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Understanding the molecular details of the sequence of events in multistep evolutionary pathways can reveal the extent to
which natural selection exploits regulatory mutations affecting expression, amino acid replacements affecting the active
site, amino acid replacements affecting protein folding or stability, or variations affecting gene copy number. In
experimentally exploring the adaptive landscape of the evolution of resistance to b-lactam antibiotics in enteric bacteria,
we noted that a regulatory mutation that increases b-lactamase expression by about 2-fold has a very strong tendency to
be fixed at or near the end of the evolutionary pathway. This pattern contrasts with previous experiments selecting for the
utilization of novel substrates, in which regulatory mutations that increase expression are often fixed early in the process.
To understand the basis of the difference, we carried out experiments in which the expression of b-lactamase was under
the control of a tunable arabinose promoter. We find that the fitness effect of an increase in gene expression is highly
dependent on the catalytic activity of the coding sequence. An increase in expression of an inefficient enzyme has
a negligible effect on drug resistance; however, the effect of an increase in expression of an efficient enzyme is very
large. The contrast in the temporal incorporation of regulatory mutants between antibiotic resistance and the utilization of
novel substrates is related to the nature of the function that relates enzyme activity to fitness. A mathematical model of
b-lactam resistance is examined in detail and shown to be consistent with the observed results.

Introduction

Much discussion has focused on the relative role of
structural versus regulatory mutations in the evolution of
novel phenotypes. Structural changes, whether they alter
a protein’s function (active site) or its physical structure
(e.g., folding, stability, etc.), involve amino acid replace-
ments (e.g., Clark et al. 2003; Hoekstra et al. 2006). In con-
trast, regulatory mutations include those that alter gene
expression in cis or in trans (e.g., Olds and Sibley 2003;
Shapiro et al. 2004, 2006; Tishkoff et al. 2007; Brown
et al. 2008). Various perspectives are summarized in Carroll
(2000, 2005a, 2005b), Wray (2007), Hoekstra and Coyne
(2007), and Lynch and Wagner (2008).

In this paper, we take a different tack. We consider the
evolution of metabolic capabilities to which both structural
and regulatory mutations are likely to contribute. We ask
why it is that, in some systems, regulatory mutations are
incorporated early in the process; whereas, in other systems,
regulatory mutations are incorporated late.

Extensiveprevious researchhasobserved that regulatory
mutations often precede structural ones in enzyme evolution
(Mortlock et al. 1965; Wu et al. 1968; Hegeman and Rosen-
berg 1970; Hall and Hauer 1993; among others). In these sit-
uations, existing enzymes often catabolize novel substrates to
some extent, but they require constitutive regulatory muta-
tions in order to allow sufficient expression to enable growth.
Similarly, cryptic genes for the metabolism of certain sub-
strates reside unexpressed in microbial genomes until muta-
tionally activated by promoter mutations (Hall et al. 1983;
Hall 1998).As the initial substitution in an adaptive landscape

is predicted to account for;30% of the total fitness increase
(Orr 2002), these observations suggest that regulatory muta-
tions play a key role in enzyme evolution.

‘‘Regulation first’’ has some notable exceptions, how-
ever. For example, Weinreich et al. (2006) found that struc-
tural mutations usually precede regulatory mutations in the
evolution of the TEM b-lactamase in Escherichia coli. In
the adaptive landscape connecting the wild-type TEM allele
of low resistance to a quintuple mutant of high resistance,
Weinreich et al. (2006) showed that a particular regulatory
mutation denoted g4205a has a 75% chance of being the
final mutation fixed (In the absence of other mutations,
g4205a yields no increase in resistance on the wild-type ge-
netic background; see Weinreich et al. 2006). Similarly,
studies on an evolved b-galactosidase enzyme derived from
the E. coli gene ebg have shown that this enzyme requires
an initial structural mutation in order to facilitate growth on
its substrate (Hartl and Hall 1974; Hall and Hartl 1974; Hall
1990).

To sharpen the discussion, figure 1 depicts three con-
trasting functions relating fitness to enzyme activity. The
concave function (dashed line) depicts a relationship com-
mon for many metabolic enzymes, and the mapping is ap-
propriate when metabolic flux serves as a proxy for fitness
(Hartl et al. 1985; Dykhuizen et al. 1987). The convex func-
tion (dotted line) is common to enzyme-mediated antibiotic
resistance. Although this specific model has been used to
successfully predict b-lactam resistance in several bacterial
species (Zimmerman and Rosselet 1977; Nikaido and
Normark 1987; Lakaye et al. 1999), its implications for
the temporal incorporation of structural versus regulatory
mutations have not been explored.

In this paper, we show how temporal constraints on the
incorporation of regulatory mutations are associated with
the catalytic activity of the genes involved and with the dif-
fering relationships between enzyme activity and fitness for
metabolic and antibiotic resistance enzymes. By means of
studies of resistance to the b-lactam antibiotic cefotaxime in
strains of E. coli containing the TEM b-lactamase, we em-
pirically demonstrate the importance of structural mutations
incorporated early in the evolutionary pathway of drug
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resistance. We also show that the temporal ordering of
structural versus regulatory mutations in evolution depends
on the mapping of enzyme activity onto fitness.

Materials and Methods
Construction of E. coli Strains

The TEM-1 gene from the plasmid pBR322 was iso-
lated via polymerase chain reaction (PCR) and cloned into
the pBAD vector with a kanamycin resistance marker using
the pBAD TOPO TA expression kit (Invitrogen, Carlsbad,
CA). Point mutations (G238S, E104K, and M182T) that
had been previously shown to increase resistance to the
b-lactam cefotaxime (Weinreich et al. 2006 and citations
within) were introduced into this gene via site-directed mu-
tagenesis according to the Quick-change site-directed mu-
tagenesis kit (Stratagene, La Jolla, CA). The entire TEM
locus and pBAD promoter were then sequenced to verify
the presence of the desired point mutations and the absence
of all other substitutions.

In order to ensure that we could modulate the transcript
levels in individual cells and not merely the population as
a whole, we obtained the K12-derived cell line,
BW27783 (Khlebnikov et al. 2001; J. Keasling, University
of California, Berkeley), and transformed our pBAD plas-
mids bearing the TEM alleles into this strain. Previous work
had demonstrated that the arabinose operon behaved in in-
dividual cells in an ‘‘all on’’ or ‘‘all off’’ fashion (Khlebnikov
et al. 2001). The BW27783 cell line has the promoter of its
araE gene replacedwith a constitutive promoter, eliminating
positive feedback of this expression system. Using the
BW27783 cell line, arabinose concentrations should corre-
late to the RNA abundance of the arabinose operon–con-
trolled TEM locus in each cell.

Resistance Assays

We used minimum inhibitory concentration (MIC)
assays to measure resistance to the b-lactam antibiotic ce-
fotaxime (Sigma-Aldrich, St Louis, MO). This method is
detailed by the Clinical and Laboratory Standards Institute

(2007). Briefly, 2-fold dilution series over an appropriate
range (0.03125–1,024 ug/ml) of cefotaxime concentra-
tions in Mueller–Hinton broth were prepared in 96-well
flat bottom plates. Strains were streaked on fresh Luria
Broth (LB) and kanamycin (KAN; 50 ug/ml) plates. Col-
onies were picked the following day and grown overnight
to saturation in LB–KAN media containing the appropri-
ate arabinose concentration. Ninety-six well MIC assay
plates were then inoculated with ;105 cells/ml in each
well as determined by cell titer counts on LB–KAN plates.
MIC values from wells inoculated with between 104 and
106 cells/liter were insensitive to differences in cell con-
centration. Wells inoculated with concentrations higher
than 106 or lower than 104 cells/ml demonstrated dramat-
ically increased and decreased MIC readings, respec-
tively, and were not used. For each overnight culture of
a given strain and arabinose concentration, MIC assays
were done in triplicate and the median MIC was deter-
mined from these three values.

Transcription Induction Confirmation

Quantitative reverse transcriptase PCRs were used to
confirm high levels of TEM allele transcription from pBAD
plasmids in the presence of high concentrations of arabi-
nose. Two or three biological replicates for each combina-
tion of strains and arabinose concentration were prepared
by inoculating 1-ml overnight cultures. After approxi-
mately 18 h of growth, the cultures were diluted 10,000
times and grown to log phase (OD600 ; 0.6). One RNA
extraction per biological replicate was performed using
the RNeasy kit (Qiagen, Valencia, CA) and treated with
Turbo-DNAFree (Ambion, Austin, TX). Adding the same
quantity of RNA to each reaction, we created cDNA from
total RNA using RandomHexamer Primers and Superscript
II (Invitrogen). As previous experiments had shown there to
be little variation between cDNA reactions from the same
RNA preparation, we prepared only one cDNA reaction per
RNA sample. Quantitative PCRs (Q-PCRs) using SYBR
green (Qiagen) were used to quantify cDNA concentrations
in each RNA sample. At least six Q-PCRs (three experi-
mental and three control) were run in parallel for each
RNA sample. Primers for both the TEM alleles and the con-
trol tRNA gene trpT (EG30105) were designed to amplify
with 95% or greater efficiency, calculated based on the stan-
dard curve for each (see Statistical Analysis below). Unin-
duced and induced cells demonstrated significantly
different expression levels. The wild-type and G238S þ
M182T alleles demonstrated similar mRNA levels at the
same arabinose concentrations (supplementary fig. S1, Sup-
plementary Material online).

Protein Purification

In order to quantify the TEM enzymatic concentra-
tions in our cells at different arabinose concentrations,
we extracted and purified four of the b-lactamase missense
mutants (all combinations of M182T and G238S, see sup-
plementary table S1, Supplementary Material online).
Briefly, each allele was moved into a pBAD-based

FIG. 1.—Contrasting functions that map enzyme activity onto fitness.
The dashed line (top) indicates a concave relationship typical for an
enzyme in a metabolic pathway (Hartl et al. 1985). The dotted line
(bottom) indicates a convex relationship of the sort predicted for enzyme-
mediated antibiotic resistance (Zimmerman and Rosselet 1977). The solid
line indicates a linear relationship.
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arabinose-inducible overexpression and purification vector
(pBAD Directional TOPO expression kit, Invitrogen) car-
rying a 28-residue C-terminal linker including a 6�His tag.
The alleles were constructed with a combination of DNA
digestion with the NcoI endonuclease (New England Biol-
abs) and ligation (EMD Biosciences) or site-directed muta-
genesis (Weinreich et al. 2006). All sequences were verified
by DNA sequencing of purified plasmids.

Overnight cultures were grown in Terrific Broth con-
taining 0.1% arabinose for each of the missense alleles in
E. coli strain LMG194 (Invitrogen). Purified b-lactamase
was obtained from 5 ml cultures using His-select iLAP col-
umns (Sigma-Aldrich). Purity of the resulting elutions was
verified using sodium dodecyl sulfate–polyacrylamide gel
electrophoresis. Pure protein concentrations were between
10 and 1,000 lg/ml as determined by Bradford assays
(Quick Start Bradford Protein Assay, Bio-Rad, Hercules,
CA). The purified proteins were stored at �80 �C in 40
mM NaPO4 containing 40% glycerol. Note that neither im-
idazole nor elution salts were removed from the purified
proteins due to problems with protein aggregation and pre-
cipitation from the unstable alleles. Neither additive had
a significant or systematic effect on kinetic assays per-
formed in this study.

Enzyme Kinetics

Enzyme reaction kinetics were determined using puri-
fied protein against nitrocefin (NTF; Oxoid Ltd., Basingstoke,
Hampshire, UK; k 5 486 nm, De 5 15,000 M�1 cm�1,
concentrations from 10 to 200 lM) at 25 �C in 100 mM Na-
PO4, pH 7 buffer containing 2,000 lg/ml bovine serum albu-
min (Sigma catalog no. A3059-50G) as an enzyme stabilizer
(Laraki et al. 1999) on a 96-well spectrophotometer (Spectra-
max PLUS384 from Molecular Devices). We chose NTF for
our activity assays as the change in absorbance associated
with NTF hydrolysis is in the visible range. The cefotaxime

hydrolysis reaction and the b-lactamase enzyme share absor-
bance wavelengths in the UV range.

Initial reaction velocities were fit to the complete
Michaelis–Menten equation (eq. 1) using nonlinear least
squares for high-performance alleles (those with KM’s less
than half the maximum substrate concentration) or to the
reducedMichaelis–Menten equation where S,,KM using
standard linear regression (eq. 2) where KM is the Michaelis
constant, kcat is the general rate constant, S is the concen-
tration of substrate, E0 is the enzyme concentration, and v
the reaction rate (Nelson and Cox 2000).

v5
E0 � kcat � S
KM þ S

; ð1Þ

v5E0 �
kcat
KM

� S: ð2Þ

All fits had P values ,10�3. Presented values are the
average of six replicates. Standard errors (SEs) of the mean
are less than 4% of the average value (supplementary table
S1, Supplementary Material online). Individual kcat and KM

for each allele against NTF are presented in supplementary
table S1 (Supplementary Material online).

Protein Extractions and Enzyme Concentrations

We quantified the enzyme concentration in four of our
TEM allele expressing BW27783 cell lines at six of the
eight arabinose concentrations used in MIC experiments.
For each biological replicate of an allele at a given arabi-
nose concentration, a separate colony was picked into liquid
LB–Kan containing the appropriate arabinose concentra-
tion and grown for 24 h. Following a method similar to that
for MIC assays, overnight liquid cultures were used to in-
oculate ninety-six well MIC assay plates with 200 ll of MH

FIG. 2.—Resistance (MIC) versus expression level (arabinose induction) relationships for eight protein-coding alleles. Left panel depicts alleles
without glycine at site 238 (solid line 5 wild type, dashed line 5 M182T, dotted line 5 E104K, and dash–dot line 5 M182T þ E104K). Right panel
depicts alleles with serine at site 238 (solid line 5 G238S, dashed line 5 G238S þ M182T, dotted line 5 G238S þ E104K, and dash–dot line 5
G238S þ M182T þ E104K). MIC values are log2 transformed, whereas % arabinose values are log10 transformed.
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broth containing arabinose at a cell concentration of ;105

cells/ml. These cultures were grown without shaking for 24
h. We extracted total soluble protein from the combined
volume of eight wells (;1.5 ml of cell culture) using the
B-PER Bacterial Protein Extraction Reagent (Pierce, Rock-
ford, IL) according to the manufacturers’ instructions. We
performed three biological replicates for each allele and
arabinose concentration tested.

Using the kinetic parameters we calculated for individ-
ual b-lactamase alleles toward NTF (supplementary table
S1, Supplementary Material online; see above), we used
dilute concentrations of protein extractions in saturating
concentrations (50 lM) of NTF to determine enzyme con-
centration in each protein extraction. Under these condi-
tions, the rate of color change of the NTF solution is
equal to the maximum rate of enzymatic catalysis, referred
to as the Vmax. For each protein extraction, we measured
Vmax by measuring absorbance at 486 nm every 10 s for
5–10 min. Only protein extraction dilutions that yielded lin-
ear curves over the entire time course were used to measure
Vmax (milliDOD/min). We performed four technical repli-
cates for each protein extraction.

After normalizing by the amount of total soluble
protein extract (lg) used (Bradford assay, see above),
we substituted our calculated Vmax for v in the inverted
Michaelis–Menten equation (eq. 1) to calculate the enzyme
concentration in each protein extraction. These calculations
yielded protein concentrations in the unconventional units
of milliDOD/60 lg total soluble extract. After determining
the protein concentration in four technical replicates for
each biological replicate, we calculated means and SEs
across the three biological replicates (see supplementary
fig. S3, Supplementary Material online).

Statistical Analysis

Based on the maximum likelihood approach for re-
porting MIC values described previously (Weinreich
et al. (2006), we report the median MIC of the three rep-
licate assays performed for each allele at each arabinose
concentration.

Relative RNA expression levels based on Q-PCRs of
cDNA created from total RNA extractions of wild-type
and G238S þ M182T alleles at 0% and 10�2% arabinose
were statistically analyzed using the following modified
DCT approach. Briefly, Q-PCRs produced raw CT values
for TEM b-lactamase and trpT tRNA for each cDNA sam-
ple. The replicate CT values for the trpT gene for each
cDNA sample were averaged. This control CT value
was then subtracted from each replicate CT value for
b-lactamase to yield DCT. A nested analysis of variance
revealed much greater variation in DCT values among bi-
ological replicate than within them. We averaged the rep-
licate DCT values obtained from each biological replicate
(cDNA preparation). Heteroscedasticity t-tests were used
to test for the homogeneity among mean DCT values.
Analysis of variance calculations and t-tests were carried
out in R (version 2.5.0; http://www.R-project.org), and ad-
ditional t-tests were carried out using in Microsoft Excel
2004 for Mac (version 11.3.7).

Relative RNA expression levels reported in supple-
mentary figure S1 (Supplementary Material online) were
calculated as follows. Following typical Q-PCR methodol-
ogy involving a standard curve, a genomic DNA extraction
from cells harboring a TEM-1 containing plasmid
(pBR322) was used to create a 10-fold DNA dilution series
over six orders of magnitude. CT values from these samples
for each primer set were then plotted on a log–log scale
against their relative concentrations. Using the best-fit line
determined by these points, we used the mean absolute CT
value for each cDNA to determine the relative concentra-
tion of cDNA of either TEM b-lactamase or trpT for each
biological replicate. We normalized the TEM b-lactamase
transcription levels by dividing the trpT transcription levels
calculated for each cDNA. The calculated normalized rel-
ative quantities of TEM b-lactamase were then averaged for
each genotype by arabinose combination and plotted as
mean relative RNA concentrations in supplementary figure
S1 (Supplementary Material online). The error bars in sup-
plementary figure S1 (Supplementary Material online) rep-
resent the SE among the normalized relative quantities
calculated for each biological replicate.

We constructed a generalized linear model (GLM,
function glm() in R, ver. 2.2.1, The R Foundation for Sta-
tistical Computing) to analyze our MIC data. We modeled
MIC as a function of the presence or absence of the three
mutations (G238S, E104K, and M182T) and expression
level as determined by inducer concentration. For our
GLM analysis, we gave each median MIC value in our
data set an ordinal number where 1 corresponded to the
lowest expression level (growth in 0% arabinose) and 8
corresponded to the highest expression level (growth in
10�1% arabinose). As our MIC measurements represent
quantized values and appeared underdispersed as a Poisson
distribution, we used a quasi-Poisson error distribution.
To construct the final model, we first ordered the main
terms according to decreasing significance in a model with
only single terms and no interactions. We then included all
interaction terms and removed those that F tests revealed
did not significantly contribute to the MIC variance ob-
served. The final model (MIC ; G238S þ Exp þ
E104K þ M182T þ G238S: Exp) included only signifi-
cant terms.

MIC Predictions

We used a model first developed by Zimmerman and
Rosselet (1977) and expanded upon byNikaido andNormark
(1987) to predict MIC values in our experiments (see also
Lakaye et al. 1999). Combining Fick’s first law of diffusion
and the Michaelis–Menten equation, Zimmerman and
Rosselet (1977) derive the following equation for MIC:

MIC5Cinh þ Vmax � Cinh

P � AðKM þ CinhÞ
; ð3Þ

where Cinh is the periplasmic concentration of b-lactam re-
quired to inactivate sufficient numbers of PBPs to inhibit
growth, Vmax is the rate of b-lactamase–mediated hydrolysis
of b-lactam, P is the permeability coefficient for the specific
b-lactam across the outer bacterialmembrane (1.8� 10�5 cm
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s�1 for cefotaxime in E. coli), A is the area of membrane per
unit of cells (132 cm2 mg�1 for E. coli), and KM is the Mi-
chaelis constant for b-lactamase.

Substituting the relationshipofVmax5kcat� [E] (Nelson
and Cox 2000) into equation (3), we rewrite equation (3) as:

MIC5Cinh þ kcat � ½E� � Cinh

P � AðKM þ CinhÞ
; ð4Þ

where kcat is the overall rate constant of the b-lactamase–cat-
alyzedb-lactam hydrolysis and [E] is the periplasmic concen-
tration b-lactamase. We inferred the Vmax against cefotaxime
(nanomoleb-lactamhydrolyzedper secondpermilligramdry
weight) that Nikaido and Normark (1987) calculated for cells
expressing TEM b-lactamase (contained on plasmid
JF701(R471a)) based on equation (3). Based on their reported
kcat for JF701-encoded TEM,we calculate [E] in experiments
of Nikaido and Normark (1987) to be 0.2508 nmol b-lactam
hydrolyzedpermilligramdryweight. Toobtain a biologically
realistic range of relative enzyme concentrations, we used [E]
ofNikaido andNormark (1987) to anchor the rangeof relative
expression values over which we used equation (4) to predict
MIC for each allele.

We used the previously reported kcat and KM against
cefotaxime of four TEM alleles with E at site 104 (Wang
et al. 2002) along with equation (4) to predict MIC values
for each allele over a range of enzyme concentrations (see
fig. 3). The absolute enzyme concentrations we measured
for each allele were not readily comparable with the enzyme
concentration from Nikaido and Normark (1987; see units
of each metric above). Instead, we normalized each value of
enzymatic concentration in our experiments by dividing the
lowest enzyme concentration we observed (G238S with no
arabinose). This procedure yielded an overall enzymatic ex-
pression range of nearly four orders of magnitude with each
allele spanning only a part of this range (see fig. 3). Setting
the lowest observed enzymatic concentration as 1,000-fold
lower than the concentration observed by Nikaido and
Normark (1987), we predicted MIC values for each allele
across its observed relative enzyme concentration (fig. 3;
solid lines in each quadrant). For comparison, we then plot-
ted the observed MICs for each allele against their corre-
sponding enzyme concentration (fig. 3; points in each
quadrant). Additionally, supplementary figure S4 (Supple-
mentary Material online) depicts MIC prediction for each
allele across their entire collective expression range.

Results

We constructed all combinations of three TEM b-lac-
tamase mutations associated with increased resistance and
placed them under the control of an inducible and titratable
promoter derived from the arabinose operon (Materials and
Methods). The rationale is that b-lactam resistance is af-
fected by both structural mutations via changes in apparent
affinity (kcat/KM) and regulatory mutations mediated by
changes in promoter sequences altering gene expression
and therefore enzyme concentration (Zimmerman and
Rosselet 1977). For each of the eight TEM b-lactamase
alleles, we measured resistance across a range of expression
levels (Materials and Methods). Resistance was assayed as

theMIC, the smallest concentration of cefotaxime that com-
pletely inhibits growth. For the kinetic parameters of these
enzymes toward cefotaxime, we used previously published
data (Wang et al. 2002).

The key discovery was that the effect of increased ex-
pression on drug resistance was highly dependent on the
TEM structural gene (fig. 2). Most striking, alleles that con-
tain the mutation Gly238Ser (G238S) result in large in-
creases in resistance with increased expression, whereas
alleles retaining the ancestral Gly at position 238 show
no more than a 2-fold increase in resistance across a more
than 100-fold increase in transcription (supplementary fig.
S1, Supplementary Material online). Although the se-
quence-dependent effect of increasing gene expression is
most dramatic for the mutation G238S, the mutations
Glu104Lys (E104K) and Met182Thr (M182T) also show
modest effects (supplementary fig. S2, Supplementary Ma-
terial online).

To quantify the effect of structural mutations on the
fitness effects of increased expression, we developed
a GLM (Materials and Methods) of antibiotic resistance
(MIC) as a function of both coding sequence and expression
level. Among the 64 MIC’s in our data set, we find signif-
icant effects attributable to the independent contribution of
each individual mutation (G238S, E104K, and M182T) as
well as expression level (F test, P values: G238S 5 2.2 �
10�16, E104K 5 1.914 � 10�12, M182T 5 0.00035, ex-
pression level 5 1.548 � 10�15). There is, however,
a highly significant interaction between expression level
and G238S (F test, Expression � G238S P value 5
4.776 � 10�6). Although interactions between regulatory
and coding mutations have been noted previously (Stam
and Laurie 1996; Weinreich et al. 2006), our experimental
design allows a formal statistical confirmation of Expres-
sion � G238S epistasis.

To investigate in greater detail how inducer (arabi-
nose) concentration corresponds to expression level, we
measured mRNA and protein concentration for a subset
of alleles across a range of induction levels. Alleles with
different coding mutations had similar mRNA levels at
the same level of induction (supplementary fig. S1, Supple-
mentary Material online). However, some alleles result in
different steady state enzyme concentrations at the same
concentration of inducer (supplementary fig. S3 and table
S4, Supplementary Material online). These results are con-
sistent with previous work demonstrating differences in sta-
bility among these proteins in vitro (Wang et al. 2002). The
ranges in allele-specific protein abundance we observe are
also consistent with other observations relating mRNA
level to steady state protein abundance (Ghaemmaghami
et al. 2003).

Our data on protein abundance support the hypothesis
that the structural mutation G238S is the one principally
responsible for the temporal phasing of the regulatory mu-
tation g4205a in the evolution of TEM b-lactamase. Cor-
relation analysis between protein abundance and
resistance demonstrates that resistance is significantly cor-
related with relative TEM b-lactamase abundance for al-
leles containing G238S (G238S and M182T þ G238S;
Spearman’s rank correlation: P 5 0.0005641). However,
we find no such correlation for the alleles containing a G
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at site 238 (wild-type and M182T alleles; Spearman’s rank
correlation: P 5 0.287).

As a final step in the analysis, we used known kinetic
parameters and our measured protein abundances to test
whether a previously described fitness function for TEM
b-lactamase (Zimmerman and Rosselet 1977) predicted
the observed relationship between structural mutations
and expression level. Figure 3 shows that the predicted re-
sistance values (solid lines) do match the observed resis-
tance values (open circles) across the range of protein
abundance. This result suggests that the Zimmerman and
Rosselet (1977) model is a good predictor of antibiotic re-
sistance. Further exploration of the evolutionary implica-
tions of this model might yield additional insights.

Discussion

Our results explain the temporal phasing of the incor-
poration of the regulatory mutation g4205a in the evolu-
tionary pathway of TEM b-lactamase. The most important

constraint is the identity of the residue at amino acid site
238. There is a highly significant epistatic interaction be-
tween G238S and expression level. In the presence of
wild-type Gly238, the g4205a mutation yields little or
no increase in antibiotic resistance, whereas in the pres-
ence of G238S, the effect can be large (Weinreich et al.
2006).

Although additional research is needed to understand
how structural in b-lactamase mutations affect resistance,
crystallographic and modeling studies suggest that muta-
tions with more direct impacts upon the active site have
stronger impacts on resistance. Strictly speaking, none of
the mutations we examine occur in the active site and none
of the wild-type residues at these sites interact with the
b-lactam substrate (Matagne et al. 1998). However, crystal
structures indicate that a serine residue at site 238 may point
into the active site and form a new hydrogen bond with ce-
fotaxime (Matagne et al. 1998). Althoughmore speculative,
modeling also suggests that lysine at site 104 may either
interact directly with the b-lactam or alter the position of
important active site residues (Matagne et al. 1998). With

FIG. 3.—Comparison of predicted MIC values (solid lines) and observed data (open circles) for four alleles as a function of relative enzyme
concentrations ([E]). Predicted MIC values are based upon the Zimmerman and Rosselet (1977) model, whereas observed data represent laboratory
MIC measurements. Relative enzyme concentrations for G238S were adjusted to correct for unusual sensitivity to protein extraction procedures. For
MIC predictions for each allele over the entire theoretical range of expression, see supplementary figure S4 (Supplementary Material online).
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the smallest average effect on resistance (supplementary
fig. S2, Supplementary Material online; Weinreich et al.
2006), the M182T substitution is far from the active site
and has previously been shown to affect overall enzyme
stability (Wang et al. 2002).

Regardless of the exact biophysical mechanisms,
G238S has a dramatic effect on resistance because of its
impact on the b-lactamase’s affinity for its substrate, cefo-
taxime. The G238S substitution alone increases the overall
rate of hydrolysis of cefotaxime bymore than 65-fold (wild-
type reaction rate constant [kcat] 5 0.636 s�1; G238S reac-
tion rate constant [kcat]5 41.8 s�1; Wang et al. 2002). This
change in reaction rate (kcat), along with a smaller decrease
in the Michaelis constant (KM), creates a nearly 100-fold
higher apparent affinity for cefotaxime (wild type: kcat/
KM 5 2.07 � 103 s�1 M�1, G238S: kcat/KM 5 1.78 �
105 s�1 M�1; Wang et al. 2002).

Increased substrate affinity allows for lower concen-
trations of enzyme to produce the same in vivo activity.
The Zimmerman and Rosselet (1977) model of resistance
predicts, and our data confirm, that at the same in vivo con-
centrations of b-lactamase, alleles with G238S have in-
creased resistance, whereas those without it do not
(supplementary fig. S4, Supplementary Material online;
fig. 3).

In other words, G238S alters the mapping of enzyme
activity onto fitness. The effect is explored in figure 4,

which compares the effects of increasing substrate affinity
in concave (top) versus convex (bottom) fitness regimes.
Each line represents the effect of increasing enzyme con-
centration for an enzyme with a given set of kinetic param-
eters. Both sets of curves exhibit fitness plateaus, where
increases in enzyme concentration have little or no effect
on fitness. In these regions of the curves, structural muta-
tions are likely to be most important because structural mu-
tations can increase fitness by allowing higher activity from
the same concentration of enzyme. These kinds of changes
can allow jumps from one fitness curve to another. In this
way, structural mutations that alter substrate affinity can
change the rules of the game. On the other hand, in regions
of the curve where fitness increases steeply with activity,
regulatory mutations that increase enzyme concentration
can be strongly selected.

Figure 4 reconciles the contrasting tempos of when
regulatory mutants are likely to be incorporated into evo-
lutionary pathways. In the evolution of flux-limited met-
abolic pathways illustrated by the concave fitness curves,
mutations that increase gene expression are likely to be
incorporated early because an increase in expression
can have a large effect on fitness. In the evolution of
antibiotic resistance, illustrated by the convex fitness
curves, mutations that increase gene expression are likely
to be incorporated later because increased expression of
catalytically inefficient enzymes contributes negligibly
to fitness.

Our results suggest that the mapping of activity to fit-
ness determines the relative importance and timing of reg-
ulatory and structural mutations in adaptive pathways.
Although we focus on well-studied metabolic systems
and antibiotic resistance, in principle, the fitness versus
activity relationship should dictate the temporal incorpora-
tion of mutations during the evolution of a wide variety of
enzyme types. Although research continues to focus on the
genetic sources of evolutionary novelty, understanding
which mutations are likely to create evolutionary novelty
may require knowledge of the specific selective forces act-
ing on enzyme activity at any one moment in time.

Supplementary Material

Supplementary tables S1–S4 and figures S1–S4 are
available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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