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Recent empirical studies of taxa including humans, fish, and birds have shown elevated rates of molecular evolution
between species that diverged recently. Using the Moran model, we calculate expected divergence as a function of time.
Our findings suggest that the observed phenomenon of elevated rates at short timescales is consistent with standard
population genetics theory. The apparent acceleration of the molecular clock at short timescales can be explained by
segregating polymorphisms present at the time of the ancestral population, both neutral and slightly deleterious, and
not newly arising slightly deleterious mutations as has been previously hypothesized. Our work also suggests that the
duration of the rate elevation depends on the effective population size, providing a method to correct time estimates
of recent divergence events. Our model concords with estimates of divergence obtained from African cichlid fish and
humans. As an additional application of our model, we calculate that Ka/Ks is elevated within a population before
decaying slowly to its long-term value. Similar to the molecular clock, the duration and magnitude of Ka/Ks elevation
depend on the effective population size. Unlike the molecular clock, however, Ka/Ks elevation is caused by newly arising
slightly deleterious mutations. This elevation, although not as severe in magnitude as had been previously predicted in
models neglecting ancestral polymorphism, persists slightly longer.

Introduction

The assumption of a molecular clock (Zuckerkandl
and Pauling 1962) is an important tool in dating speciation
events. Many dating methods allow for clock rate hetero-
geneity among branches in the tree (Sanderson 1997, 2002;
Yoder and Yang 2000; Drummond and Rambaut 2007),
however, no current methods allow the rate on a given
branch to be dependent on the age of the branch.

Evidence suggests that the observed rate of diver-
gence between branches may be higher than expected when
the divergence time between those branches is short. This
acceleration of the molecular clock at short timescales was
first observed by Wayne et al. (1991), who noted that sub-
stitution rates decreased linearly with time in a study of
carnivores and primates. Garcia-Moreno (2004) noted a
similar, but exponential rather than linear, trend in birds.

Using mitochondrial DNA (mtDNA) taken from hu-
man pedigrees, several investigators have estimated diver-
gence rates that are many times greater than the accepted
rate estimates for animal species (Ho et al. 2005). In con-
trast to the accepted rate of 0.02 substitutions/site/Myr for
protein-coding mtDNA in mammals (Brown et al. 1979;
Randi 1996; Fleischer et al. 1998) and birds (Shields
and Wilson 1987), these studies found rates between
0.32 and 2.5 substitutions/site/Myr (Parsons et al. 1997;
Sigurdardóttir et al. 2000; Howell et al. 2003). In addition,
in a study using well-preserved Antarctic subfossil bones,
Lambert et al. (2002) estimated a divergence rate of 0.95
substitutions/site/Myr in Adélie penguins.

Analyzing the above data, Ho et al. (2005) concluded
that the divergence rate between populations decays expo-
nentially from an elevated short-term mutation rate to the
long-term substitution rate. This view has been challenged
(Emerson 2007; Weir and Schluter 2008), even as new ev-
idence to support it emerges. Three recent studies found

Key words: theoretical populations genetics, Ka/Ks, Moran model,
distribution of fitness effects, divergence date.

E-mail: gpeterson@math.arizona.edu.

Mol. Biol. Evol. 26(11):2595–2603. 2009
doi:10.1093/molbev/msp175
Advance Access publication August 6, 2009

that mtDNA rate calibrations in freshwater fish are consis-
tent with the findings of Ho et al. (2005; Genner et al. 2007;
Waters et al. 2007; Burridge et al. 2008). However, Genner
et al. (2007) found that divergence rates decay faster than
exponentially. In a further study, Ho et al. (2007) found that
rates of divergence obtained from ancient bison sequences
confirm that the phenomenon of elevated rates exists with-
out support for an exponentially decaying rate curve.

Evidence for elevated rates of molecular divergence
on short timescales has therefore been demonstrated in
both studies, which use ancient and noncontemporaneous
sequence data, for example, Ho et al. (2007) as well as
studies in which two contemporaneous sequences are com-
pared with a single internal node calibration (e.g., Genner
et al. 2007; Waters et al. 2007; Burridge et al. 2008). In
the former case, noncontemporaneous sequences may be
incorporated into a maximum likelihood framework hence
negating the gene tree versus species tree problem that
we will describe below (Rambaut 2000; Drummond and
Rambaut 2007). That elevated divergence rates have been
observed in this case nonetheless is an important point,
but one that we will not investigate here. We will focus
on the latter situation where elevated divergence rates are
observed between two contemporaneous sequences with a
single internal node calibration.

In this case, the phenomenon may be explained by the
fact that if sufficient time has not passed, a large amount
of sampled genetic divergence between populations may
be due to polymorphism that was present at the time the
two populations diverged. The molecular clock equates
mutations with fixation, approximating the process as in-
stantaneous to get linear accumulation of change over time.
With polymorphism present at the time of population di-
vergence, sampling will overestimate the number of fix-
ations. As an extreme example, consider sampling from
two individuals of the same population (time since popula-
tion divergence equals zero). All observed differences will
be due to intrapopulation polymorphism that was present
since the time of gene divergence. However, following a
strict molecular clock, the expected divergence is zero.
Overestimation due to polymorphism will have a signifi-
cant impact on estimates of the rate of the molecular clock
only for an initial period of time, however, because the
differences observed due to these sites will become a small
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percentage of total divergence in the long term. The idea
that the molecular clock rate will transition from a short-
term rate determined by polymorphism to a long-term sub-
stitution rate was previously noted by Penny (2005).

This formulation is equivalent to the classic formu-
lation of coalescent theory. Consider a simple model in
which all mutations are neutral. Coalescent theory tells
us that if we choose two random lineages in the pop-
ulation, their expected coalescent time will have mean
equal to two times the effective population size (Durrett
2008). Therefore, when the time of population divergence
equals zero, the gene divergence time at a neutral locus
will be on average 2Ne generations. Estimates of molecu-
lar divergence based on population divergence calibrations
will then be overestimates of the actual population diver-
gence time. The importance of distinguishing between the
gene tree and species tree has been noted in the literature
(Felsenstein 2004).

Another possible contributor to the phenomenon of
elevated rates is the existence of slightly deleterious mu-
tations (Ho et al. 2005). In the short term, genotypes that
are only mildly deleterious will behave like neutral geno-
types, with their frequency determined by drift. However,
in the long term, they are unlikely to become fixed (Kimura
1983). Therefore, although almost no slightly deleterious
mutations are destined for fixation, a population will take
a significant amount of time to purge them. Like poly-
morphism, this effect will be disproportionally large in the
short term.

In order to assess the relative importance of the above
explanations to the overall phenomenon of elevated rates,
this paper calculates the behavior of the molecular clock
on short timescales. We calculate the expected number of
genetic differences between two samples as a function of
time since population divergence, considering both poly-
morphism present at the time of population divergence
as well as mutations that arise after the populations have
become distinct.

Materials and Methods

Consider two closely related extant haploid popula-
tions that have diverged recently from a common ancestor.
The results for diploids are equivalent if the coefficient of
dominance h is equal to 0.5 and are unlikely to be substan-
tially different for other values of h. Consider one individ-
ual from each population. We now compute the expected
number of differences between the two sampled individu-
als as a function of population divergence time.

We assume a fixed population size N that immediately
duplicates into two populations each of size N. We assume
the infinite sites approximation and that sites evolve inde-
pendently. The assumption of independently evolving sites
is equivalent to assuming free recombination between all
sites and is made in order to take advantage of known
closed form expressions for quantities of interest. These
include expressions for the probability of fixation of a new
mutation, and the expected time that a mutant allele is seg-
regating in a population before fixation or extinction. Of
course, molecular clock calculations are normally made by

sequencing a single gene where there is either zero (mito-
chondria) or low (nuclear) recombination. Our method cal-
culates the expected number of differences at a single site
(one or zero) and we then sum over all sites to calculate the
total divergence. It seems likely that linkage will affect our
results in two ways. First, linkage imposes a complex cor-
relation structure between sites. At any given time, this will
likely increase the variance of the total divergence. Because
we focus on calculating mean divergence, this effect will be
of minor importance here. Second, if it is assumed as we
do in many cases, which all new mutations are deleterious,
linkage will play the role of dragging down the total num-
ber of fixations. Hence, a population of size N behaves like
a population of independent sites with size Ne = N e−u/2sh

(Durrett 2008), where u is the mutation rate at the linked
loci, s is the selection coefficient, and h is the coefficient of
dominance in this case 0.5. This should not affect the gen-
eral shape of the divergence curve, but it will drag down
our estimates of Ne.

The allele frequency at each site is modeled using
the Moran model with selection, and the number of indi-
viduals that possess the derived allele at time t is given
by Xt . Xt is a Markov chain, that is, the distribution of
Xs only depends on the value of Xs−1. Because Xt mod-
els the number of individuals out of a population of size N
that contain the derived allele, Xt takes values in the state
space {0,1, . . . ,N−1,N}. We define the matrix T such that
T (i, j) = P(Xt = j|Xt−1 = i). This matrix will be of size
N+1 by N+1 since i and j are between 0 and N. This ma-
trix is known as the transition matrix of the Markov chain.
We consider models in which all sites have a single selec-
tion coefficient s, as well as sets of sites whose selection
coefficients are distributed according to some probability
distribution g(s). In this case, the total divergence at each
time is calculated by calculating the divergence f (s) for a
large number of individual s and then numerically integrat-
ing
∫

s f (s)g(s)ds.
Let m be the per replication mutation rate. Define τ1

to be the mean time that a new mutation stays in a popula-
tion before it becomes fixed or disappears. More precisely,
τ1 is the expected value of t such that Xt = 0 or Xt = N
for the first time, given that X0 = 1. The condition X0 = 1
corresponds to a new mutation arising in one individual at
time 0. Define τ1i to be the expected time that the derived
allele is present in i individuals before fixation or extinc-
tion, given it was originally present in one individual. That
is, the average number of times that Xs = i before Xt = 0
or Xt = N. For the Moran model, these quantities can be
calculated explicitly (Ewens 2004) (see Appendix).

We consider two sets of sites. First consider sites that
were polymorphic at the time of population divergence.
The expected number of such polymorphic sites at popula-
tion divergence time 0 is given by mτ1 because there are on
average m new mutations per replication, and each muta-
tion persists in the population for mean time τ1. Of the mτ1
sites at population divergence time 0, the proportion of sites
with i individuals is distributed {τ1i/τ1, i= 1, . . . ,N−1}.

For each site, the probability that the samples will dif-
fer at that site at time t generations (with N time steps per
generation following the Moran model) after the popula-
tion split can be calculated as follows. We denote S1 and S2
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FIG. 1.—Divergence over time for sites with a single level of selection. The behavior of the molecular clock ranges from approximately linear
for sN = −1 to highly nonlinear for higher selection intensities. The elevated initial slope in these graphs demonstrates the nearly neutral effect. The
results shown here are for population sizes N = 100 (solid line), 500 (dashed line), and 1,000 (dot-dashed line).

as the identities of the sampled alleles from populations 1
and 2, respectively, at time t and denote the ancestral allele
A and the derived allele D. Then,

P(S1 = A,S2 = D)

=
N−1

∑
k=1

P(S1 = A,S2 = D|X0 = k)P(X0 = k), (1)

=
N−1

∑
k=1

P(S1 = A|X0 = k)P(S2 = D|X0 = k)P(X0 = k).

(2)

The first equality follows from the law of total probability,
and the second equality follows from the conditional in-
dependence of S1 and S2. Multiplying by 2 to account for
the case when S1 = D and S2 = A gives the total expected
divergences for these sites as

fpoly(t)

= 2m
N−1

∑
k=1

P(S1 = A|X0 = k)P(S2 = D|X0 = k)τ1k.

(3)

An analytic expression can be obtained for the probabilities
P(S1 = A|X0 = k) and P(S2 = D|X0 = k) (see Appendix).

Now consider mutations that arise after population di-
vergence time t = 0. Mutations arise at rate m per replica-
tion along a given branch. We assume a constant mutation
rate; hence, their times of origin tm are independent and
uniformly distributed. Again use the Moran model and
Markov chain Xt to model the number of derived alleles at
each new site, and let Y denotes the time of the mutation.
Then, the probability of sampling a given derived allele is
given by

N

∑
k=1

P(S1 = D|XtN = k)P(XtN = k|Y = tm). (4)

There are on average m new mutations per replica-
tion. We sum over all possible tm and multiply by 2 to ac-
count for both branches. The total expected divergence in
this case is then given by

fnew(t)

= 2m
tN

∑
tm=1

N

∑
k=1

P(S1 = D|XtN = k)P(XtN = k|Y = tm).

(5)

Adding this to the total in the previous case gives the
total expected divergence between the two samples as a
function of time t in generations

f (t) = fpoly(t)+ fnew(t). (6)

Using “Matlab,” we calculate f (t) as well as the aver-
age rate over a branch f (t)/t for any population size N.

Results

Li (1977) proved that, in the neutral case, the expected
number of sequence differences as a function of population
divergence time is linear with a nonzero intercept. Com-
putationally, we reproduce this result and then go on to
calculate the nonlinear behavior of the molecular clock
when the selection coefficient s is not equal to zero, as
shown in figure 1.

Each plot has a positive vertical intercept that, through
the vector τ1·, depends on s. In each case, the nonzero in-
tercept is due to polymorphism present at the time of pop-
ulation divergence.

The slope of each plot in figure 1 decreases from an
initial elevated slope due to the rapid sorting out of stand-
ing polymorphism to the eventual long-term evolutionary
rate equal to 2π1(s) where π1(s) is the probability of fixa-
tion of a new mutation with selection coefficient s. The fac-
tor of 2 accounts for fixations on both branches. Hence, as t
gets large, the difference f (t)− (2mπ1(s)t+ fpoly(0)) con-
verges to zero. Although these figures illustrate the behav-
ior of the molecular clock at sites with a particular level of
selection, we want to calculate this function across a set of
sites. In order to do so, we must model the distribution
of fitness effects.

Although some initial progress has been made, the in-
ference of the distribution of fitness effects of newly aris-
ing mutations is a largely open problem (Eyre-Walker and
Keightley 2007). We examine a particular estimate of a dis-
tribution of fitness effects, namely, amino acid changing
mutations in humans. Eyre-Walker et al. (2006) estimated
that the selection coefficients of such mutations, all dele-
terious, have negative s values that are gamma distributed
with shape parameter λ = 0.23 and mean = 0.043, that
is, gamma(0.23, 0.187), where 0.187 is the scale param-
eter in the standard presentation of the gamma distribu-
tion. We also investigated the case λ = 0.5, where a larger
proportion of alleles are slightly deleterious. The second
distribution is conservative with respect to our eventual
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FIG. 2.—Divergence over time for a distribution of fitness effects. The approximate linearity of the molecular clock demonstrates a very limited
role for the nearly neutral effect in the short-term elevation of the rate of molecular evolution. The selection coefficients of new mutations are distributed
as stated in the box. The scale parameters of the λ = 0.5 distributions are chosen so that the asymptotic fixation rate is equal to the asymptotic fixation
rate under the distribution gamma(0.23, 0.187). For the graphs labeled 5% adaptive, we let 5% of all mutations be adaptive with a selection coefficient
that is calibrated so that 50% of all fixation events are adaptive.

conclusions. For λ = 0.5, the scale parameter was calcu-
lated so that the long-term fixation rate is equal to that un-
der the distribution gamma(0.23, 0.187) (see fig. 2).

We present the theoretical molecular clocks for the
above distributions in figure 2 along with distributions for
which 50% of all fixation events are adaptive, the maxi-
mum proportion supported by the literature (Eyre-Walker
et al. 2006). For the distributions where all mutations are
deleterious, the effect of slightly deleterious mutations can
be seen by the elevated short-term slope. The effect is quite
small, even for the distributions that allow for the max-
imum proportion of slightly deleterious mutations. This
elevated slope is dwarfed by the positive vertical intercept
that corresponds to the existence of largely neutral poly-
morphism at population divergence time 0. By adding in
a small proportion of slightly adaptive alleles, we see that
the slightly deleterious effect is even smaller due to the fact
that for slightly adaptive alleles, the initial slope will be
smaller than the long-term slope.

Hence, we can conclude that this persistence of neu-
tral ancestral polymorphism is the driver of the short-term
elevated evolutionary rates that we see in figure 3. We plot
differences divided by mutation rate divided by time in

generations and denote this value r. This gives the theo-
retical evolutionary rate averaged over the branch. Our re-
sults qualitatively agree with the observed data of Ho et al.
(2005). However, contrary to their claim that the rate de-
cays exponentially, the rates decay differently from expo-
nential, showing a more pronounced curvature. This result
is in agreement with Genner et al. (2007).

In figure 4, we demonstrate that the rate elevation de-
pends almost exclusively on Ne. Under our simplifying
assumptions, this provides an approximate guideline for
investigators to correct for rate elevation if the effective
population size of the process is known. For example, it
takes 3Ne generations for the evolutionary rate to decay to
1.25 times the long-term rate.

Genner et al. (2007) obtained divergence data in
African cichlid fish by using both fossil calibrations and
calibrations based on Gondwana landmass fragmentation.
Because saturation occurs beyond 1 Myr, we take the
youngest calibration point beyond 1 Mya and use the di-
vergence rate obtained from that calibration as an estimate
for the long-term rate. These calibration points are the old-
est points plotted in figure 5A and B. Using figure 4 as
our starting point, assuming a generation time of 1 year,

FIG. 3.—The phenomenon of elevated divergence rates on short timescales is indicated in agreement with Ho et al. (2005), Genner et al. (2007),
Waters et al. (2007), and Burridge et al. (2008). The rate decays faster than exponential in agreement with Genner et al. (2007). For N = 1,000, the
expected divergence is divided by the number of generations to obtain the evolutionary rate for the same four distributions as in figure 2.
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FIG. 4.—The magnitude of divergence rate elevation scales with ef-
fective population size. For a set of sites with selection coefficient s, the
long-term evolutionary rate is given by 2π1(s). Using the distribution of
negative s, gamma(0.23, 0.187), we integrate 2π1(s) times this distribu-
tion function to obtain the asymptotic rate across a set of sites whose
fitness effects are distributed as assumed. Denote this rate ra. Using ra,
we plot the rates obtained in figure 3 as a multiple of ra on the y axis. To
be precise, the quantity on the y axis is n where r= nra. On the x axis, we
plot the number of generations as a multiple of population size N. Hence,
the quantity on the x axis is l where the number of generations equals lN.
The figure was calculated using N = 500, but for other values of N con-
sidered (up to 5,000), the figure superimposes. For the other distributions
of s considered in this paper, the results are similar.

and fitting a single parameter Ne, we obtain fits of our
model to the data with estimates of effective population
size Ne =125,000–500,000 as shown in figure 5. It is inter-
esting to note that we obtain a reasonable fit despite fitting
only a single parameter to potentially noisy interspecies
data that could display diversity in Ne across species. This
fit suggests that our model does indeed fit data and suffi-
ciently explains the phenomenon of elevated rates on short
timescales. However, our estimates of Ne will be lower than
those obtained by other methods due to the simplifying as-
sumption of independent sites (i.e., free recombination) in
our model, where the data are in fact mitochondrial.

More recently, Henn et al. (2009) published human
mtDNA coding region divergence rates using archaeologi-
cal dates. In figure 6, we fit our model to the human diver-
gence data assuming a long-term divergence rate of 0.02
mutations/site/Myr (Brown et al. 1979) and a generation
time of 28 years (Fenner 2005). The human divergence data
are consistent with our theoretical model with population
size 200–400. These estimates for Ne are an order of mag-
nitude smaller than previous estimates of human effective
population size. This is to be expected, however, because
our model assumes that all sites are unlinked, thus depress-
ing the fitted Ne (see Materials and Methods).

As an additional application of our model, we are able
to calculate bias in Ka/Ks, the ratio of nonsynonymous mu-
tations per site to synonymous mutations per site, an impor-
tant quantity for detecting and measuring the direction and
intensity of selection. Using simulations as well as a deter-
ministic model, Rocha et al. (2006) calculated short-term
trajectories for the reciprocal of this value. Their results
show that Ks/Ka increases over time, prompting the au-
thors to issue caution over using Ka/Ks to compare closely
related populations.

Because an initial population of clonal individuals
is assumed, polymorphism present at the time of popu-
lation divergence is not treated in the model of Rocha
et al. (2006). Figure 7A shows the effect of including such
polymorphism in the model. We predict that Ka/Ks within
a population (t = 0) will be elevated with respect to its
asymptotic value. This initial elevation, however, is less
pronounced when ancestral polymorphism is included in
the model. From the initial elevation, the ratio demon-
strates a slow decay to the asymptotic value. In our model,
the Ka/Ks ratio decays more slowly than in a model where
ancestral polymorphism is neglected.

Figure 7B demonstrates that the transient dynamics
of the ratio are an example of a slightly deleterious ef-
fect. By increasing the proportion of slightly deleterious
alleles, the initial elevation in Ka/Ks jumps from approxi-
mately 20% in the case when λ = 0.23 to an approximately
40% increase when λ = 0.5. Finally, Figure 7C shows that

FIG. 5.—Our model provides a reasonable fit to the data of Genner et al. (2007). Genner et al. (2007) obtained estimates of rates of molecular
evolution from divergence dates estimated two ways: fossil calibrations (A) and Gondwana land fragmentation estimates (B). We used the youngest
divergence data older than 1 Myr as an estimate of the long-term rate without saturation and fit one parameter (Ne) to our model.
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FIG. 6.—Human mtDNA divergence rate estimates from Henn
et al. (2009) are consistent with our molecular clock model. Henn et al.
(2009) obtained estimates of divergence rates from mtDNA coding re-
gions using archaeological dating. Using a long-term rate of 0.02 substi-
tutions/site/Myr and generation time 28 years, we fit a single parameter
(Ne) to our model.

although the initial maximum elevation is approximately
20% in both cases, by increasing N from 1,000 to 5,000,
we see a significant increase in the convergence time to the
asymptotic ratio. By plotting the ratio as a multiple of the
asymptotic rate and scaling generations by multiples of N
as in figure 4, it turns out that these graphs nearly super-
impose (not shown). Hence, the elevation effect is again
dependent on effective population size in the same manner
as the molecular clock.

Accounting for the fact that the genealogical pro-
cess of the Moran model is the same as that of Wright-
Fisher but run twice as fast (Durrett 2008), our asymptotic
prediction of Ka/Ks agrees with the between-population
results of Kryazhimskiy and Plotkin (2008) obtained
using a haploid single-site Wright–Fisher model (fig. 8).
Kryazhimskiy and Plotkin (2008) found that for a given
level of selection, Ka/Ks ratios within a single population
were closer to one than the corresponding ratios between
populations. We also predict that this will be the case.

Although our models are qualitatively similar, they are
quantitatively different. In our infinite sites Moran model
formulation, the frequency of a mutant allele is distributed
{τ1 j/τ1}. Assuming a diffusion model subject to forward
and back mutation and selection as in Kryazhimskiy and
Plotkin (2008) leads to a quantitatively different stationary
distribution of mutant allele frequency. This turns out to
have only a very minor quantitative effect, however, and
our results for Ka/Ks ratios within a population as a func-
tion of sN (fig. 8) are very similar to the results obtained in
figure 3 of Kryazhimskiy and Plotkin (2008).

Figure 8 demonstrates that for a set of sites with the
same selection coefficient s, Ka/Ks within a population
may be significantly different than Ka/Ks between popu-
lations. When looking across a set of sites whose fitness
effects follow a probability distribution, however, this dis-
crepancy may not be so large. For example, for a given
negative value of sN, the within-population Ka/Ks may be
elevated as much as 3.5-fold (sN = −3, fig. 8) or more.
However, as in figure 7B, the Ka/Ks ratio will only be el-
evated as much as 20–40% when a reasonable distribution
of fitness effects is assumed. Furthermore, although the ra-
tio decays less rapidly in our model than in models where
ancestral polymorhpism is neglected, the absolute magni-
tude of the difference between the ratio at a given diver-
gence time and its asymptotic value is quite small (e.g.,
much smaller than than molecular clock). This means that
although Ka/Ks may not be suitable as a test of within-
population selection, the ratio performs reasonably well
across a set of sites between two populations as long as
the populations have had a nominal time to diverge.

Discussion

Our results suggest that the rate elevation of molecular
divergence in the short term can be explained by segregat-
ing polymorphisms, both neutral and slightly deleterious,
present at the time of the population divergence. The per-
sistence of newly arising slightly deleterious mutations is
not needed to describe the phenomenon. This indicates a
sufficient theoretical explanation for the elevated rates of
molecular evolution observed in a number of recent stud-
ies (Ho et al. 2005; Genner et al. 2007; Waters et al. 2007;
Burridge et al. 2008).

FIG. 7.—The short-term trajectory of the ratio Ka/Ks depends on (A) whether or not standing polymorphism is taken into account, (B) the
proportion of nearly neutral alleles, and (C) the population size N. The ratio Ka/Ks undergoes a gradual decrease toward its asymptotic value from
its initial elevation, as described in Rocha et al. (2006). However, if the effects of standing ancestral population are incorporated in the model, the
trajectory changes shape and the magnitude of the initial elevation is significantly smaller. In addition, the magnitude of the rate elevation is larger if
the distribution of fitness effects contains more nearly neutral alleles. Finally, increasing population size N, increases the duration of significant ratio
elevation. This extent of the elevation depends on generations scaled in multiple of effective population size as with the molecular clock.
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FIG. 8.—The Ka/Ks ratio within a population is closer to one than
the asymptotic Ka/Ks ratios between populations. The figure here is cal-
culated with N =1,000, but the result only depends on sN. The within-
population result shown here is in near agreement with the result in figure
3 of Kryazhimskiy and Plotkin (2008).

A previous model by Woodhams (2006) calculated
evolutionary rates as a function of time. That study, which
calculates the rate curves assuming that the distribution of
fitness effects of new deleterious mutations is exponential,
concludes that the persistence of nearly neutral mutations
is not sufficient to explain the phenomenon of elevated
rates. However, polymorphism present at the time of pop-
ulation divergence was not considered, meaning that in the
short term, Woodhams’ calculated rates of divergence are
considerably less than those calculated here. By including
the term fpoly, we are able to explain the rate elevation as
almost entirely due to ancestral polymporphism.

Our approach is equivalent to the classical coalescent
theory formulation that states that the divergence time for
an allele is given by adding the divergence time of the two
populations to the coalescent time of the allele in the ances-
tral population. Our forward time model is able to deal with
selection in a relatively easy and straightforward fashion.
Using Markov chain theory, we are able to estimate both
the number of segregating sites at the time of population
divergence and the frequency of the polymorphism at each
of these sites. A valiant attempt at incorporating selection
into the coalescent theory framework has been made using
the ancestral selection graph (Krone and Neuhauser 1997),
but is it complicated, and it would be extremely difficult
to incorporate these results into a meaningful discussion of
the problem outlined in our paper.

These results have implications for both users and
developers of software used to calculate divergence date
estimates. Current methods for estimating the divergence
time of sequences ignore the dependency of the evolution-
ary rate on the age of the branch. We have shown that the
theoretical rate on a given branch will, indeed, depend on
its age. Because sequence divergence is used as a proxy
for branch length, divergence dates estimated without con-
sidering the phenomenon of short-term elevated rates will

be more ancient than the actual date of divergence. Under
our simplifying assumptions, figure 4 provides a theoretical
time line for the persistence and magnitude of this phe-
nomenon. This can be used as a tool to correct for short-
term elevation as well as to provide a guideline as to when
the phenomenon may be ignored. For example, the ob-
served divergence rate will decay to 2-fold elevation in
approximately Ne generations. For hominid mitochondria,
we found the effective population size for this process
of approximately 300. Assuming a generation time of 28
years (Fenner 2005), this corresponds to 8,400 years. For
bacteria such as Escherichia coli whose effective popula-
tion size may be much higher, elevated rates may persist
for an enormous number of generations.

Fitting our model to the African cichlid fish data of
Genner et al. (2007) and human mtDNA data of Henn et al.
(2009) indicates that our model is consistent with the shape
and magnitude of the observed rate elevation. We acknowl-
edge that we have not provided statistical evidence as to
the goodness of fit of our model. Such statistical evidence
would provide false precision. Each plotted data point has a
2D error structure, that is, there is error in both the calibra-
tion point and the estimate of divergence. In addition, we
are fitting a nonlinear function, which does not have a sim-
ple closed-form analytical solution. Both these considera-
tions make a rigorous statistical fit impractical. In light of
these considerations, we believe that quantitative analysis
of our fits is warranted. Although we have assumed no link-
age between sites, the fits suggest that our model is consis-
tent with the elevated rates observed on short timescales.
Although the shape of our model curve is supported by the
data, the estimated value of Ne is dependent on our linkage
assumptions.

Bringing our model to bear on Ka/Ks, we have shown
that the ratio may be inflated by as much as 40% in the
short term, and this elevation may persist for quite some
time. Percentage elevation in Ka/Ks scales with effective
population size in the same way as the molecular clock,
and the maximum elevation occurs within a single popu-
lation. The magnitude of Ka/Ks elevation within a popula-
tion is in near agreement with the results of Kryazhimskiy
and Plotkin (2008). Although, the initial elevation is not as
pronounced when standing polymorphism is neglected as
in Rocha et al. (2006), the decay of Ka/Ks to its asymp-
totic value is slower than was described in that work. Still,
because the absolute difference between a Ka/Ks ratio at a
given time and its asymptotic rate are quite small, Ka/Ks
performs reasonably well between populations whose di-
vergence is separated by a nominal length of time.
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Appendix

Suppose Xt is a discrete random variable equal to the
number of derived alleles in a population of N individuals
at time t, where X0 = 1. At times 0,1,2, . . . Xt takes its val-
ues in state space 0,1,2, . . . ,N. The transition matrix T for
the Markov chain is as defined in the Materials and Meth-
ods. We define the following notation. Let µx = T (x,x−1)
and λx = T (x,x+ 1). This means that µx is the proba-
bility that in one time step, the number of derived alle-
les decreases by one, and λx is the probability that this
quantity increases by one. Because the Moran model al-
lows for only one individual to reproduce and one to die
in each time step, it follows that T (x,x) = 1−λx− µx for
x = 1, . . . ,N− 1. T (x,x) = 1 for x = 0,N because a muta-
tion is lost once it goes extinct and is fixed in the population
once Xt = N.

For the Moran model with selection coefficient s, in
order for the number of derived alleles to increase by one
and individual with the derived allele must be chosen to
reproduce with probability (1+s)x

(N+sx) and an individual with
the ancestral allele must be chosen to die with probability
(N−x)

N . Hence, λx =
(N−x)(1+s)x

N(N+sx) . Similarly, for the number
of derived alleles to decrease by one, an individual with
the derived allele must be chosen to die and an individual
with the ancestral allele must be chosen to reproduce. This
happens with probability µx =

x(N−x)
N(N+sx) .

Now define psamp to be the vector
[
0, 1

N ,
2
N , . . . ,

N−1
N ,1

]
. Then, ith entry of psamp gives the probability that

a randomly chosen individual in a population will have the
derived allele given that i individuals in the population have
the derived allele. Finally, let e1 be the N+ 1 row vector
with a 1 in the first entry and zeros everywhere else.

This allows us to write equations (3) and (5) in a form
convenient for computing.

fpoly = 2m
N−1

∑
k=1

(
1−
[

N

∑
i=1

TtN(k, j)
N− i

N

])

×
[

N

∑
j=1

TtN(k, j)
j

N

]
τ1k, (7)

fnew = 2m
tN

∑
tm=1

e1Ttm psamp. (8)

Again considering the Moran model with selection
coefficient s, define πi(s) to be the probability that Xt = N
before Xt = 0 given that X0 = i. If ρ0 = 1, ρk =

µ1µ2µ3...µk
λ1λ2...λk

,
then

πi(s) =
i−1

∑
k=0

ρk

/
N−1

∑
k=0

ρk

(eq. 2.158, Ewens 2004). When i = 1, this can be further
simplified to

π1(s) =
1−ρ1

1− (1+ s)−N .

The mean time that Xs = j before absorption at either
Xt = 0 or Xt = N, τ1 j, is given by

τ1 j =
π1 ∑N−1

k= j ρk

ρ jλ j

(eq. 2.159, Ewens 2004).
This can be further simplified to arrive at

τ1 j = =
N(N+ s j)ρ1(1−ρN− j)

(N− j) j(1− (1+ s)−N)
.

Finally, the mean time spent by X in all states before
absorption given that X0 = 1 is given by

τ1 =
N−1

∑
j=1

τ1 j

(eq. 2.144, Ewens 2004).
Using “Matlab” allows us to calculate quantities in

our model such as TtNr for large t and N by taking suc-
cessive right multiplications of r by T . This exploits the
tridiagonality of the transition matrix T .
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