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Summary

Three notable members of the Harveyi clade, Vibrio
harveyi, Vibrio alginolyticus and Vibrio parahaemolyti-
cus, are best known as marine pathogens of commer-
cial and medical import. In spite of this fact, the
discrimination of Harveyi clade members remains dif-
ficult due to genetic and phenotypic similarities, and
this has led to misidentifications and inaccurate esti-
mations of a species’ involvement in certain environ-
ments. To begin to understand the underlying genetics
that complicate species level discrimination, we com-
pared the genomes of Harveyi clade members isolated
from different environments (seawater, shrimp, corals,
oysters, finfish, humans) using microarray-based
comparative genomic hybridization (CGH) and multilo-
cus sequence analyses (MLSA). Surprisingly, we
found that the only two V. harveyi strains that have had
their genomes sequenced (strains BAA-1116 and
HY01) have themselves been misidentified. Instead of
belonging to the species harveyi, they are actually
members of the species campbellii. In total, 28% of the

strains tested were found to be misidentified and 42%
of these appear to comprise a novel species. Taken
together, our findings correct a number of species
misidentifications while validating the ability of
both CGH and MLSA to distinguish closely related
members of the Harveyi clade.

Introduction

The eight Vibrio species currently recognized as members
of the Harveyi clade (V. harveyi, V. campbellii, V. alginolyti-
cus, V. rotiferianus, V. parahaemolyticus, V. natrigens, V.
mytili and V. azureus) (Sawabe et al., 2007; Yoshizawa
et al., 2009) are a subset of the Vibrio core group (Reichelt
et al., 1976; Dorsch et al., 1992). Members of this clade are
commonly found in marine and estuarine surface waters
and sediments, as commensals on the surface or within the
intestinal flora of marine animals, as opportunistic patho-
gens, or as primary pathogens of many commercially
farmed marine invertebrate and vertebrate species
(O’Brien and Sizemore, 1979; Thompson et al., 2004). In
addition to thriving in similar environments, members of the
Harveyi clade also share a high degree of genetic and
phenotypic similarity; so much so that traditional pheno-
typic identification methods are often unable to confidently
identify and differentiate these sister species (Sawabe
et al., 2007; Cano-Gomez et al., 2009). For example, V.
harveyi, V. campbellii and V. rotiferianus, which form the
most recent subclade of speciation within the Harveyi
clade (Pascual et al., 2009), have nearly indistinguishable
phenotypes (Bryant et al., 1986; Gomez-Gil et al., 2004).
These similarities have confounded typing schemes and
resulted in documented misidentifications (Gauger and
Gomez-Chiarri, 2002; Gomez-Gil et al., 2004). While not
exceedingly problematic, these misidentifications do have
the potential to overemphasize the importance of a species
in a particular setting, especially since most misidentifica-
tions are initially characterized as V. harveyi.

Considering the economic importance and seemingly
continually expanding host range of the Harveyi clade
(Austin et al., 2005; Rosenberg et al., 2007; Cervino
et al., 2008; Defoirdt et al., 2008), there remains a contin-
ued interest in the development of methods to identify and
differentiate its members. In contrast with phenotypic
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identification methods, two genetic methods, DNA–DNA
hybridization (DDH) and multilocus sequence analysis
(MLSA), have successfully been applied to the study of
Vibrio taxonomy and evolutionary history (Reichelt et al.,
1976; Gomez-Gil et al., 2003; 2004; Thompson et al.,
2005; 2007; 2008; Sawabe et al., 2007; Pascual et al.,
2009). DDH in particular has been accepted for decades
as the standard method for species delineation as it
enables a direct assessment of overall genetic similarity
and grouping by comparing the extent to which two
genomes hybridize to one another (Gevers et al., 2005).
Comparative genomic hybridization (CGH) using whole
genome microarrays relies upon the same biophysical
properties and can be considered a natural technological
extension of DDH. However, CGH analyses also offer the
added benefit of coding sequence (CDS) level resolution
thus providing a greater number of data points that can
be used to simultaneously evaluate clade or species-
level genetic diversity and environment-specific genetic
assemblages. Thus, CGH analyses provide high informa-
tion content and discriminatory power in a format that is
amenable to archiving in electronic databases for future
strain comparisons (Gevers et al., 2005; Sawabe et al.,
2007; Cano-Gomez et al., 2009). In this study, we
employed CGH using a custom-designed Affymetrix V.
harveyi BAA-1116/HY01 DNA microarray to delineate 38
geographically, environmentally and temporally distrib-
uted members of the Harveyi clade and confirmed the
resulting cluster assignments using two MLSAs.

Results and discussion

CGH analysis

A total of 43 previously characterized isolates (29 V.
harveyi, seven V. campbellii, two V. parahaemolyticus,
three V. rotiferianus and two V. alginolyticus), from a wide
temporal, geographical and environmental distribution
were selected for this study (Table 1). A subset of 38
isolates were analysed via CGH using a custom-designed
Affymetrix DNA microarray (Vharveyi520694F) that
targets 4831 total CDS from the fully assembled and
annotated V. harveyi BAA-1116 genome (Naval Research
Laboratory sequencing effort GenBank CP001223-5) and
965 CDS unique to the unfinished V. harveyi HY01
genome sequence (GenBank AAWP00000000). The tar-
geted CDS did not include insertion sequence elements,
transposons or repeat sequences as they were omitted
from the microarray design.

Sample preparation for microarray hybridization was
performed by extracting, fragmenting and biotin-labelling
3 mg of genomic DNA from each strain according to
Affymetrix standard protocols. Biotinylated material was
hybridized to the Vharveyi520694F microarrays for 16 h

at 49°C in a GeneChip® Hybridization Oven 640 at
60 r.p.m. The microarrays were subsequently washed and
stained using the GeneChip® Fluidics Station 450 and
scanned using the GeneChip® Scanner 7G. All hybridiza-
tion signal intensities were analysed with the GeneChip®

Operating Software (GCOS) to generate raw image
files (.DAT) and summary data files (.CEL). The
Bioconductor/R ‘ReadAffy’ and ‘expresso’ functions were
used to perform RMA background corrections and CDS
summarizations using the avgdiff and MAS methods
(Gentleman et al., 2004). No microarray normalization
was applied. The results of both summarization methods
did not differ significantly so only the avgdiff results are
described. The CDS hybridization intensities of each
microarray varied from 0 to 14 in log2 representations and
were divided into 250 bins of width 0.0056. The number of
CDS that fell into each bin was counted and plotted
versus intensity. These plots were examined for the pres-
ence of two peaks for each microarray as it was expected
that the majority of intensities observed for each CDS
should form two clusters (present or absent). Every
sample, with the exception of CAIM 29, had indications of
two peaks and the data points in the immediate region of
each peak were fit to a Gaussian function. The fitted
centre of each peak and sigma of the Gaussian function
were then used to determine cut-off values. All CDS inten-
sities below the smaller centre +2¥ the sigma value of that
peak (siglow) were considered ‘absent’. All CDS intensi-
ties greater than the larger centre -2¥ the sigma value of
that peak (sighigh) were considered ‘present’. CDS inten-
sity values between these values were considered ‘uncer-
tain’. The ‘uncertain’ calls were further subdivided into
three groups (‘intermediate low’, ‘intermediate’ and ‘inter-
mediate high’). The ‘intermediate low’ region was defined
as between +2¥ and +4¥ siglow of the low intensity peak.
The ‘intermediate high’ region was defined as between
-2¥ and -4¥ sighigh of the high intensity peak. The ‘inter-
mediate’ region was defined by values that fell between
the low intensity peak +4¥ siglow and the high intensity
peak -4¥ sighigh.

Comparative genomic hybridization profiles were visu-
alized with hierarchically clustered heat maps using the
empirical hybridization data from V. harveyi BAA-1116 as
the strain comparison outgroup (Fig. 1). The aggregate
hybridization states (present, three uncertain states, or
absent) of 4764 CDS from chromosomes I and II divided
the 38 tested strains into four distinct subclades: the
campbellii subclade which harboured the V. campbellii
type strain CAIM 519T (ATCC 25920), the harveyi
subclade which harboured the V. harveyi type strain
ATCC 14126, the rotiferianus subclade and the
parahaemolyticus/alginolyticus subclade (Fig. 1A and B).
Interestingly, the hierarchical cluster analyses from both
chromosomes placed six purported V. harveyi strains
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(BAA-1116, E1, 501J, 602L, 9078-83 and HY01) in the
campbellii subclade along with the six tested V. campbellii
strains. Similarly, V. harveyi strain CAIM 29 was located in
the parahaemolyticus/alginolyticus subclade instead of
within the harveyi subclade and V. harveyi strains D1,
PA2, 1DA3 and 50A formed a distinct subclade with the
sole V. rotiferianus strain (CAIM 994) tested in this analy-
sis. Notably, these same four subclades were observed
when a hierarchically clustered heat map was generated
by comparing each of the strains to the 965 CDS unique
to strain HY01 and absent from strain BAA-1116 (data not
shown).

Caution is often advised when molecular identification
or phylogenetic methods result in novel or unanticipated
groupings as genetic recombination may have occurred
among related species thus confounding the results. This
is an especially significant consideration when using too
few molecular markers or when dealing with the geneti-
cally dynamic vibrios, as it is well accepted that recombi-
nation and mobile genetic elements have played a critical
role in the evolution of the genus (Faruque and Mekal-
anos, 2003; Thompson et al., 2004; Sawabe et al., 2007;
Pascual et al., 2009). However, as the hybridization state
of each CDS can be considered a unique and indepen-
dent data point, the scale of the CGH analysis efficiently
neutralizes the effect of small-scale recombination, point
mutations, horizontal gene transfer and overall genetic
plasticity with respect to gene content and primary
sequence identity. Thus, the CGH analyses strongly sug-
gested that although previously characterized as V.
harveyi: (i) strains E1, 501J, 602L, 9078-83 and the
genome sequenced strains BAA-1116 and HY01 belong
to the species campbellii, (ii) strain CAIM 29 belongs to
the species parahaemolyticus, and (iii) strains D1, PA2,
1DA3 and 50A form a distinct subclade with V. rotiferianus
CAIM 994.

Harveyi clade MLSAs

Multilocus sequence analysis is a sequence-based geno-
typic characterization method that has successfully been
used to establish species-level taxonomy within the
Harveyi clade (Thompson et al., 2007; Pascual et al.,
2009). To validate the subclade designations generated

by our CGH analyses and further solidify species assign-
ments, we subjected the same panel of strains used in the
CGH analyses to a previously validated three-gene MLSA
scheme used for the classification of core Vibrio species
(Thompson et al., 2007). The ftsZ (cell division protein),
mreB (rod shape-determining protein) and topA (topoi-
somerase I) genes were PCR amplified as previously
described (Thompson et al., 2007) to generate products
for sequencing and the resulting sequences were concat-
enated (1528 nt) and subjected to phylogenetic analysis
based on the Neighbour-Joining method. Sequences from
four additional strains with confirmed species identities
[V. rotiferianus 1975 and CAIM 577T (type strain)
(http://www.taxvibrio.lncc.br/), V. parahaemolyticus RIMD
2210633 (GenBank BA000031-2) and V. alginolyticus
R-1249 (Cervino et al., 2008)] were also added to
strengthen the analysis. The resulting phylogeny revealed
that the ftsZ-mreB-topA MLSA-derived major subclade
designations were nearly identical to those seen in the
CGH analyses and strains BAA-1116 and HY01 were
once again found nested within the campbellii subclade
(Fig. 2A). While V. harveyi and V. campbellii both formed
monophyletic subclades, V. rotiferianus did not. Interest-
ingly, the added V. rotiferianus strains (type strain CAIM
577T and 1975) did not group with strains CAIM 994, D1,
PA2 and 1DA3 which were designated as the ‘rotiferianus
subclade’ (Fig. 1) based on the original identification of
strain CAIM 994 (Table 1). Rather, strains CAIM 994, D1,
PA2 and 1DA3 formed a unique cluster that appeared to
be most closely related to the harveyi subclade. A com-
parison of the concatenated sequence % identity found
the members of this cluster to be 91.5–94.1% identical to
the V. harveyi type strain (ATCC 14126) and 90.4–91.8%
identical to the V. rotiferianus type strain (CAIM 577T).
Strain 50A, which was also considered a member of the
‘rotiferianus subclade’ based on the CGH analyses, was
omitted from the MLSA as we were unable to amplify its
ftsZ gene using the previously described VftsZ75F/
VftsZ800R primer pair and amplification method (Sawabe
et al., 2007). Nevertheless, the use of a truncated concat-
enated sequence (mreB and topA only) strongly grouped
strain 50A with strains CAIM 994, D1, PA2 and 1DA3
(98% bootstrap support, data not shown). Thus, the for-
mation of this unique subclade, to the exclusion of the V.

Fig. 1. Hierarchically clustered heat maps based on CGH profiles demonstrating the presence and absence of genes within Harveyi clade
members with respect to V. harveyi BAA-1116.
A. Chromosome I, 2999 CDS.
B. Chromosome II, 1765 CDS.
The CDS in each heat map are ordered according to the genome structure of strain BAA-1116. Each CDS is depicted by one of five possible
hybridization states (scale bar): (i) positive hybridization (CDS present call) = bright red bars, (ii) between positive and intermediate
hybridization (uncertain ‘intermediate high’ call) = dark red bars, (iii) intermediate hybridization (uncertain ‘intermediate’ call) = grey bars, (iv)
between intermediate and no hybridization (uncertain ‘intermediate low’ call) = dark green bars, and (v) no hybridization (CDS absent
call) = bright green bars. Presence/absence designations generated from the hybridization profiles were calculated using the avgdiff method
and clustered and visualized using MultiExperiment Viewer (MeV v4.4) software. ‘Para./algin.’ = parahaemolyticus and alginolyticus subclade.
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rotiferianus type strain, and its position relative to the
harveyi and campbellii subclades suggests that CAIM 994
has been misidentified as V. rotiferianus and that strains
CAIM 994, D1, PA2, 1DA3 and 50A likely denote a novel
species within the Harveyi clade.

As it is acknowledged that recombination may have
occurred in some of the loci used in the ftsZ-mreB-topA
MLSA (Thompson et al., 2007), we sought an additional
confirmation of the derived classifications of the genome
sequenced strains using three independent markers. The
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Fig. 2. Multilocus sequence analysis (MLSA) of Harveyi clade members.
A. Phylogenetic tree based on the Neighbour-Joining method using concatenated sequences from the ftsZ, mreB and topA genes (1528 nt)
and MEGA software v4.0. Original species designations are in brackets. Strains lacking species designations were originally identified as V.
harveyi. This analysis includes all of the strains used in the CGH analyses (with the exception of strain 50A) and four additional strains that
are denoted with an asterisk ‘*’. The primary sequence information has been submitted to the GenBank database and the relevant accession
numbers can be found in Table S1.
B. Phylogenetic tree based on the Neighbour-Joining method using concatenated sequences from the rpoD, rctB and toxR genes (1848 nt)
and MEGA software v4.0. Strain identifiers ending in ‘**’ denote type strains. With the exception of BAA-1116, HY01 and AND4 (bold type), all
sequences used in this MLSA were downloaded from the ‘Taxonomy of the Vibrios’ database (http://www.taxvibrio.lncc.br/).
Alignments for both analyses were generated using the CLUSTALW program and bootstrap percentages > 50% from 1000 simulations are
shown to the left of each branch point. The scale bar represents the number of substitutions per site.
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rpoD (RNA polymerase, sigma 70 factor), rctB (replication
initiator protein) and toxR (virulence regulatory protein)
gene sequences from strains BAA-1116 and HY01 and
the genome sequenced strain V. campbellii AND4
(GenBank ABGR00000000) were concatenated
(1848 nt), aligned with 44 concatenated sequences uti-
lized in a MLSA by Pascual and colleagues (2009), and
subjected to phylogenetic analysis using the Neighbour-
Joining method. The resulting phylogeny, which included
the type strain of each of the seven species tested, veri-
fied the V. campbellii classification of strains BAA-1116
and HY01 and parsed each species as a monophyletic
subclade (Fig. 2B). Thus, the use of a second MLSA
scheme with an entirely different set of Harveyi clade
members with confirmed species designations (Pascual
et al., 2009) corroborated the ftsZ-mreB-topA MLSA and
CGH analyses findings that strains BAA-1116 and HY01
belong to the species campbellii.

CGH- and MLSA-based observations

In toto, our findings support three salient observations.
First, of the 43 Harveyi clade members tested in this
study, 12 (28%) appear to have been misidentified: five of
which appear to represent a novel species. To some
extent the misidentifications were to be expected as dis-
tinguishing members of the Harveyi clade is known to be
a difficult taxonomic task (Sawabe et al., 2007) and the
advent of genetic methods with high discriminatory power
has previously elucidated misidentifications in a substan-
tial percentage of strains tested [71% (Gomez-Gil et al.,
2004) and 18% (Pascual et al., 2009)]. Considering the
relatively recent estimated radiation time of 39 million
years for V. harveyi and V. campbellii (Sawabe et al.,
2007) and previous findings (Gomez-Gil et al., 2004), it
was not surprising that half of misidentifications revealed
in this study were V. campbellii mistaken as V. harveyi.
What was clearly surprising is that the two purported V.
harveyi strains that have had their genomes sequenced
(strains BAA-1116 and HY01) have themselves been misi-
dentified. The frequent misidentification of V. campbellii as
V. harveyi has led to the assertion that V. campbellii is
currently underestimated as an important pathogenic
species of aquatic organisms (Gomez-Gil et al., 2004;
Cano-Gomez et al., 2009). Our findings with strain BAA-
1116, and more importantly strain HY01, which is known
to be a serious shrimp pathogen (Rattanama et al., 2009),
provide additional evidence to support this assertion.

Second, analysis of the CGH results indicated that
72–77% of the CDS from BAA-1116 chromosomes I and II
were considered present in the campbellii subclade
strains (9078-83, 501J, 602L, 2SA4, HY01, CAIM 1500,
CAIM 198, CAIM 115, E1, CAIM 519T, 42A). This percent
similarity is in agreement with DDH findings that have

shown the intraspecies percentage similarity for V. camp-
bellii strains to be 71–80%. This is markedly less than
the 96–100% intraspecies similarity seen for V. harveyi
strains (Pascual et al., 2009) suggesting that V. campbellii
is more genetically diverse than V. harveyi. Fluorescent
amplified fragment length polymorphism (FAFLP) analy-
ses bolster this contention as they have previously
revealed that the V. campbellii group is very diverse
(FAFLP value < 10%), much more so than V. harveyi and
V. rotiferianus (FAFLP value � 45%) (Thompson et al.,
2001; Gomez-Gil et al., 2004). In addition, both ftsZ-
mreB-topA and rpoD-rctB-toxR MLSA phylogenies reveal
longer branch lengths within the campbellii subclade than
the harveyi subclade (Fig. 2A and B) signifying a greater
genetic distance and enhanced rate of evolution within V.
campbellii. Taken together, the genetic data indicate that
V. campbellii is evolving at a faster rate and thus more
genetically heterogeneous than V. harveyi.

Finally, although autoinduction was first described in V.
harveyi using strain 392 [MAV] (ATCC 33843) (Nealson
et al., 1970; Baumann et al., 1980) [previously described
as MAV (Hastings et al., 1969), Photobacterium fischeri
strain MAV (Nealson et al., 1970) and Beneckea harveyi
strain 392 (Reichelt and Baumann, 1973)], the molecular
mechanisms of V. harveyi quorum sensing have been
most extensively studied in strain BAA-1116 [also known
as strain BB120 (Bassler et al., 1997)] and it has conse-
quently become a model system for quorum sensing
research (Bassler et al., 1997; Henke and Bassler, 2004;
Lenz et al., 2004; Waters and Bassler, 2006; Tu and
Bassler, 2007; Long et al., 2009). However, as our find-
ings identify strain BAA-1116 as V. campbellii and not V.
harveyi and the quorum sensing architectures within the
genus are known to be varied (Milton, 2006), it will be
interesting to see how similar the V. harveyi quorum
sensing system is to the well-described BAA-1116 quorum
sensing system.

Concluding remarks

In this study, we have highlighted the ongoing difficulty
of accurately identifying closely related Vibrio core
group members. When considering the Harveyi clade,
the results of this study and others suggest that a
re-evaluation of the genetic or phenotypic markers com-
monly used to discriminate these species is needed.
Comparative genomic hybridization analyses can contrib-
ute to this effort by distinguishing unique genus, species
and strain-specific genetic targets for molecular identifica-
tion methods development. The continued analysis of this
data set to find such genetic targets, establish the V.
campbellii core genome and potentially reveal the under-
lying genetic assemblages responsible for observed
pathogenic or niche adaptation phenotypes is ongoing.
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Although there exists a large body of literature pertaining
to the study of V. harveyi ATCC strain BAA-1116 (BB120),
especially with respect to quorum sensing, these findings
necessitate a change in species designation. The genome
sequenced strains V. harveyi BAA-1116 and V. harveyi
HY01 should hereafter be properly identified as V. camp-
bellii BAA-1116 and V. campbellii HY01. By extension, the
results also indicate that we now lack a representative
genome sequence from the namesake of the Harveyi
clade. Vibrio harveyi is a species that has been central to
our understanding of bacterial bioluminescence and
quorum sensing and continues to be a formidable patho-
gen in the aquaculture industry. As such, a V. harveyi
genome sequencing effort is warranted.
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