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Abstract

Background: LIN-12/Notch signaling is important for cell-cell interactions during development, and mutations resulting in
constitutive LIN-12/Notch signaling can cause cancer. Loss of negative regulators of lin-12/Notch activity has the potential
for influencing cell fate decisions during development and the genesis or aggressiveness of cancer.

Methodology/Principal Findings: We describe two negative modulators of lin-12 activity in C. elegans. One gene, sel-11,
was initially defined as a suppressor of a lin-12 hypomorphic allele; the other gene, cdc-42, is a well-studied Rho GTPase.
Here, we show that SEL-11 corresponds to yeast Hrd1p and mammalian Synoviolin. We also show that cdc-42 has the
genetic properties consistent with negative regulation of lin-12 activity during vulval precursor cell fate specification.

Conclusions/Significance: Our results underscore the multiplicity of negative regulatory mechanisms that impact on lin-12/
Notch activity and suggest novel mechanisms by which constitutive lin-12/Notch activity might be exacerbated in cancer.
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Introduction

LIN-12/Notch signaling plays multiple roles in vulval develop-

ment in C. elegans. Canonical roles for this signaling system in

vulval development are the specification of a single anchor cell

(AC), which is required for vulval induction, and the specification

of the 2u vulval precursor cell (VPC) type. Numerous feedback

loops and functional redundancies make vulval development

relatively insensitive to small perturbations in signaling pathways.

Thus, an individual regulator often does not cause an overt

phenotype when it is removed in an otherwise wild-type genetic

background, but its function may be revealed when it is removed

in a sensitized genetic background. In C. elegans, a few core

components of LIN-12/Notch signaling have been identified in

phenotype-based genetic screens, but most core components and

modulators have been identified as suppressors or enhancers in

sensitized backgrounds (reviewed in [1]).

Mutations resulting in constitutive or elevated LIN-12/Notch

signaling can cause cancer (reviewed in [2,3]). In principle,

abrogation of any system of negative regulation of lin-12/Notch

activity has the potential for contributing to the development or

aggressiveness of cancer. For example, there is some evidence that

increased expression of the human SEL-1 ortholog, SEL1L,

correlates with a decrease in tumor aggressiveness (reviewed in

[4]), but how this correlation relates to effects on Notch activity is

not clear. A compelling example is afforded by the ubiquitin ligase

SEL-10/Fbw7, which targets LIN-12/Notch directly for protea-

some-mediated degradation ([5]; reviewed in [6]). Point mutations

in the extracellular domain of NOTCH1 are one cause of T cell

acute lymphoblastic leukemia (T-ALL); when patients with these

mutations relapse after chemotherapy, they generally have

mutations in FBW7. Patients presenting with NOTCH1 mutations

that remove the Fbw7 binding site do not have Fbw7 mutations

upon relapse. These observations have implicated the loss of the

negative regulation of NOTCH1 in patients whose T-ALL tumors

are drug-resistant after relapse [7].

Here, we describe two negative modulators of lin-12 activity.

One gene, sel-11, was initially defined as a suppressor of a lin-12

hypomorphic allele [8]. The other, cdc-42, is a well-studied Rho

GTPase that we find has an effect on lin-12 activity that appears to

be distinct from other roles of cdc-42 in vulval development

described previously [9]. Our results underscore the multiplicity of

mechanisms that impact on lin-12/Notch activity and suggest novel

mechanisms by which aberrations in lin-12/Notch activity might be

exacerbated in cancer.

Results

The genetic analysis of modulators of lin-12 activity involves

combinations with different lin-12 alleles. Such alleles reduce or

elevate lin-12 activity, and their effects on hallmark cell fate

decisions are shown in Fig. 1. We first describe the genetic analysis

that establishes hrd-1 as sel-11. We then describe genetic

interactions between cdc-42 and lin-12.
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Demonstration that the negative regulator sel-11
encodes Hrd1p/Synoviolin

Mutations in sel-11 were originally identified in a genetic

screen for negative regulators of lin-12 activity [8]. This screen

was based on suppression of the egg-laying defective (Egl)

phenotype caused by the hypomorphic allele, lin-12(n676n930)

[10]; the properties of this allele are described further below.

Extensive genetic analysis of the interactions between sel-11 and

multiple lin-12 alleles in different cellular contexts established sel-

11 as a negative regulator of lin-12 activity, but its molecular

identity was not determined [8].

We molecularly identified sel-11 serendipitously because it is

adjacent to the microRNA gene mir-61. A previous study in our

laboratory concluded that mir-61 is expressed in response to LIN-

12 activation and targets VAV-1, a negative regulator of lin-12

activity [11]. Our view of the role of mir-61 in vulval development

was challenged by Miska et al. [12], who reported that a deletion

of mir-61, nDf59, does not cause overt vulval lineage defects. We

independently confirmed that nDf59 exhibits overtly normal vulval

development by examining canonical 1u, 2u, and 3u cell fate

markers (Table 1). However, as described below, our further

analysis of nDf59 revealed that it removed sel-11, a negative

regulator of lin-12 activity, and it is therefore problematic to use

nDf59 to draw inferences about mir-61/250 function.

The possibility that nDf59 might affect a negative regulator of

lin-12 activity arose when we examined the genetic interactions

between nDf59 and lin-12(n676n930), a hypomorphic allele of lin-

12 in which activity is compromised but not eliminated [10].

When lin-12(n676n930) hermaphrodites are grown at 25uC, they

exhibit defects caused by reduced lin-12 activity: a highly

penetrant egg-laying defect; a partially penetrant 2 AC defect;

and, in hermaphrodites with 1 AC, a partially penetrant lateral

signaling defect (P5.p and/or P7.p lose expression of a 2u fate

marker) ([10]; Fig. 2B and 2C). At 15uC, lin-12(n676n930) retains

Figure 1. Signaling events that specify Vulval Precursor Cell
(VPC) fates, and cell fate changes dependent on lin-12 activity
levels. (A) In wild-type C. elegans, vulval development is initiated in the
early L3 stage when the anchor cell (AC) signals to the underlying VPCs
via an inductive EGF signal, LIN-3 (white arrows). As a result, P6.p adopts
the 1u cell fate. P6.p, in turn, sends a lateral signal (black arrows) to its
neighboring VPCs, P5.p and P7.p, activating LIN-12 and causing them to
adopt the 2u fate. During the AC/VU fate decision in the somatic gonad,
the VU fate is determined by high lin-12 signaling. In wild-type animals,
this results in 1 AC. (B) When lin-12 activity is reduced, a VU is often not
specified, resulting in 2 ACs; in addition, as a result of increased
inductive signaling from 2 ACs and/or reduced lateral signaling due to
lower lin-12 activity, ectopic VPCs adopt the 1u fate at the expense of
the 2u fate. The lin-12(n676n930) allele shows both aspects of this
phenotype at 25uC [10]. (C) When lin-12 activity is mildly elevated, the
AC fate is lost, and a VU is specified in its place. Since the inductive
signal is lost, the underlying VPCs all adopt the 3u fate. lin-12(n379) and
lin-12(n676) are examples of weak hypermorphic alleles, as is the lin-
12(n676n930) allele at 15uC [10,18]. (D) However, when lin-12 activity is
strongly elevated, multiple VPCs are induced to adopt the 2u cell fate
even though the AC is absent [18].
doi:10.1371/journal.pone.0011885.g001

Table 1. Vulval cell fate marker expression in nDf59 is normal
compared to control animals.

1u fate marker (ayIs4 [egl-17::gfp]): scored at Pn.px

% P6.px only % No
expression

% P5.px and
P6.px

N

ayIs4 91.1 8.9 0 56

ayIs4; nDf59 96.2* 1.9 1.9 52

2u fate marker (nIs106 [lin-11::gfp]): scored at Pn.pxx

% P5.pxx and/or
P7.pxx

% P(5,6,7).pxx N

nIs106 100 0 33

nDf59; nIs106 95.5 4.5# 44

3u fate marker (arIs101 [K09H11.1::yfp]): scored at Pn.px-Pn.pxx

% Descendants of P3.p, P4.p, and P8.p N

arIs101 100 53

nDf59; arIs101 100& 49

*1 animal had an anteriorly shifted AC above P5.px, and accordingly expression
was seen in only P5.px.
#By Fisher’s exact test, not significantly different from nIs106 (P.0.5).
&2/49 animals had an anteriorly shifted AC located above P5.p, and accordingly

showed expression in descendants of P3.p, P7.p, and P8.p.
doi:10.1371/journal.pone.0011885.t001

Negative Regulators of lin-12

PLoS ONE | www.plosone.org 2 July 2010 | Volume 5 | Issue 7 | e11885



mildly elevated lin-12 activity due to the presence of the n676

mutation. According to the proposed circuit, loss of mir-61 should

decrease lin-12 activity; thus, we would expect that nDf59 might

enhance phenotypes caused by lin-12(n676n930) at 25uC and

suppress phenotypes of lin-12(n676n930) at 15uC. However, we

obtained the opposite results, that nDf59 suppressed the loss-of-

function phenotypes of lin-12(n676n930) at 25uC, and further-

more, enhanced the weak hypermorphic phenotype of this allele at

15uC (Fig. 2B and 2C). These results indicate that nDf59 increases

lin-12 activity.

nDf59 had been reported to remove 1143 bases encompassing

mir-61 and another microRNA, mir-250 [12]. We independently

sequenced the nDf59 allele and confirmed the deletion breakpoints

reported in WormBase (www.wormbase.org). During this process,

we realized that, in addition to removing mir-61/250, nDf59 also

removes part of the adjacent protein-coding gene, hrd-1 (Fig. 2A)

(see MATERIALS AND METHODS). C. elegans hrd-1 [13] is the

ortholog of yeast HRD1, which was identified in a genetic screen

for genes that mediate HMG-CoA reductase degradation in

Saccharomyces cerevisiae [14]. Another gene defined in the same

Figure 2. nDf59 enhancement of lin-12 activity and the identification of sel-11 as hrd-1. (A) The mir-61/250 genomic region. The coding
regions for the pre-microRNAs of mir-61 and mir-250 are separated by only 44bp, making it likely that these two miRNAs are cotranscribed. Expression
of mir-61/250 in P5.p and P7.p depends on LIN-12 activation, mediated by LAG-1 Binding Sites in the 59 flanking region [11]. The thick black lines
indicate genomic regions deleted by tm1743 or nDf59 (see RESULTS). The RING domain of hrd-1/sel-11 is indicated by a grey box. Molecular lesions
were found in the RING domain of hrd-1/sel-11 for two sel-11 alleles, ar39 and ar84, as indicated by arrows. These two alleles were found to contain
point mutations in the RING finger domain of hrd-1, mutating either a histidine to a tyrosine (ar84, H312Y), or a cysteine to a tyrosine (ar39, C295Y),
thereby mutating amino acids potentially important for the ubiquitination function of the RING domain. (B, C) lin-12(n676n930) has reduced activity at
25uC and mildly elevated activity at 15uC. The VU fate in the somatic gonad is determined by high lin-12 activity, as is the 2u vulval cell fate. (B) nDf59
decreases the number of anchor cells (AC) in the lin-12(n676n930) background at both 25uC and 15uC, which indicates an enhancement of lin-12
activity. The number of ACs observed for each strain is as follows: a 49/49 1 AC. b 29/44 1 AC, 13/44 2 ACs, 2/44 3 ACs. c 34/41 1 AC, 7/41 2 ACs. d 59/
59 1 AC. e 56/59 1 AC, 2/59 2 ACs. f 25/42 1AC, 1/42 2 ACs. Full genotypes of animals scored for AC marker expression are unc-32(e189); arIs51[cdh-
3::gfp]; nDf59 (GS5161), unc-32(e189)lin-12(n676n930); arIs51 (GS4894), and unc-32(e189)lin-12(n676n930); arIs51; nDf59 (GS5015). (C) nDf59 increases
the number of VPCs expressing a 2u marker in the lin-12(n676n930) background at both 25uC and 15uC. When scoring for effects in the VPCs, we
scored only animals with 1 AC to avoid the influence of altered numbers of ACs on VPC fate in the lin-12(n676n930) background. In a wild-type
background, P5.p and/or P7.p express the 2u fate marker nIs106[lin-11::gfp] (Table 1, [11]). At 25uC, some lin-12(n676n930) animals have less than two
VPCs that express a 2u fate marker; this phenotype is suppressed by nDf59. At 15uC, some lin-12(n676n930) animals have more than two; this
phenotype is enhanced by nDf59. Full genotypes of animals scored for expression of the nIs106[lin-11::gfp] 2u fate marker are unc-32(e189)lin-
12(n676n930); nIs106 (GS5014), and unc-32(e189)lin-12(n676n930); nDf59; nIs106 (GS5077). (D) hrd-1(tm1743), a null allele, suppresses the egg-laying
defect (Egl) of lin-12(n676n930) at 25uC. Egl: egg-laying defective.
doi:10.1371/journal.pone.0011885.g002
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screen, HRD3, corresponds to the C. elegans gene sel-1, the first

molecularly characterized negative regulator of lin-12 [8,15,16].

In view of the functional relationship between HRD1 and HRD3

in yeast, we wondered if the genetic enhancement of lin-

12(n676n930) by nDf59 may be explained if hrd-1, like HRD3/sel-

1, is a negative regulator of lin-12 activity. This inference was

confirmed by showing that hrd-1(tm1743), an apparent molecular

null allele, suppresses the egg-laying defect (Egl) of lin-12(n676n930)

at 25uC (Fig. 2D).

The map position of hrd-1 suggested that it might correspond to

sel-11, previously defined as a negative regulator of lin-12 [8]. We

therefore sequenced the two available alleles of sel-11, and found

that they contain point mutations in the RING finger domain of

HRD-1 (Fig. 2A). hrd-1 has been renamed sel-11, the first

published name for the gene, in accordance with the accepted

nomenclature convention in the field. The finding that two point

mutations in the RING finger domain behave like a deletion of the

gene suggests that the ubiquitin ligase activity of SEL-11 is

important for negative regulation of lin-12 activity.

Genetic interactions implicate cdc-42 as a negative
regulator of lin-12/Notch activity

As mentioned above, nDf59 deletes the microRNA mir-250,

which appears likely to be cotranscribed with mir-61 in

response to LIN-12 activation. Using the microRNA Registry

release 2.0 prediction of the mir-250 sequence [17], we

identified potential target genes computationally, using the

same criteria that we used for mir-61 targets: we required that

39 UTRs have at least 7 bases of perfect complementarity to

the 59 end of mir-250, with this putative ‘‘seed match’’

conserved in the C. briggsae orthologs of the C. elegans genes

[11]. Our interest in cdc-42, a candidate identified in this way,

was stimulated when we found that cdc-42(RNAi) enhanced lin-

12 activity in sensitized backgrounds.

The backgrounds we used were afforded by the mild

hypermorphs lin-12(n379) and lin-12(n676) (Fig. 3A). These mild

hypermorphs lack an anchor cell and their VPCs generally behave

as wild-type VPCs do in the absence of the inductive signal, i.e.

they all adopt the 3u fate (Fig. 1). If lin-12(n379) or lin-12(n676)

activity is increased, some or all of the VPCs adopt the 2u fate,

resulting in a ‘‘Multivulva’’ phenotype that is visible in the

dissecting microscope [8,18,19] (Fig. 3A). We verified that the

Multivulva phenotype of cdc-42(RNAi); lin-12(n676) reflects an

increased number of VPCs adopting the 2u fate using a transgenic

marker (Fig. 3B). These observations are consistent with a role of

cdc-42 as a negative regulator of lin-12 activity in the VPCs.

We note that in a lin-12(+) background, cdc-42(RNAi) had been

shown to cause a supernumerary anchor cell, which induces an

extra VPC to adopt the 1u fate [9]. However, the Multivulva

phenotype of cdc-42(RNAi); lin-12(d) hermaphrodites appears to

reflect enhanced lin-12(d) activity in the VPCs rather than

supernumerary anchor cells or increased production of inductive

signal. First, cdc-42(RNAi); lin-12(n676) hermaphrodites, like

control lin-12(n676) hermaphrodites, do not have any anchor

cells: in three independent experiments, cdc-42 RNAi performed

on lin-12(n676); arIs51 animals resulted in 0/51, 0/80, 1/63 L3

Figure 3. cdc-42(RNAi) enhances lin-12 activity in the VPCs. (A) cdc-42(RNAi) enhances the Multivulva (Muv) phenotype of weak lin-12(d) alleles.
Upon RNAi treatment, cdc-42 enhanced the Muv phenotype of lin-12(n379), as well as lin-12(n676). Muv is defined as three or more ventral
protrusions. (B) The Multivulva phenotype of cdc-42(RNAi); lin-12(n676) hermaphrodites is not altered by lin-3(e1417), a mutation that reduces
inductive signal expression. Animals were scored at the L3 Pn.pxx stage, where the VPCs have divided twice. The numbers of VPCs expressing the 2u
fate marker nIs106[lin-11::yfp] are shown below. (C) A cdc-42 transcriptional reporter is expressed in the VPCs and their descendants. The
transcriptional reporter was generated by fusing the 59upstream region of cdc-42 to a 2nls-yfp reporter with an unc-54 39UTR. Expression of the
reporter was strong and uniform in all six VPCs at the Pn.p stage and was upregulated in the daughters of P5.p, P6.p and P7.p.
doi:10.1371/journal.pone.0011885.g003
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animals that had AC marker expression, compared to 1/51, 0/73,

0/55 for control mCherry RNAi-treated animals. Second, the

Multivulva phenotype of cdc-42(RNAi); lin-12(n676) hermaphro-

dites is not altered by lin-3(e1417), a mutation that reduces

inductive signal expression (Fig. 3B). Third, as described above, in

cdc-42(RNAi); lin-12(n676) hermaphrodites, extra VPCs adopt the

2u fate rather than the 1u fate.

We generated a transcriptional reporter containing the 59 flanking

region of cdc-42. This reporter drives strong, uniform expression in all

six VPCs, and the level of expression appears to increase in the

daughters of P5.p, P6.p and P7.p (Fig. 3C). The presence of cdc-42 in

VPCs and their descendants is consistent with the multiple roles of cdc-

42 in VPC development and specification inferred by Welchman [9]

and the genetic interactions with lin-12 described here.

These observations are consistent with a role of cdc-42 as a

negative regulator of lin-12 activity in the VPCs. Phenotypes

caused by the expression of dominant-negative versions of

Drosophila ortholog of cdc-42 have also suggested a role as a

negative regulator of Notch signaling in wing development [20].

However, we were unable to obtain evidence that mir-250

negatively regulates cdc-42 in any assay (data not shown). When

a revised mir-250 sequence was published (miRBase 10.1, [21]), it

was evident that mir-250 has two additional adenines at its 59 end

that would preclude the appropriate seed match base pairing with

cdc-42. Thus, although cdc-42 behaves genetically as a negative

regulator of lin-12, it is not likely to be regulated by mir-250 in an

analogous way to the LIN-12-mir-61-VAV-1 circuit.

Discussion

We have described here two negative regulators of lin-12/Notch

activity, sel-11 and cdc-42. We discuss possible mechanisms by

which these genes may influence lin-12/Notch activity in terms of

our findings and relevant literature on their mammalian orthologs.

SEL-11/Hrd1p and a previously-described negative regulator,

SEL-1/Hrd3p [15,16], are both involved in the Hrd1p pathway of

ER-associated degradation (ERAD). The Hrd1p pathway specif-

ically targets proteins with misfolded lumenal domains for

degradation. SEL-11/Hrd1p is the central E3 ubiquitin ligase,

and SEL-1/Hrd3p acts in the recognition of terminally misfolded

substrates [22,23]. All lin-12 alleles that display genetic interactions

with sel-1 and sel-11 [8,15,16] carry mutations that alter the

extracellular domain, which would be positioned in the ER lumen

during protein synthesis and folding [24,25]. Loss of the Hrd1p

quality control system likely increases the stability or export of

these mutant LIN-12 proteins.

There is some evidence that increased expression of SEL1L, the

human SEL-1 ortholog, correlates with a decrease in tumor

aggressiveness (reviewed in [4]), but if this correlation reflects

effects on Notch activity is not clear. In addition, the human SEL-

11 ortholog, Synoviolin, is essential for development in mice and

has been implicated in hyperproliferation of synovial tissues in

rheumatoid arthritis and in the degradation of p53 and IRE1

[26,27,28]; furthermore, there appears to be multiple modes of

crosstalk between Notch and p53 [29]. These observations are

consistent with the possibility that loss of sel-11 might lead to

elevated LIN-12/Notch activity in cancer.

C. elegans CDC-42 is a member of the Cdc42 subfamily of Rho

family GTPases. Cdc42 has been implicated in many different

cellular processes including polarity, cytoskeleton reorganization,

vesicle trafficking, and signal transduction [30,31]. The VPCs are

polarized epithelial cells, with LIN-12 localized to the apical domain

[32] and LET-23/EGFR localized to the basolateral domain [33].

Reciprocal negative regulation of endocytosis and trafficking of

these receptors helps ensure proper pattern formation

[11,34,35,36,37,38,39]. CDC-42 may contribute to this regulation

through effects on VPC polarization and apical membrane

organization, or through a general effect on endocytic traffic

[40,41,42]. CDC-42 may affect LIN-12 signaling per se or through

promoting the activity of the LET-23/EGFR-Ras-MAPK pathway:

although genetic enhancement of lin-12(d) mutations was observed

in the absence of the anchor cell, the normal source of inductive

signal, it is possible that VAV-1 and CDC-42 affect a basal activity

of LET-23 or another receptor tyrosine kinase that promotes Ras

activity.

Cancer results from aberrations in cell-cell interactions and

growth control, processes that are influenced by Notch activity.

Depending on the cellular context, Notch can function as either a

tumor suppressor (promoting differentiation) or proto-oncogene

(promoting proliferation and/or suppressing apoptosis) [3]. In

these roles, Notch crosstalks with p53 and Rho/CDC42 effectors

[29,43]. Our results raise the possibility that Cdc42 has effects on

tumorigenesis through effects on Notch activity.

As mentioned in RESULTS, all of the lin-12 alleles used in this

study carry missense mutations that alter the extracellular domain

and cause constitutive LIN-12 activity; in some cases, the lin-12

alleles are composites of such activating mutations combined with

second-site revertants that lower lin-12 activity. The missense

activating alleles alter a negative regulatory domain [24] now

known to be revealed under normal conditions by ligand binding

(reviewed in [44]). Equivalent missense mutations in human Notch1

cause T-ALL and perhaps other cancers [45]. Whether SEL-11/

Hrd1p/Synoviolin and CDC-42/Cdc42p act to promote the

activity of wild-type LIN-12/Notch or only these missense mutant

forms is not clear. Nevertheless, the clear effect on the LIN-12/

Notch missense mutant forms associated with cancer suggest that

the reduction in the activity of these negative regulators may be

associated with cancer formation or progression.

Materials and Methods

Strains and genetic analysis
Caenorhabditis elegans var. Bristol strain N2 was the wild-type parent

strain of all mutants and markers used. Key strains used herein

were: GS4944 nDf59 (backcrossed to N2 4x), GS4420 ayIs4 [egl-

17::gfp], GS5043 ayIs4; nDf59, GS5775 nIs106 [lin-11p::gfp],

GS5009 nDf59; nIs106, GS3804 pha-1(e2123); arIs101 [K09H11.1p::yfp],

GS5010 nDf59; arIs101, GS5161 unc-32(e189); arIs51[cdh-3::gfp]; nDf59,

GS4894 unc-32(e189)lin-12(n676n930); arIs51, GS5015 unc-32(e189)lin-

12(n676n930); arIs51; nDf59, GS5014 unc-32(e189)lin-12(n676n930);

nIs106, GS5077 unc-32(e189)lin-12(n676n930); nDf59; nIs106, GS3067

unc-32(e189)lin-12(n676n930), GS5186 unc-32(e189)lin-12(n676n930);

hrd-1(tm1743) V, GS104 unc-32(e189)lin-12(n676n930); sel-11(ar39),

GS257 unc-32(e189)lin-12(n676n930); sel-11(ar84), GS3196 lin-

12(n379), GS23 lin-12(n676), GS4481 lin-12(n676); nIs106 [lin-

11p::gfp], GS5098 lin-12(n676); lin-3(e1417); nIs106.

GE24 pha-1(e2123) was used as the recipient to create transgenes. All

strains were grown using standard procedures at 20uC unless otherwise

noted, except for strains with pha-1(+)-containing transgenes in the pha-

1(e2123) background, which were maintained at 25uC. For strains that

were scored at 25uC or 15uC, animals were maintained at the

temperature of interest for at least two generations prior to scoring.

A strain carrying hrd-1(tm1743), backcrossed 4 times, was the

gift of S. Arur and T. Schedl.

Transgenic lines
cdc-42p::2nls-yfp::unc-54 39UTR reporter lines were made by

injecting fusion PCR products [46] into pha-1(e2123) animals: pha-

Negative Regulators of lin-12
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1(e2123); arEx843-847 [cdc-42p::2nls-yfp::unc-54 39UTR (0.2 ng/ul),

pBX (50 ng/ul)].

Fusion PCR products and plasmids
Fusion PCR was performed as reported [46]. ‘A’ primers and

‘B’ primers are forward and reverse primers, respectively, used to

amplify promoter regions. ‘A*’ primers are nested forward primers

used with the D* primer (see [46]) for the fusion step. The

following primers were used to amplify the cdc-42 59 region: AY56-

A (CAATGGGCGATCAGGGTGTCTAT), AY56-A* (GCTAA-

TAACCCGCACGGAGTAATG), AY56-B (agtcgacctgcaggcatg-

caagctACTTGATCGTCTGCTTTTCGCCTG).

RNAi experiments
Feeding RNAi experiments were performed at 20uC as

described [47,48]. Briefly, gravid adults were bleached and the

eggs were placed on plates seeded with HT115 cells expressing the

dsRNA of interest. T7 polymerase expression in the HT115 cells

had been induced with 6 mM IPTG for at least four hours at room

temperature before plating the eggs. To score the number of

pseudovulvae at the adult stage, animals were scored three days

after eggs were placed on plates. To score at the L3 Pn.pxx stage,

animals were scored roughly 45 hours after eggs were plated.

Imaging
All microscopy done on live animals was performed on a Zeiss

Axioplan2 microscope, with a consistent exposure time used for

each marker assayed.

Sequencing the hrd-1 genomic region of sel-11 alleles
The full genomic region of hrd-1, gene-to-gene, was amplified by

PCR in two fragments for sequencing, using the primer pairs hrd-1-

F1 (ATTGATATGGCACATTCAGAGCTTG)/hrd-1-R1 (GT-

TGTTGTGGAAATCCAAACTGATG), and hrd-1-F2 (CATT-

GTCTCCGCAGTTGGTTCC)/hrd-1-R2 (CATCGTCCTCTT-

TTTGTTCTGCTG). Two different alleles of sel-11, sel-11(ar39)

and sel-11(ar84), were associated with two different alterations in the

hrd-1 gene (see RESULTS). We note also that strains lacking sel-11

alleles but containing ‘‘sel(arX)’’, a mutation that is in the

background of some strains [8], did not contain any alterations in

the hrd-1 gene.

Confirmation of deletion breakpoints for nDf59 and
tm1743

Genomic DNA was extracted from backcrossed nDf59 and tm1743

strains, and the full genomic region of hrd-1 was amplified by PCR

using the two primer pairs hrd-1-F1/hrd-1-R1, hrd-1-F2/hrd-1-R2

noted in the previous section. The deletion breakpoints for nDf59 and

tm1743 reported in WormBase (www.wormbase.org) were verified by

sequencing. In summary, nDf59 removes 1143 bp, and the deletion

breakpoints for nDf59 are TGGATTTCCACAACAACCAGCT-

GGTGCC/GGAGGTGCTCAGCCTGG… GTTCTAGTCATT-

GCC/ATACGGAGGAAGGACTAAGC. tm1743 is a 473 bp dele-

tion with a 38 bp insertion: the deletion breakpoints are TCATGTTC-

CAATTGCTCAAGTCT/ATTTTATTCGGAGAT TTGAGAG…

CTTAGGAATCCTCAATCTTGGGA/TAACAAAGCCGTTTA-

CCTGCTCT, and CAAAGTTTCTTGTATATCTCATGTTCCA-

ATTGCTCAAG is inserted. The published information about nDf59

only notes that mir-61/250 is deleted [12], but F55A11.3/hrd-1 is also

affected (see WormBase and Fig. 2A).
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