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Abstract

In this paper, we introduce a novel graph polynomial called the ‘information polynomial’ of a graph. This graph polynomial
can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we
additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic
polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors
do have a high discrimination power.
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Introduction

The study of specific structural properties of graphs by using

algebraic polynomial representations has been a well-known and

fruitful concept for several decades [1–6]. In particular, graph

polynomials have been either used for describing combinatorial

graph invariants or to characterize chemical structures by using

the coefficients or the zeros of a graph polynomial [4,7,8]. As

outlined by Gutman [4] and Ivanciuc et al. [9], various topics in

mathematical chemistry like Hückel-molecular orbital theory, the

theory of aromaticity, and the development of topological indices

(e.g., Hosoya index etc.) rely on graph polynomials. Indeed, a

very important graph polynomial is the characteristic polynomial

of a graph which has been intensely studied by Cvetkovic [10]

when exploring structural properties of a graph related to its

eigenvalues. Several methods to compute the characteristic

polynomial explicitly were also developed [9]. Afterwards, various

other graph polynomials [8,9,11] such as the Laplacian

polynomial, Matching polynomial, Mühlheim polynomial, Dis-

tance polynomial and the Wiener Polynomial etc. have been

developed for investigating multifaceted aspects of chemical

structures.

In this paper, we use the zeros of a novel graph polynomial to

derive molecular descriptors. Before outlining the contribution of

our paper, we briefly sketch some approaches surveyed by

Randić et al. [12] who gave a thorough overview on existing

eigenvalue-based descriptors and various applications thereof. An

early starting point in this area was initiated by Lovász and

Pelikán [13]: They employed the leading positive eigenvalue of

the characteristic polynomial as a measure for detecting

branching of trees. More advanced concepts to quantify

branching of chemical graphs and DNA structures relying on

graph-eigenvalues can be also found in Randić’s survey [12].

Particularly, the largest and second largest eigenvalues of other

graph-theoretical matrices [12], the sum of their positive

eigenvalues, the multiplicity of the zero eigenvalue and other

spectral indices were also studied [12,14] to check their ability for

serving as molecular descriptors. Importantly, numerical results

were reported [12] when applying such descriptors to explore

correlations of several physico-chemical properties of chemicals.

As a final remark, other eigenvalue-based measures and graph

polynomials have been used in various scientific disciplines as

well. For instance, graph spectra were employed to derive indices

for measuring the structural similarity of networks [15]. In social

network analysis and biology, such indices turned out to be useful

for defining centrality measures [16,17]. Estrada [18] derived an

eigenvalue-based measure (called the Estrada index) for examin-

ing the degree of folding of proteins. More generally, polynomial-

based approaches have also been employed to study structural

aspects of networks, e.g., see [19,20].

The main contribution of our paper is as follows: Firstly, we

define a novel graph polynomial which we call the information

polynomial of a graph G~(V ,E),DV D~n. In our sense, we infer

this polynomial by using a probability distribution of length n
for deriving a graph-theoretical matrix M(G) (see Equation (8)

in the section ‘Methods’). Secondly, we use the zeros of this

polynomial to derive some novel molecular descriptors. Then,

we investigate their uniqueness and compare our results with

other descriptors. An illustration of our workflow is shown in

Figure 1.

Methods

The Information Polynomial of a Graph
In this section, we define a novel graph polynomial as well as

some spectral molecular descriptors by combining information-

theoretic and algebraic methods [21,22]. To provide measures

(descriptors) for quantifying structural information of a graph
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meaningfully, we develop the notation of the ‘information

polynomial’ of a graph. Then, the main idea is to derive a

polynomial representation whose coefficients or other character-

istics, e.g., its zeros capture structural information of the

underlying graph. We want to remark that the expression

‘information polynomial’ has already been used [23,24] in another

context by determining the relative information I(G) defined as

the combinatorial entropy of an oriented graph G.

In particular, it was shown [24] that I(G) can be expressed by

I(G)~
1

2
log PG(l)ð Þ, ð1Þ

and

Is(G)~
1

2
log

lPG(l)

Ps
G(l)

� �
, ð2Þ

where

PG(l)~ det (aab)a,b[G, ð3Þ

and

Ps
G(l)~ det (aab)a,b[G|fsg: ð4Þ

The kind of information polynomial we want to introduce here is

notably different from the just mentioned one. The reason why we

keep this notation is that the underlying probability distribution as

well as the resulting polynomial captures structural information of

a graph. In our case, we use an information functional [25–27]

leading to vertex probability values that can be used to define a

graph-theoretical matrix.

We now start with a probability distribution

PG(V ) :~(pf (v1),pf (v2), . . . ,pf (vn)), ð5Þ

associated to a graph that has already been used to obtain

information measures for determining the structural information

content of a graph [25–28]. The general procedure is as follows:

One assigns a probability value to each vertex of a given graph by

using a certain information functional f [25–27] where f

represents a function that maps vertices, or more generally graph

elements (when using other invariants), to the non-negative reals.

Then, by using Shannon’s entropy [29], the structural information

content will be defined and interpreted as the entropy of the

underlying graph topology [26,27].

Let’s introduce this framework formally. The quantities serving

as vertex probabilities are defined by [26]

pf (vi) :~
f (vi)Pn

j~1 f (vj)
, V vi[V : ð6Þ

Further, a family of graph entropy measures could be obtained by

[26]

If (G) :~{
Xn

i~1

f (vi)Pn
j~1 f (vj)

log
f (vi)Pn

j~1 f (vj)

 !
: ð7Þ

Starting from a graph G and the probability distribution (see

Equation (5)), we now define a matrix for computing an algebraic

polynomial which we also call the information polynomial of G. In

contrast to the briefly sketched polynomial PG(l) [23,24], our

main goal is to investigate the information polynomial (see

Definition (2)) for deriving molecular descriptors from the

Figure 1. An illustration of the main contribution of this study.
doi:10.1371/journal.pone.0011393.g001
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underlying zero distribution. Further, we remark that our

polynomial (see Equation (2)) does not serve as an input for

determining a kind of information value. Instead, the structural

information of a graph will be captured by the polynomial.

Definition 1. Let G~(V ,E) be a graph and let PG(V ) be the

probability distribution assigned to vertex set of G. We define the matrix

M(G) :~

1 a12 � � � a1n

a21 1 � � � a2n

..

. ..
. ..

.

an1 an2 � � � 1

0
BBBB@

1
CCCCA: ð8Þ

We set aii~1,1ƒiƒn and

aij~1{Dpf (vi){pf (vj)Db(d(vi,vj)): ð9Þ

Definition 2. We define PI
G,M (x) :~ det (M(G){xE).

PI
G,M (x) is called the information polynomial of G.

We remark that starting from Equation (8), (9), we see

immediately that M(G) is symmetric, i.e., M(G)~(M(G))T .

Then, it is clear that all eigenvalues of PI
G,M (x) are real [30]. Also,

we point out that to comprise the connection between vi and vj , we

use a function b~b(d(vi,vj)) (see Equation (9)) depending on the

shortest distance between the corresponding vertices. To calculate

PI
G,M (x) for some simple graphs exemplarily, we consider Figure 2

and set

f (vi)~c1jS1(vi,G)jzc2jS2(vi,G)jz � � �zcr(G)jSr(G)(vi,G)j,

ckw0,1ƒkƒr(G),
ð10Þ

and c1~4,c2~3,c3~2,c4~1 and b(d(vi,vj))~
1

2
d(vi ,vj ) for deter-

mining the probability distribution PGi
(V ). r(G) is the diameter of

G. We yield

PI
G1,M (x)~{x5z5x4{0:2230x3z9:548:10{5x2

z7:851:10{5x{6:515:10{7,
ð11Þ

PI
G2,M (x)~{x5z5x4{0:4170x3, ð12Þ

PI
G3,M (x)~{x5z5x4: ð13Þ

and the corresponding sets of zeros are

ZM(G1)(x)~f4:9550,0:0187,0:0339,0:0110,{0:0187g, ð14Þ

ZM(G2)(x)~f4:9151,0:0848,0,0,0g, ð15Þ

ZM(G3)(x)~f5,0,0,0,0g: ð16Þ

In particular, we always get

Proposition 1.

PI
Kn,M (x)~({1)nxnz({1)n{1nxn{1: ð17Þ

The positive eigenvalue is x~n.

Novel Descriptors
In the following, we define some novel descriptors derived from

the just introduced polynomial. The idea is to use the underlying

zero distribution of PI
G,M (x).

Definition 3. Let PI
G,M (x) be the information polynomial of G and

let s1,s2, . . . ,sn be its real zeros.

I1
M,G :~

ffiffiffiffiffiffiffi
Ds1D

p
z

ffiffiffiffiffiffiffi
Ds2D

p
z � � �z

ffiffiffiffiffiffiffi
DsnD

p
, ð18Þ

I2
M,G :~s~ max (s1,s2, . . . ,sn), ð19Þ

I3
M,G :~

1

n

Xn

i~1

(si{�ss)2, ð20Þ

I4
M,G :~

ffiffiffiffiffiffiffiffiffiffi
I3

M,G

q
: ð21Þ

Results and Discussion

The aim of this section is to evaluate the just defined descriptors

(see previous section) in terms of their uniqueness (degeneracy)

[31,32]. This property of a molecular descriptor relates to the

ability to distinguish graphs as uniquely as possible by calculating

the underlying graph measure. In general, a descriptor is called

degenerated if there are at least two non-isomorphic graphs

possessing the same value. For instance, concrete studies [32,33] to

explore this problem by using isomeric and lattice structures were

performed. Particularly, Bonchev et al. [7] investigated the

degeneracy of information-theoretic indices relying on Shannon’s

entropy. Further, Todeschini et al. [34] evaluated several known

non-information-theoretic and information-theoretic topological

indices based on a large set of real chemical compounds. Another

important problem is to quantify the degree of degeneracy of a

given index. For this, a sensitivity measure as well as an

information-theoretic measure have been developed by Konstan-

tinova [32,33] and Todeschini et al. [34], respectively.

Datasets

N AG 3982: To create this database, we used the benchmark

database called Ames mutagenicity [35,36]. This database has

originally been used for predicting the mutagenicity of

chemical compounds [36]. Note that the Ames database has

been created from six different public sources [35,36]. By
Figure 2. Undirected example graphs Gi.
doi:10.1371/journal.pone.0011393.g002
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starting from the original database Ames mutagenicity [35,36]

containing 6512 chemical compounds, we created AG 3982 by

filtering out isomorphic graphs based on the software SubMat

[37]. Finally, this procedure resulted in 3982 structurally

different skeletons, that is, all atoms and all bonds are

considered as equal. It holds 2ƒnƒ109 V G[ AG 3982.

N MS 2265: To create this dataset, the mass spectral database

NIST [38] was used [27]. The entire database contains

approximately 100000 chemical structures from organic

compounds [27]. A set of 4000 structures with 4 to 19 non-

hydrogen atoms (vertices of the graph) have been randomly

selected from the database. Finally, 2265 of them have

different skeletons (all atoms and all bonds considered to be

equal, all hydrogen atoms removed). It holds 4ƒnƒ19 V G[
MS 2265.

Software and Technical Processing of Graphs
We implemented the novel descriptors and performed all

involved calculations by using the programming language R [39]

and the freely available library ‘graph’. In order to generate the

underlying graph structures representing chemical compounds, we

used Molfile format [40]. We remark that the graphs originating

from AG 3982 were originally available in Smiles format. Thus,

we converted them to Molfile format (SDF) using a Python

procedure. The graphs from MS 2265 were originally available as

Molfiles. In both cases, a R procedure was developed to create the

adjacency matrices as well as the matrices M(G) for calculating

the novel descriptors from the available Molfiles. To determine

their degree of degeneracy (sensitivity measure) in the next section,

we use Equation (10) and exponentially decreasing parameters

chosen as

c1 :~r(G),c2 :~r(G)e{1, . . . ,cr(G) :~r(G)e{r(G)z1: ð22Þ

Uniqueness of the Descriptors
We now interpret the results we have obtained from calculating

the sensitivity index [32]

S(I)~
DGD{DGi D

DGD , ð23Þ

of a descriptor I as follows. Here, DGD is the cardinality of a given

set of graphs G and DGi D denotes the number of graphs Gi[G which

can not be distinguished by an index I . In Table 1, we see the

results when using the novel descriptors based on the underlying

information polynomial PI
G,M (x). In Table 2, we summarize the

results when using the same descriptors (these are

I1
A,G,I2

A,G,I3
A,G,I4

A,G ) based on the ordinary characteristic polyno-

mial PI
G,A(x) :~ det (A{xE),A is the adjacency matrix of G. For

both polynomials PI
G,M (x) and PI

G,A(x), we observe that the sums

of the square roots of the moduli of their real zeros (I1
M,G and I1

A,G )

have a high discrimination power. But by evaluating the

characteristic polynomial instead of the information polynomial,

one can see that the sensitivity values are a little less. Further, I2
M,G,

I3
M,G and I4

M,G also do have a high discrimination power based on

their sensitivity values shown in Table 1. As expected and known

[41], the Wiener Index [42] and Randić Index [43] do possess a

relatively high degree of degeneracy leading to low sensitivities.

However, it is known that, for instance, information-theoretic

measures [14,25] do often have a high discrimination power. For

comparing such measures with ours, we also calculated the

sensitivities of the two entropic measures

ID(G) : ~{
1

DV D
log

1

DV D

� �
{
Xr(G)

i~1

2ki

DV D2
log

2ki

DV D2

� �
, ð24Þ

IW
D (G) : ~{

Xr(G)

i~1

iki

W
log

i

W

� �
, ð25Þ

which were developed by Bonchev [25]. Here, ki stands for the

occurrence of the distance value i in the distance matrix D. We see

in Table 1 that the resulting sensitivities are much better than the

ones obtained by calculating W and R.

Now, we evaluate the discrimination power of the polynomial-

based descriptors. Corresponding to the fact that the characteristic

polynomial of a graph is degenerated [41] (i.e., many non-

isomorphic graphs have the same spectra), it is not surprising that

the sensitivity values for I2
A,G, I3

A,G and I4
A,G are much less (for both

MS 2265 and AG 3982) than in case of considering the

information polynomial. In fact, the discrimination power of

I3
M,G, I4

M,G when taking the characteristic polynomial into account

(i.e., they become to I3
A,G, I4

A,G ) is very little. Finally, we also

remark that I
j
M,G,j~1, . . . ,4 are less degenerated than ID and IW

D .

Also, Table 3 shows some characteristics of the spectra

concerning MS 2265 and AG 3982. For instance,

Dz[ZM(G)(x)v0D stands for the number of zeros (eigenvalues) of

the information polynomial less than zero. t stands for the minimal

eigenvalue and s for the maximal one. The table gives information

Table 1. Calculation of sensitivity index S(I
j
M,G),j~1, . . . ,4

for two chemical databases.

Descriptor I S(I) for MS 2265 S(I) for AG 3982

I1
M,G

0.999117 0.998995

I2
M,G

0.997351 0.994224

I3
M,G

0.998234 0.997489

I4
M,G

0.988521 0.976645

W 0.067108 0.343046

R 0.232546 0.402562

ID 0.859602 0.938724

IW
D

0.883885 0.947513

doi:10.1371/journal.pone.0011393.t001

Table 2. Calculation of sensitivity index S(I
j
A,G),j~1, . . . ,4 for

two chemical databases.

Descriptor I S(I) for MS 2265 S(I) for AG 3982

I1
A,G

0.928918 0.964591

I2
A,G

0.699338 0.834003

I3
A,G

0.000883 0.000883

I4
A,G

0.01557 0.01557

doi:10.1371/journal.pone.0011393.t002
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about the distribution of the zeros with respect to the used

databases. For both MS 2265 and AG 3982, we get the result that

approximately 70% of the eigenvalues are positive, 25% are

negative.

As conclusive remarks, the obtained results (in particular, see

Table 1) show that the spectrum of the information polynomial

seems to contain useful information for defining special molecular

descriptors. In particular, we infer that the information polyno-

mials of our chemical graphs are less degenerated than the

corresponding characteristic polynomials. From this, we also

conclude that some of the novel measures (I
j
M,G), j~1, . . . ,4) are

suitable for characterizing (large) graphs structurally because they

encode structural information uniquely.

Summary and Outlook
In this paper, we introduced a novel graph polynomial and

derived some descriptors by using the underlying zero distribution.

We summarize the main findings of our paper and some future

ideas as follows:

N We started from the idea to use the probability distribution

PG(V ) (see Equation (5)) possessing n vertex probabilities

which depend on an information functional [26] f . Instead of

using PG(V ) to derive entropic measures for graphs [26,27],

this probability distribution served as starting point to derive a

graph-theoretical matrix finally leading to the definition of the

information polynomial.

N So far, spectra of graphs have already been used to

characterize chemical graphs [41,44]. However, it is known

that graph spectra (with respect to the ordinary characteristic

polynomial) are degenerated, that means, many non-isomor-

phic graphs do have the same characteristic polynomials and

spectra. For this reason, we investigated the ability of the

information polynomial and the derived descriptors to

discriminate graphs structurally. In particular, we found that

the descriptors based on the information polynomial do have a

high discrimination power by evaluating the sensitivity index

due to Konstantinova [32]. But we emphasize that the

achieved results depend on the used datasets (see Section

‘Datasets’). As future work, we want to further develop spectral

descriptors and evaluate them by using large sets of chemical

and bio-chemical structures.

N It is well-known that various topological descriptors have been

successfully used for structure-oriented drug design [45–47].

Typically, the descriptors are used to predict a biological or

physico-chemical property by taking the structure of the

underlying molecule into account. The next step in this

direction would be to apply our novel descriptors to further

datasets for evaluating their usefulness for solving QSAR/

QSPR problems. As a strong point, we have proven that our

novel indices encode structural information uniquely that is

generally a desirable property of a molecular descriptor. This

could indicate their usefulness when applying the measures in

drug design, e.g., for classifying chemical structures. However,

we note that also degenerated measures were found to be

successful for QSAR modeling, see [48].

N There is a considerable body of literature dealing with

examining the zeros of graph polynomials [49–51]. For

example, Woodall [51] examined the zeros of chromatic and

flow polynomials and determined zero-free regions thereof.

When giving [50] a survey on counting hypercubes, Kovše

[50] also sketched some results concerning the zeros of cube

polynomials. Jackson [49] surveyed results and conjectures

dealing with the zero distribution of chromatic and flow

polynomials of graphs, and characteristic polynomials of

matroids. Note that a recent overview on such results was

given by Ellis-Monaghan et al. [6]. As future work, we want to

study similar questions concerning the information polynomi-

al. This would involve examining problems such as:

– Deriving special estimations for the largest positive zero of

PI
G,M (x).

– Deriving special bounds (leading to intervals containing the

real zeros of PI
G,M (x)) for the moduli of the real zeros of

PI
G,M (x).

– Exploring the location of the zeros for similar types of graph

polynomials. Particularly, we want to derive special bounds

for special graph classes.

N As mentioned, the largest positive eigenvalue of trees has been

used as a measures for branching [13] where Bonchev [52]

gave an overview on the concept of branching and measures to

quantify it [52]. In the future, investigate the largest positive

eigenvalue of our information polynomial in depth and

compare the results with other graph polynomials.
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