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Abstract
Imputation of genotypes for markers untyped in a study sample has become a standard approach to
increase genome coverage in genome-wide association studies at practically zero cost. Most
methods for imputing missing genotypes extend previously described algorithms for inferring
haplotype phase. These algorithms generally fall into three classes based on the underlying model
for estimating the conditional distribution of haplotype frequencies: a cluster-based model, a
multinomial model, or a population genetics-based model. We compared BEAGLE, PLINK, and
MACH, representing the three classes of models, respectively, with specific attention to measures
of imputation success and selection of the reference panel for an admixed study sample of African
Americans. Based on analysis of chromosome 22 and after calibration to a fixed level of 90%
concordance between experimentally determined and imputed genotypes, MACH yielded the
largest absolute number of successfully imputed markers and the largest gain in coverage of the
variation captured by HapMap reference panels. Following the common practice of performing
imputation once, the Yoruba in Ibadan, Nigeria (YRI) reference panel outperformed other
HapMap reference panels, including 1) African ancestry from Southwest USA (ASW) data, 2) an
unweighted combination of the Northern and Western Europe (CEU) and YRI data into a single
reference panel, and 3) a combination of the CEU and YRI data into a single reference panel with
weights matching estimates of admixture proportions. For our admixed study sample, the optimal
strategy involved imputing twice with the HapMap CEU and YRI reference panels separately and
then merging the data sets.
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INTRODUCTION
Current genome-wide association studies include a dense set (>100,000) of experimentally
genotyped markers across the genome in thousands of individuals using commercially
available chips. One way to fill in the gaps between typed markers is to use genotype or
haplotype data from an established reference panel to impute genotypes for markers untyped
in the study sample. The HapMap project provides one publicly available source of
reference panels [The International HapMap Consortium, 2003; The International HapMap
Consortium, 2007]. Phase II of the HapMap project consists of genotypes for >3.1 million
single nucleotide polymorphisms (SNPs) assayed for 30 trios of Utah residents with ancestry
from Northern and Western Europe (CEU), 45 unrelated Han Chinese in Beijing, China
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(CHB), 45 unrelated Japanese in Tokyo, Japan (JPT), and 30 trios from the Yoruba ethnic
group in Ibadan, Nigeria (YRI), yielding a total of 420 founder chromosomes [The
International HapMap Consortium, 2003; The International HapMap Consortium, 2007].

In comparison, the HapMap Phase III project consists of genotypes for ~1.5 million SNPs
assayed for samples of individuals from seven additional populations
(http://www.hapmap.org). The seven new reference panels include: African ancestry in
Southwest USA (ASW), Chinese in metropolitan Denver, Colorado (CHD), Gujarati Indians
in Houston, Texas (GIH), Luhya in Webuye, Kenya (LWK), Mexican ancestry in Los
Angeles, California (MEX), Maasai in Kinyawa, Kenya (MKK), and Toscans in Italy (TSI).
These new panels capture more global variation and provide more choices for a single best
reference panel with potentially increased coverage. However, SNP density is less for these
seven panels than for the original four reference panels, thereby providing less coverage.
Given the eleven HapMap reference panels, an open and important question is which choice
of reference panel(s) most increases genomic coverage for a given study sample.

If a study sample consists of individuals with well-defined ancestry similar to one of the
reference panels, then it is appropriate to use that one reference panel (the “single best”
approach). However, if the study sample consists of individuals with ancestry partially
similar to more than one of the reference panels, as may occur by admixture, then the choice
of reference panel(s) is not as straightforward. Suggested methods for reference panel
selection for this latter situation include the “cosmopolitan” and the “weighted mixture”
approaches. The “cosmopolitan” approach combines all available reference data (e.g.,
HapMap data) into a single reference panel [de Bakker et al., 2006]. The “weighted mixture”
approach involves the generation of mixtures of the available reference data. Weights can be
determined empirically in order to maximize coverage [Pemberton et al., 2008] or
imputation accuracy [Huang et al., 2009]. Alternatively, weights can be specified to match
estimates of admixture proportions, which may outperform the cosmopolitan approach
because greater weight is given to the HapMap reference panels with more similar ancestry
to the study sample [Egyud et al., 2009].

Most current methods for imputing missing genotypes are extensions of previously
described algorithms for inferring haplotype phase and have been reviewed in detail
[Browning, 2008]. We classified several existing programs on the basis of the underlying
model for estimating the conditional distribution of haplotype frequencies (Table I). One
class is based on localized clusters of haplotypes and includes BEAGLE [Browning and
Browning, 2007] and fastPHASE [Scheet and Stephens, 2006]. Both BEAGLE and
fastPHASE use a hidden Markov model to cluster haplotypes but BEAGLE is more
parsimonious by allowing fewer possible transitions and emissions. fastPHASE fixes the
number of clusters in the model whereas BEAGLE dynamically varies the number of
clusters at each locus. A second class is based on a multinomial model of haplotype
frequencies and includes PLINK [Purcell et al., 2007] and SNPMStat [Lin et al., 2008].
Methods based on the multinomial model estimate haplotype frequencies using an
expectation-maximization algorithm but can only consider a window of a few markers at a
time because haplotype frequencies become too low for accurate estimation otherwise. A
third class is explicitly based on population genetics and includes IMPUTE [Marchini et al.,
2007] and MACH [Li et al., 2006; Li et al., 2007]. Whereas cluster models are informally
based on population genetic principles, IMPUTE is formally based on population genetic
parameters in the coalescent framework [Marchini et al., 2007]. IMPUTE conditions
imputation on user-supplied reference haplotypes (i.e., IMPUTE does not infer haplotype
phase) and a recombination map. MACH can accept either reference genotypes or reference
haplotypes and can either continuously update the recombination map and error rates based
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on the reference panel and study sample together or condition imputation based on
maximum-likelihood estimates generated from only the reference panel.

A recent simulation study focused on imputation accuracy for BEAGLE, fastPHASE,
IMPUTE, MACH, and PLINK using 250 kb exemplary regions and the HapMap phase II
CEU reference panel [Pei et al., 2008]. Another recent study examined both imputation
accuracy and efficacy for BEAGLE, IMPUTE, MACH, and PLINK for genome-wide
imputation on a sample of German individuals, also using the HapMap phase II CEU
reference panel [Nothnagel et al., 2009]. Two groups have investigated imputation for an
admixed study sample; one study was based solely on IMPUTE [Zhao et al., 2008] and the
other study was based solely on fastPHASE [Pemberton et al., 2008]. Here, we performed a
two-way comparison of the major classes of imputation algorithms and the selection of
reference panel(s) specifically for an admixed (African American) study sample.

We had three main objectives in this study: 1) we investigated how well different programs
for imputation work for an admixed study sample consisting of African Americans; 2) we
investigated how to choose an appropriate reference panel for an admixed study sample; and
3) because each program reports different measures of imputation success, we investigated
measures of imputation success and the calibration of these measures across the different
programs in order to draw meaningful comparisons.

MATERIALS AND METHODS
STUDY SAMPLE

The Howard University Family Study (HUFS) is a study of African American families and
unrelated individuals from the Washington, D.C. metropolitan area [Adeyemo et al., 2009].
In the first phase of recruitment, the HUFS enrolled and examine a randomly ascertained
cohort of 350 African American families with members in multiple generations. Families
were not ascertained based on any phenotype. In the second phase of recruitment, additional
unrelated individuals from the same geographic area were enrolled to facilitate nested case-
control study designs. The enrollment procedures (questionnaires, clinical measurements,
and lab assays) for unrelated individuals were identical to those for the families. The total
number of recruited individuals was 2,028, of which 1,976 remained after data cleaning.
Ethical approval was obtained from the Howard University Institutional Review Board and
written informed consent was obtained from each participant.

Genome-wide genotyping was performed using the Affymetrix Genome-Wide Human SNP
Array 6.0 and genotypes calls were made using the Birdseed algorithm, version 2 [Korn et
al., 2008]. We had four genotype inclusion criteria: the individual sample success rate had to
be ≥90% (no samples excluded), the SNP success rate had to be ≥95% (41,885 SNPs
excluded), the minor allele frequency had to be ≥0.01 (19,154 SNPs excluded), and the p-
value for the test of Hardy-Weinberg equilibrium had to be ≥1.0×10-3 (6,317 SNPs
excluded). We retained 10,788 SNPs from chromosome 22 (Fig. 1) as the analysis set for
this investigation.

REFERENCE PANELS
We retrieved the HapMap release 23a CEU (n = 60 founders) and YRI (n = 60 founders)
phase II genotype data for chromosome 22 from http://www.hapmap.org. Quality control
filters for inclusion were a minor allele frequency of ≥1%, a genotyping success rate ≥80%,
a Hardy-Weinberg equilibrium test p-value ≥1.0×10-3, ≤1 Mendelian inheritance error, and
≤1 duplicate discrepancy. These quality control filters were applied to the two panels
separately. After data cleaning, the phase II CEU reference panel consisted of 30,245 SNPs,
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the phase II YRI panel consisted of 33,499 SNPs, and the combined phase II CEU+YRI
reference panel consisted of 40,281 SNPs (Fig. 1).

We also retrieved the HapMap release 2 ASW (n = 49 founders), CEU (n = 112 founders),
and YRI (n = 113 founders) phase III genotype data for chromosome 22. There were 12,941
SNPs that passed quality control in all three phase III reference panels.

SOFTWARE
BEAGLE (version 3.0.1)—BEAGLE uses a localized haplotype clustering-based
algorithm [Browning and Browning, 2007]. First, it clusters haplotypes at each marker and
defines a hidden Markov model to find the most likely haplotype pairs based on the
individual's known genotypes. Then, the most likely genotype at untyped loci can be
imputed from final haplotype pairs. Due to extensive memory usage, we cut the study
sample into three sets of 500 individuals and one set of 476 individuals and we invoked the
low memory command line option. By default, the posterior probabilities for the three
genotypes at each SNP for each individual are printed in an output file. Software is available
at http://www.stat.auckland.ac.nz/~browning/beagle/beagle.html.

MACH (version 1.0.16)—MACH implements a Markov chain Monte Carlo-based
algorithm to infer possible pairs of haplotypes for each individual's genotypes (including
untyped genotypes) [Li et al., 2006; Li et al., 2007]. Following the authors’ recommendation
in the provided documentation, we used a two-stage procedure. First, we inferred haplotype
phase for the reference panel using 50 rounds of the Markov chain sampler and allowing at
most 200 haplotypes when updating the phase for each individual. Second, we conditioned
imputation on the first-stage maximum-likelihood estimates of the crossover map, which
specifies the likely locations of haplotype transitions, and the error rate map, which specifies
unusual markers based on a combination of discrepancies between the reference panel and
study sample data, genotyping error, and recurrent mutation. MACH produces an output file
containing the posterior probabilities for two of the three genotypes at each SNP for each
individual. Software is available at
http://www.sph.umich.edu/csg/abecasis/MACH/download/.

PLINK (version 1.03)—Although the exact algorithm is unpublished, according to the
documentation, PLINK appears to directly estimate haplotype frequencies using an
expectation-maximization algorithm based on a multinomial model [Purcell et al., 2007].
We used default parameter settings as follows: selecting at most 5 proxy SNPs, searching up
to 15 SNPs around the index SNP, searching within 250 kb around the index SNP, genotype
missingness of ≤0.2 at proxy SNPs, and a minor allele frequency of ≥0.005 at proxy SNPs.
PLINK produces an output file containing the posterior probabilities for the three genotypes
at each SNP for each individual. Software is available at
http://pngu.mgh.harvard.edu/purcell/plink/.

IMPUTATION ACCURACY
Each program returns the full probability distribution of the imputed genotypes at each SNP
for each individual. We generated discrete imputed genotypes by accepting a call if the
posterior probability for a genotype reached a pre-specified threshold or recorded the
genotype as missing otherwise. For the phase II data, of the 10,788 SNPs experimentally
genotyped for chromosome 22, 10,224 SNPs were present in the combined reference panel
(Fig. 1). We masked the experimentally determined genotypes for a randomly selected 2%
of these SNPs in the study sample, yielding ~200 masked SNPs for each of the three
reference panels (phase II CEU, phase II YRI, and phase II CEU+YRI). Similarly, when
using the phase III reference data, we masked 200 of the SNPs in the study sample. Due to
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the fact that both experimentally determined and imputed genotypes are called with some
degree of error, we cannot know which call (if either) is correct, so we report concordance
rather than accuracy. Concordance was defined as the proportion of genotype calls for which
both imputed alleles matched the experimentally determined genotype call for a SNP,
averaged over all masked SNPs. The genotype error rate was defined as one minus the
concordance.

IMPUTATION YIELD
We first calibrated each of the combinations of program and reference panel by determining
the threshold of posterior probability required to achieve a concordance of 90% between
imputed and experimentally determined genotypes for typed markers. We then filtered each
imputed SNP based on a χ2 test of Hardy-Weinberg equilibrium at a significance level of
0.05. The purpose of this test was to detect genotype-specific imputation failure, and we
were intentionally conservative about calling imputation successful because an imputed
genotyping error rate of 10% is much higher than the estimated experimental genotyping
error rate of 0.5% [The International HapMap Consortium 2003; The International HapMap
Consortium, 2007]. We anticipated some level of Hardy-Weinberg disequilibrium due to
admixture in the study sample. However, simulation studies have shown that the power of
the Hardy-Weinberg test to detect disequilibrium due to admixture is low unless the
difference in allele frequencies is large (>0.4) and the minor admixture proportion is high
(>0.2) [Deng et al., 2001]. Similarly, simulation studies have shown that the power of the
Hardy-Weinberg test to detect disequilibrium due to genotyping errors at typed markers is
also low given the estimated error rates for experimental genotyping [Leal, 2005; Cox and
Kraft, 2006]. Nevertheless, because the Hardy-Weinberg test has moderate power to detect
disequilibrium at an error rate of 10% at untyped markers, we posit that Hardy-Weinberg
disequilibrium at untyped markers is most likely due to imputation error.

Imputation efficacy has been defined as the proportion of imputable SNPs for which
imputation was deemed successful [Nothnagel et al., 2009]. In keeping with this definition,
we defined imputation yield as the absolute number of reference SNPs (i.e., SNPs in the
reference panel but not in the study sample) for which imputation was deemed successful.
Using the software Haploview [Barrett et al., 2005], available at
http://www.broad.mit.edu/mpg/haploview/, we estimated coverage of HapMap variation
[Barrett and Cardon, 2006] for a given reference panel based on tag sets consisting of the
HUFS study sample with and without successfully imputed SNPs. Briefly, coverage was
measured by pairwise correlation between a tag SNP and a potentially captured SNP. A
potentially captured SNP was considered covered if r2 ≥ 0.8 between itself and any tag SNP.
Coverage was reported as the proportion of the set of potentially captured SNPS covered by
the set of tag SNPs.

POPULATION STRUCTURE ANALYSIS
Individual admixture proportions were estimated using a panel of 2,076 ancestry-
informative SNPs assuming two clusters and uncorrelated allele frequencies with a 10,000
step burn-in and a 100,000 step chain using STRUCTURE (version 2.2) [Falush et al.,
2003]. Ancestry-informative SNPs had the following characteristics 1) a minor allele
frequency ≥ 0.01 in both the HapMap phase II CEU and YRI samples, 2) a difference in
allele frequencies between the HapMap CEU and YRI samples ≥ 0.6, and 3) an r2 ≤ 0.4
with other SNPs within 1 Mb.
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RESULTS
To make fair comparisons about imputation accuracy across BEAGLE, MACH, and PLINK,
we needed a summary statistic that we could apply consistently to each program's output.
We chose to measure imputation accuracy in terms of genotype concordance, which we
defined as the proportion of imputed and experimentally determined genotypes that
matched, based on a discrete imputed call being the genotype with a posterior probability
exceeding a user-defined threshold. To measure imputation yield, we first calibrated the
threshold of posterior probability for each combination of program and reference panel in
order to achieve concordance of 0.90, equivalent to an error rate of 10% (the “fixed error
rate” approach). Based on this calibration, we assessed the imputation yield and coverage
after filtering the imputation results based on a test of Hardy-Weinberg equilibrium to screen
for genotype-specific imputation failure. This procedure is analogous to estimating power
after controlling the false positive error rate in classical hypothesis testing.

Within the three compared reference panels (i.e., CEU, YRI and unweighted CEU+YRI),
imputation yield was highest for BEAGLE using the unweighted phase II CEU+YRI
reference panel (Table II). In contrast, imputation yield was highest for MACH using the
phase II YRI reference panel. Notably, imputation yield was higher for MACH than for
BEAGLE irrespective of the tested reference panel. PLINK failed to achieve an error rate of
10% for all tested reference panels and so yielded no successfully imputed SNPs. Despite
the remarkable success of the YRI as a reference panel for this African American sample, it
is important to point out that it cannot serve as a reference for those SNPs (n = 6,782)
present in the phase II CEU reference panel but not in the phase II YRI reference panel (Fig.
1). Interestingly, when the phase II CEU reference panel was used as the sole reference
panel, the lowest error rate that MACH could achieve for this specific set of SNPs was
22.3%; this observation suggests that high quality imputation may not be achievable for
SNPs segregating only in an ancestral population making a minor contribution to an
admixed population.

We also investigated the weighted mixture approach to reference panel selection using just
MACH based on its superior performance from the above analyses. Using STRUCTURE,
the HUFS sample showed admixture proportions of 78–81% YRI and 19–22% CEU. Based
on these estimates, we generated 30 reference panels, each consisting of 48 randomly chosen
phase II YRI founders and 12 randomly chosen phase II CEU founders. On average, the
weighted mixture approach yielded slightly fewer SNPs than the unweighted mixture
approach (Table II). This result indicated that matching the reference panel to estimates of
admixture proportions did not optimize imputation yield.

We further investigated the optimal strategy for imputing missing genotypes for an admixed
sample such as the HUFS. Of the 3,121 successfully imputed SNPs using the phase II CEU
reference panel, 394 were present only in the phase II CEU reference panel and 2,727 were
present in both phase II CEU and YRI reference panels. Similarly, of the 13,927
successfully imputed SNPs using the phase II YRI reference panel, 3,688 were present only
in the phase II YRI reference panel and 10,239 were present in both phase II CEU and YRI
reference panels. Taken together, we were able to impute 394 SNPs present only in the
phase II CEU reference panel, 3,688 SNPs present only in the phase II YRI reference panel,
and 10,760 SNPs present in both phase II CEU and YRI reference panels, for a total yield of
14,842 SNPs. This result clearly demonstrates that, at least for our admixed sample of
African Americans, the optimal strategy in terms of maximizing imputation yield is to
impute missing genotypes separately from the ancestral reference panels and then combine
the results.
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As would be expected a priori, there were some inconsistencies in the genotypes of the
10,760 SNPs that were successfully imputed using the separate ancestral reference panels
(CEU and YRI). Obviously, this issue needs resolution before generated datasets can be
merged. The simplest protocol to address this situation is to preferentially accept the
imputed genotypes resulting from the reference panel giving the highest concordance, which
for our data would lead to a preference of calls based on the phase II YRI reference panel
over calls based on the phase II CEU reference panel.

The imputation yield, defined as the nominal number of SNPs imputed successfully, may
represent an overestimation of gain because imputation requires high levels of linkage
disequilibrium to perform well. To measure the effective gain through imputation
accounting for linkage disequilibrium, we estimated the increase in coverage of HapMap
variation on chromosome 22 from using the set of tag SNPs on the chip to using the
combined set of tag SNPs on the chip and successfully imputed SNPs (Table III). The set of
tag SNPs on the chip achieved chromosome coverage of 75% for the phase II CEU reference
panel but only 55% for the phase II YRI reference panel. Imputation using BEAGLE,
despite yielding several hundred to a few thousand SNPs, increased coverage by only 1–2%
regardless of the phase II reference panel. Similarly, imputation using MACH increased
coverage of phase II CEU variation by only 1% using the phase II CEU reference panel. In
stark contrast, imputation using MACH increased coverage of phase II YRI variation by
21% (from 55% to 76%) using only the phase II YRI reference panel; coverage was
increased by 13% (from 62% to 75%) for the combined phase II CEU+YRI variation based
on the unweighted phase II CEU+YRI reference panel. The merged set of separately
imputed SNPs achieved the best coverage (78%) of the 40,281 phase II CEU+YRI reference
SNPs.

Also, we compared the yield and associated error rate obtained from two common
approaches (“fixed error rate” and the “best call”) for imputation genotype calling. In the
fixed error rate approach, we retained discrete genotype calls after ascertaining the threshold
of posterior probability required to achieve pre-specified concordance between imputed and
genotyped SNPs. In the “best call” approach, the discrete genotype call corresponded to the
genotype with the highest posterior probability, regardless of concordance or the posterior
probability [Huang et al., 2009]. The result of our analyses showed that the error rates using
the best call approach were uniformly greater than the fixed error rate of 0.10 (Table IV).
The fixed error rate approach favored a single best reference panel (Table II) whereas the
best call approach favored the unweighted mixture reference panel at the cost of a higher
error rate (Table IV).

Finally, we investigated the utility of an African American reference panel, the HapMap
phase III ASW data. The HapMap phase III ASW, phase III CEU, and phase III YRI
reference panels contain different numbers of SNPs. To enable a fair comparison among
reference panels controlling for SNP density, we first extracted a common set of 12,941
reference SNPs shared across all three panels. Using this subset of shared SNPs, we
determined imputation yield using the fixed error rate approach. The phase III YRI reference
panel slightly outperformed the phase III ASW reference panel (Table V). We also
estimated the number of SNPs in approximate linkage equilibrium by pruning based on
pairwise correlation. This analysis revealed that the number of SNPs in approximate linkage
equilibrium was much higher in the phase III YRI reference panel than in the phase III ASW
reference panel, but that controlling for an equal number of founders in both reference
panels eliminated most of this difference (Table VI). The results imply that, on average, the
levels of linkage disequilibrium (and consequently, the average lengths of haplotype blocks)
are similar in the phase III ASW and YRI reference panels, whereas linkage disequilibrium
is more pronounced in the phase III CEU reference panel. In summary, given equivalent
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sampling with respect to the numbers of founders and SNP density, we anticipate that YRI
and ASW may perform similarly well as reference panels for our African American study
sample.

DISCUSSION
In this study, we investigated factors influencing imputation of missing genotypes for
admixed populations, specifically African Americans. To achieve this goal, we tested three
different programs representing three classes of fundamentally different underlying models
for estimating the conditional distribution of haplotype frequencies. We also explored the
decision of which populations to include in the imputation reference panel. For African
Americans, obvious choices from the HapMap reference panels include the YRI panel
(representing the single most closely related founder population with the highest admixture
proportion), a mixture of the CEU and YRI panels (representing the presumed two ancestral
founder populations), and the ASW panel (representing the single most closely related
population). Although none of the programs explicitly account for admixture, the underlying
models differ substantially in their ability to capture patterns of haplotype diversity created
by admixture. We found that the best imputation results were achieved by running MACH
twice, once with the HapMap CEU reference panel and a second time with the YRI
reference panel, and then combining the results. In this way, we can capitalize on the higher
accuracy of the YRI reference panel while also maintaining access to SNPs present only in
the CEU reference panel. Methods to combine imputation results require more investigation.
For this paper, we merged the separately generated data sets, giving preference to YRI calls
when there were genotypes inconsistencies between the two data sets. Another possibility is
to leverage local admixture estimates on a per-individual basis in order to determine which
reference panel is the more appropriate choice.

Using MACH, we also found that the HapMap phase III YRI reference panel slightly
outperformed the HapMap phase III ASW reference panel. A priori, potential advantages of
the ASW reference panel include more representative allele frequencies (the average
estimated FST is 0.026 between the ASW reference panel and our study sample compared to
0.0295 between the YRI reference panel and our study sample) and linkage disequilibrium
patterns resulting from admixture. On the other hand, potential disadvantages of the ASW
reference panel include 2.6-fold less dense SNP sampling and 2.3-fold fewer founders
compared to the combined phase II+III YRI data. It is indeed possible that ASW may
perform equally to or better than YRI after eliminating these two differences in sampling.

The best use of the full posterior probability distribution for the three genotypes at imputed
SNPs when testing association is a matter of ongoing investigation. Three possibilities are to
call only those genotypes for which the posterior probability exceeds some threshold (the
posterior mode approach), to summarize the distribution by using the posterior mean (the
posterior mean approach), and to use the full distribution in the likelihood framework (the
full data approach) [Marchini et al., 2007; Guan and Stephens, 2008]. The full data approach
makes full use of the uncertainty in the imputed genotype calls whereas the posterior mode
and posterior mean approaches are quicker and work best if there is high certainty about the
imputed genotype calls at a given SNP [Marchini et al., 2007]. Depending on the
downstream application of imputed genotype calls, discrete calls may be useful. We chose to
adopt the posterior mode approach and make discrete imputed genotype calls. By setting a
suitably stringent threshold, we were able to reduce the effect of genotype uncertainty.
Under this approach, it is straightforward to test for Hardy-Weinberg equilibrium as a
quality control filter for genotype-specific imputation failure at untyped SNPs. We reiterate
the important requirement that replication of significant association for imputed SNPs
should always include experimental genotyping in an independent data set [Browning,
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2008]. This requirement addresses the possibility that unaccounted for uncertainty in
imputed calls may inflate the false positive error rate of association testing.

In addition to issues related to multiple reference populations, there are at least two other
major areas for improvement in current imputation algorithms. First, inclusion of phenotype
data during imputation is theoretically required for unbiased results [Allison, 2002].
Ignoring phenotype data (or, more generally, dependent variables) during imputation is
equivalent to assuming that all sampled individuals are no more related than are individuals
randomly sampled from the population [Marchini and Howie, 2008]. However, cases are
more related near a disease locus than this assumption implies [Marchini and Howie, 2008].
Incorporating phenotype data into the imputation process results in smaller bias but larger
variance of effect size estimates [Epstein and Satten, 2003; Lake et al., 2003; Dai et al.,
2006]. The three programs we investigated, BEAGLE, MACH, and PLINK, as well as
IMPUTE and fastPHASE, ignore phenotype data. SNPMStat accounts for the phenotype but
uses a multinomial model and does not account for long-range linkage disequilibrium [Lin et
al., 2008]. Second, BEAGLE and PLINK can infer haplotype phase for certain forms of
family data in addition to unrelated individuals. In contrast, fastPHASE, IMPUTE, MACH,
and SNPMStat currently assume that all individuals are unrelated and thus ignore pedigree
data that could potentially assist haplotype phasing.

Our study sample consisted of admixed individuals for which there are two major ancestral
founder populations present in highly unequal admixture proportions. Conclusions drawn
from this relatively simple admixture scenario may not apply to more complicated scenarios
that include samples with more ancestral founder populations and/or more equally
distributed admixture proportions. With this caveat in mind, our results lead to two
suggestions. First, given the current MACH implementation, we recommend imputation of
missing genotypes separately for each panel for situations requiring multiple reference
panels (e.g., admixed populations). We achieved the highest imputation yield and coverage
by using the HapMap CEU and YRI reference panels separately and then combining the
results, rather than combining multiple reference panels prior to imputation. The optimal
method of combining separate sets of imputed SNPs is a question for more investigation.
The average extent of European ancestry in African American populations ranges from 3.5%
to 22.5% [Parra et al., 1998; Parra et al., 2001], but the admixture proportion in a given
individual may range from as low as 1.2% to 77.3% [Xu et al., 2007] and these estimates
have been shown to vary by chromosome [Lind et al., 2007]. We therefore think that
incorporating local admixture estimates for individuals will be likely necessary for efficient
combination of imputed genotypes. Second, we suggest that MACH may be improved by
expanding the prior model to explicitly allow for multiple reference populations and gene
flow among those populations.
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Fig. 1.
Distribution of 40,845 SNPs across the study sample and HapMap phase II reference panels
for chromosome 22.

Shriner et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shriner et al. Page 13

TA
B

LE
 I

C
ha

ra
ct

er
is

tic
s o

f s
ix

 c
ur

re
nt

ly
 u

se
d 

im
pu

ta
tio

n 
pr

og
ra

m
s

Fe
at

ur
e

IM
PU

T
E

M
A

C
H

fa
st

PH
A

SE
B

E
A

G
L

E
PL

IN
K

SN
PM

St
at

U
se

 p
he

no
ty

pe
no

no
no

no
no

ye
s

R
eq

ui
re

s p
ha

se
d 

da
ta

ye
s

no
no

no
no

no

M
od

el
 u

nd
er

ly
in

g 
co

nd
iti

on
al

 d
is

tri
bu

tio
n 

of
 h

ap
lo

ty
pe

s
po

pu
la

tio
n-

ge
ne

tic
po

pu
la

tio
n-

ge
ne

tic
cl

us
te

r-
ba

se
d

cl
us

te
r-

ba
se

d
m

ul
tin

om
ia

l
m

ul
tin

om
ia

l

Ex
pl

ic
itl

y 
m

od
el

s p
op

ul
at

io
n 

st
ru

ct
ur

e
no

no
ye

s
no

no
no

M
od

el
s a

dm
ix

tu
re

no
no

no
no

no
no

Genet Epidemiol. Author manuscript; available in PMC 2011 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shriner et al. Page 14

TABLE II

Imputation yield using the fixed error rate approach

Software Phase II Reference Panela Threshold b Yield

BEAGLE CEU 0.967 575

YRI 0.824 1,976

Unweighted CEU+YRI 0.832 3,847

MACH CEU 0.999 3,121

YRI 0.688 13,927

Unweighted CEU+YRI 0.946 10,341

Weighted CEU+YRI 0.939 9,025

PLINK CEU NA 0

YRI NA 0

Unweighted CEU+YRI NA 0

Error rates were fixed at 10% for these analyses.

a
The phase II CEU and YRI reference panels both consist of 60 founders. The unweighted CEU+YRI panel consists of all 120 CEU and YRI

founders in a single reference panel. A weighted CEU+YRI reference panel consisted of 48 randomly chosen YRI founders and 12 randomly
chosen CEU founders consistent with observed admixture proportions of ~80% and ~20%, respectively. Results shown for the weighted panel
approach are averages of 30 randomly generated panels.

b
Threshold indicates the minimum posterior probability for imputing discrete genotype calls to achieve concordance between imputed and

observed genotypes of 0.90, equivalent to a fixed 10% error rate. NA indicates that the program could not achieve concordance of 0.90 using the
reference panel.

Genet Epidemiol. Author manuscript; available in PMC 2011 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shriner et al. Page 15

TABLE III

Coverage of HapMap variation for chromosome 22 at the r2 ≥ 0.8 level

Phase II Reference Panel

Tag Set CEU YRI Unweighted CEU+YRI

SNP 6.0 75% 55% 62%

SNP 6.0 + BEAGLE 75% 57% 65%

SNP 6.0 + MACH 76% 76% 75%

SNP 6.0 + PLINK 75% 55% 62%

Coverage was measured by pairwise correlation between a tag SNP and a potentially captured SNP. A potentially captured SNP was considered

covered if r2 ≥ 0.8 between itself and any tag SNP. Coverage was reported as the proportion of the set of potentially captured SNPS covered by the
set of tag SNPs.
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TABLE IV

Imputation accuracy and yield using the best call approach

Phase II Reference Panel Error Rate Yield

CEU 0.411 8,653

YRI 0.183 13,678

Unweighted CEU+YRI 0.254 13,867

Weighted CEU+YRI 0.261 12,803
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TABLE V

Imputation yield using HapMap phase III reference panels

Phase III Reference Panel Threshold Yield

ASW 0.886 2,962

CEU NA 0

YRI 0.872 3,201

Threshold indicates the minimum posterior probability for imputing discrete genotype calls to achieve concordance between imputed and observed
genotypes of 0.90. NA indicates that the program could not achieve concordance of 0.90 using the reference panel.

Genet Epidemiol. Author manuscript; available in PMC 2011 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shriner et al. Page 18

TABLE VI

Linkage disequilibrium-based SNP pruning for HapMap phase III reference panels

Phase III Reference Panel Founders Retained SNPs

ASW 49 1,947

CEU 112 1,432

CEU 49 1,138.3

YRI 113 2,886

YRI 49 2,038.2

For the CEU and YRI reference panels, 49 founders were randomly sampled from the available founders. Shown are averages from 30 randomly
generated data sets.

The number of retained SNPs was determined using the --indep-pairwise function in PLINK, with a window size of 100 SNPs, a step of 25 SNPs,

and a maximum r2 threshold of 0.2.
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