muscle groups in that the NLRD model pre-
dicted that XB recruitment was affected differently in the 
two groups of muscle fibers by the XB strain-mediated 
effect on the recruitment of strong XBs (i.e., ; Fig. 10 C). 
XB strain had a much greater negative impact on XB 

Tab  l e  I I I

CoV of parameter estimates

Model parameter CoV WT-cTnT cTnTS199E/T204E

RD NLRD p-value RD NLRD p-value

b CoV 0.0196 ± 0.0004 0.0071 ± 0.0005 2.8 × 109 0.0275 ± 0.0027 0.0087 ± 0.0005 0.0001

c CoV 0.0144 ± 0.0003 0.0061 ± 0.0003 3.6 × 109 0.0181 ± 0.0009 0.0079 ± 0.0004 8.3 × 106

 CoV — 0.0092 ± 0.0006 — — 0.0005 ± 0.0005 —

In all cases, the CoV of the parameter estimates were <5%, suggesting that these parameters were estimated with a high degree of confidence. Estimates are 
reported as mean ± SEM. CoV were less in the NLRD model, suggesting that these parameters were estimated with an even higher degree of confidence 
than those estimated using the RD model.

Figure 9.  Comparison of fitted 
RD model parameters between 
fiber bundles reconstituted with 
troponin containing WT-cTnT 
or cTnTS199E/T204E. Error bars are 
SEM. (A) The rate constant of 
XB recruitment. (B) The rate 
constant of XB distortion. The 
RD model distinguished a dif-
ference in the XB distortion dy-
namic rate constant, c, between 
muscle groups. **, P < 0.01.
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their elastic distortion. Rapid changes in muscle length 
elastically distort existent stiffness elements to imme-
diately increase the force (the incident phase of the re-
sponse). These distorted elements are short-lived as 
they dissipate and are replaced by newly formed ele-
ments that did not experience the distortion of rapid 
length change. Thus, the incident phase due to elastic 
distortion dissipates quickly, and this imparts a rapid re-
covery phase to the force transient in the direction of 
the initial force before length change. However, changes 
in muscle length recruit more stiffness elements (or 
fewer, depending on the direction of length change) 
into the stiffness-generating pool of elements that are 
responsible for contractile force. This recruitment of 
stiffness elements occurs more slowly than the dissipa-
tion of distortion and imparts a relatively slow dynamic 
to the transient in the direction away from the initial 
force. Thus, the model’s general mathematical struc-
ture should account for the dynamics of distortion and 
recruitment during the response.

Phenomenologic methods, which are data driven, de-
termine model size and specific structural form. Thus, 
the essence of both the incident and the rapid recovery 
phases of the response appeared as if it could be cap-
tured by a single, linear, first-order differential equa-
tion whose driving input was the velocity of length 
change. Such phenomenology was consistent with the 
mechanistic idea that elastic distortion of replaceable 
elements was responsible for these phases. In a similar 
manner, the essence of the slower phase of the response, 
as it approached its eventual steady state, appeared as 
if it could be reproduced by a single, linear, first-order 
differential equation whose driving input was the length 
change. This was also consistent with the mechanistic 
idea that recruitment of stiffness elements was respon-
sible for this phase of the response.

In the linear RD model, distortion as an outcome of 
the distortion equation and recruitment as an outcome 
of the recruitment equation were independent of one 

D I S C U S S I O N

Motivated by the need for an analytical tool that can be 
used routinely to analyze data collected from isolated, 
detergent-skinned cardiac muscle fibers, we developed 
a mathematical model for representing the force re-
sponse to step changes in muscle length (i.e., quick 
stretch and release). Fitting this model to a family of 
force recordings representing responses to eight am-
plitudes of step length change (±2.0% ML in 0.5% in-
crements) enabled unambiguous estimation of five 
characteristic contractile parameters that were used to 
distinguish muscle fibers exhibiting even subtly differ-
ent contractile characteristics. These model-based dif-
ferences provide a dynamical contraction profile of the 
muscle fiber that goes beyond what can be obtained 
from the suite of information collected from other rou-
tine assays in this preparation, such as force-pCa curves, 
ktr, and ATPase-pCa curves. Collectively, with informa-
tion from the other routine assays, this model-based 
analysis gives unprecedented insight to the contractile 
status of the muscle fiber.

The model proposed here differs from an earlier 
model that successfully represented the force response 
to small-amplitude sinusoidal length change (Campbell 
et al., 2004; Chandra et al., 2007) by the addition to 
that earlier model of a single nonlinear term. This 
nonlinear term is capable of reproducing nonlinearity 
observed in the shape of force responses to various 
amplitude quick stretches and quick releases. This 
nonlinearity became more evident in large-amplitude 
step responses but was less evident in small-amplitude 
step and sinusoidal responses.

The current nonlinear model (and the earlier linear 
model) was constructed using a combination of mecha-
nistic notions and phenomenologic methods. Mecha-
nism dictated the general structure of the model, which 
came from the understanding that contractile force de-
pends on the number of parallel stiffness elements and 

Figure 10.  Comparison of fitted NLRD model parameters between fiber bundles reconstituted with troponin containing WT-cTnT or 
cTnTS199E/T204E. Error bars are SEM. (A) The rate constant of XB recruitment. (B) The rate constant of XB distortion. (C) The nonlin-
ear interaction effect between XB distortion and XB recruitment processes. The NLRD model easily distinguished the XB distortion 
dynamic rate constant, c, between muscle groups. Furthermore, the NLRD model was able to reproduce and distinguish the different 
nonlinear contractile behavior between muscle groups, as measured by . **, P < 0.01.
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these responses with very little residual error, and the 
parameters of the model are identified with great cer-
tainty. Finally, yet quite importantly, application of the 
model to data recorded from cardiac muscle fibers with 
different contractile regulatory proteins allowed easy 
discrimination between muscle fibers with altered con-
tractile function.

For instance, the model distinguished that muscle fi-
ber bundles containing the cTnTS199E/T204E variant ex-
hibited faster XB detachment dynamics (higher c) and 
a greater effect of strong XB strain on the recruitment 
of other strong XBs (higher ) when compared with  
fibers containing WT-cTnT. These model-driven ob-
servations can be used for providing mechanistic ex-
planations of physiological observations that may 
otherwise be unclear. For example, changes in the dy-
namic behavior of XB recruitment and detachment 
events may explain the decrease in maximum force 
generation (Fig. 1, legend) and stiffness (Fig. 3 and  
Table I) of muscle fibers containing the cTnTS199E/T204E 
variant. Faster XB detachment dynamics (c) and a greater 
negative effect of strained XBs on the state of other 
bound XBs () indicate that strong XBs more readily 
dissociate from thin filaments containing cTnTS199E/T204E. 
This enhanced dissociation of strongly bound XBs 
would shift the equilibrium of XB recruitment away 
from the force-bearing pool, and it gives rise to a 
lower capacity of force generation and contributes to a 
lower stiffness in muscle fiber bundles containing 
cTnTS199E/T204E. Because cTnTS199E/T204E is a phosphory-
lation analogue of cTnT (by protein kinase C), these 
model-driven predictions using experimentally obtained 
data suggest a novel mechanistic explanation for the 
down-regulation of contractile function by protein 
kinase C–mediated phosphorylation of cTnT observed 
by us and by others (Burkart et al., 2003; Sumandea 
et al., 2003).

Thus, the nonlinear recruitment distortion model is 
useful for cardiac muscle experimentalists to character-
ize and understand the effects that alterations in con-
tractile proteins have on cardiac contractile function. 
This model, when combined with physiological studies, 
provides mechanistic insights with a high level of confi-
dence to describe contractile function beyond that 
achieved by most current methods of analysis. There-
fore, we recommend this mathematical model as an eas-
ily applicable analytic tool for routine use in studies of 
cardiac muscle fiber contractile function.

A P P E N D I X

Model normalization
The basic RD model takes force to be the product:

	 F t t x t( ) = ( ) ( )η , 	  (A1)

another. However, such independence of these variables 
was not consistent with the observed nonlinearity indi-
cated by the fact that the time course of the response to 
large-amplitude stretch was markedly different than the 
time course of the response to large-amplitude release.

There are many ways to introduce nonlinearity into a 
set of equations with two variables. Perhaps the simplest 
is to add a term to the equation for one of the variables 
in which there is multiplicative interaction between 
both variables. We introduced such a term into the dif-
ferential equation for recruitment by negatively cou-
pling recruitment to the square of distortion, making 
this effect independent of the sign on distortion. The 
effect of this nonlinear term was to bring about a tran-
sient depression in the pool of stiffness elements during 
the time of the distortion transient whether the distortion 
was positive or negative. The resulting nonlinear model 
satisfactorily reproduced the essence of the observed dif-
ference between large-amplitude stretches and releases.

Our efforts to build a mathematical model to repre-
sent the force response of constantly activated muscle to 
quick length change differ from other similar efforts 
(for review see Kawai and Halvorson, 2007) on two ac-
counts. One, our goal was to build an easily applicable 
analytic tool for routine data analysis of routine experi-
ments. This differs with the goals of others who have 
sought to build a mathematical bridge between the 
many biochemical/biophysical steps in the XB cycle and 
the force response. Two, we used only general notions 
about underlying mechanisms to inform our model and 
relied on reproductions of observed phenomenology in 
the force response to dictate the specific form and con-
tent of the final model. This differs with the mechanistic 
methods in which mathematical models are constructed 
to account for underlying assumptions that are made 
with regard to kinetic steps in the XB cycle and to incor-
porate any number of possible influences of these ki-
netic steps. Models developed from such mechanistic 
methods yield valuable insights to the biophysics of mus-
cle contraction but, due to their nature, are often over 
parameterized and not easily applied in laboratory set-
tings where easily applicable analytical tools are required 
to interpret experimentally obtained data.

In contrast, our proposed NLRD model is reasonably 
simple, consisting of only five parameters representing: 
(1) the rate constant by which length change–induced 
distortion of elastic elements is dissipated; (2) the stiff-
ness of the muscle fiber; (3) the amplitude of length-
mediated recruitment of stiffness elements; (4) the rate 
constant by which this length-mediated recruitment 
takes place; and (5) the magnitude of the nonlinear in-
teraction term by which distortion of elastic elements 
affects the number of recruited stiffness elements. This 
model reproduces all the identifiable features seen in a 
family of force responses to both positive and negative 
length changes. It fits the records of the whole family of 
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Restating the model in terms of normalized variables:

	 φ ε ζt t t( ) = ( ) ( ), 	  (A11)

where the normalized differential equation for XB stiff-
ness becomes:
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This can be expressed in terms of normalized muscle 
length by substituting l t t l( ) = ( )λ 0  and  l ld d= λ 0  into the 
above equation, as follows:
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where

	 d t
dt

b t l t ld
η

η β( ) = − ( ) + ( ) −  	  (A2)

	 dx t
dt

c x t x
dl t

dt
( ) = − ( ) −  + ( )

0 . 	  (A3)

Re-expressing the RD model in terms of force and 
length normalized to initial force, F0, and initial length, 
l0, gives for an initial force, F x0 0 0= η . Then, normalized 
force is given by

	 φ
η
η

t
F t
F

t x t
x

( ) = ( ) = ( )
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And normalized fiber length is

	

λ t
l t
l

( ) = ( )
0
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(A5)

These allow definition of a normalized stiffness:

	 ε
η
η

t
t( ) = ( )
0

. 	  (A6)

And a normalized distortion:

	 ζ t
x t
x

( ) = ( )
0

. 	  (A7)

Further definitions can be made of normalized 
parameters:

	 λd
dl

l
=

0

	  (A8)

Figure A1.  Starting model predictions of F(t) to step changes in length when the rate constants for distortion, c, and recruitment, b, are 
equal (left) and when they differ by an order of magnitude (right). Insets show time course of recruitment variable, (t), and distortion 
variable, x(t), in each case.
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regression line. This relationship is shown at times long 
after the instance of stretch, where the transient phases 
of the force response die out and only the length-medi-
ated recruitment component remains:

	 φ λ
λss

d

= +
−

1
1

∆ 	

	
1 1−( ) −( ) =λ φ λd ss ∆

	

	 λ λ
φ

λ φ
φd

ss

ss

ss
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−

= + −
−

1
1

1
1

∆ ∆ 	

This further reduces the number of free parameters to 
be estimated from dynamic transients from 4 to 3.
3. It simplifies specifying initial value for 0 estimation as 
follows. Let 1 be the peak of immediate response. 
Then, to an approximation,

φ λ
υ1

0

1= + ∆

and a close approximation of 0 can be obtained from the 
slope of the 1 versus  regression line. This approximation 
can then be used as a starting value for the 0 estimation.
4. It simplifies specification of starting values for vari-
ables, (t) and (t), when integrating numerically.

Step response predictions of normalized RD model
Accounting for residuals. Assuming that the residuals 
have a linear dependence on L, we can account for 

Similarly, the normalized differential equation for the 
XB distortion component becomes:
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the above equation,
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where the only terms carrying physical units are b and c 
with units of s1.

In the normalized model, there are four parameters 
to estimate: b, d, c, and 0. However, parameter d can 
be estimated from steady-state ss versus  relation-
ship, as described below. Therefore, only three parame-
ters need to be estimated from fitting to normalized 
step response transients: b, c, and 0.
Starting values for variables in numerical integration: 
0 = 1, 0 = 1, and 0 = 1.

Advantages of expressing in terms of normalized force:
1. It eliminates the parameter, , from equations and thus 
reduces by one the number of unknown parameters.
2. It simplifies the estimation of the parameter, d, 
which can easily be done from steady-state ss versus  

Tab  l e  A 1

Summary of nonlinear behavior in variants of the recruitment component RD model

Model variant A B C D E F G H

Starting model:   — — — — — — —

Velocity-dependent recruitment: 
d t

dt
b t l t l

dl
dt

η
η β γ( ) = − ( ) + ( ) −  −0 0

— — — —  — — —

Distortion-dependent recruitment: 
d t

dt
b t l t l f x t

η
η β γ η( ) = − ( ) + ( ) −  − ( ) ( )0 0  

f x
x t x

x
( ) = −( ) 0

0

 — — —  — — —

f x abs
x t x

x
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







( ) 0

0

   — — — — 

f x
x t x

x
( ) = −









( ) 0

0

2      —  

A, linear F1 versus L relationship and linear FSS versus L relationship; B, difference in shape between large-amplitude quick stretch (rapid fall to a well-
defined nadir, followed by a slower rise to an eventual steady state) and large-amplitude quick release (monotonic rise to the eventual steady state); C, 
difference in pattern among various amplitude quick stretches (trajectories tend to converge at a common nadir) and various amplitude quick releases 
(trajectories remain apart and distinct); D, difference in shape between small-amplitude (rapid rise to a zenith, followed by a slower fall to eventual steady 
state) and large-amplitude (monotonic rise to the eventual steady state) quick releases; E, quasi–mirror image responses of small-amplitude quick stretch 
and quick release; F, curvilinear up in F23 versus L relationship; G, downward trend in T23 versus L relationship, indicating that approach to nadir in 
response to large L is faster than approach to nadir in response to small L; H, downward trend in T90 versus L relationship.

d t
dt

b t l t l
η

η β( ) = − ( ) + ( ) − 0 0
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