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Abstract
Recognizing that the microscope depth of field is a significant resolution-limiting factor in three-
dimensional cryoelectron microscopy, Jensen and Kornberg proposed a concept they called
defocus-gradient corrected backprojection (DGCBP) and illustrated by computer simulations that
DGCBP can effectively eliminate the depth of field limitation. They did not provide a
mathematical justification for their concept. Our paper provides this, by showing (in the idealized
case of noiseless data being available for all projection directions) that the reconstructions
obtained based on DGCBP from data produced with distance-dependent blurring are essentially
the same as what is obtained by a classical method of reconstruction of a 3D object from its line
integrals. The approach is general enough to be applicable for correcting for any distance-
dependent blurring during projection data collection. We present a new implementation of the
DGCBP concept, one that closely follows the mathematics of its justifications, and illustrate it
using mathematically-described phantoms and their reconstructions from finitely-many distance-
dependently blurred projections.
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1. Introduction
Three-dimensional cryoelectron microscopy (3D cryoEM) is an increasingly powerful tool
for solving the structure of macromolecular complexes, providing resolution on the order of
a nanometer. To increase resolution to subnanometer scale, reconstruction methods have to
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take further image formation model features into account. In 3D cryoEM, 2D projection
images, called micrographs, of a 3D mass distribution (e.g., a macromolecule) are affected
by many factors that modify the amplitudes and phases of the image of the specimen and
which must be corrected for in order to reconstruct the true object [1]. One of the most
important among these factors is the contrast transfer function of the microscope. The
contrast transfer function (CTF) is the Fourier transform of a point spread function that
describes the response of the imaging system to a point object. It affects various frequencies
by modulating the magnitude and sign of their amplitude. CTF depends on many parameters
of the imaging system, among them defocus. In electron microscopes, the defocus varies
with the distance from the electron source. Thus, given a three-dimensional specimen, each
layer (defined as a plane perpendicular to the electron beam) is blurred by a slightly different
transfer function. Most of the methods of correction for CTF ignore this dependence on
distance from the electron source. As the technology of electron microscopy improves (as
achievable resolution increases) and the need for imaging larger specimens emerges, this
imperfection of electron microscopes, which has not been considered important in the past,
is likely to become an essential limitation. The difference between two reconstructions, one
that uses the same CTF function for each layer of the specimen and one that takes distance
dependence into consideration is illustrated in Fig. 1. An extensive discussion of how Fig. 1
was obtained is presented in Section 6.

There are several approaches in the literature that address the distance-dependent CTF issue
[2,3,4,5,6,7,8]. Jensen and Kornberg’s [4] approach makes CTF correction an integral part
of the reconstruction procedure. In this paper we revisit the concept behind their method in
order to provide a mathematical justification for it and to put it into the context of traditional
computerized tomography techniques.

The method proposed by Jensen and Kornberg [4], based on the concept of defocus-gradient
corrected backprojection (DGCBP), is an approach that operates on micrographs taken from
arbitrary directions. The method exploits features of the forward model for 3D cryoEM
together with the general structure of the weighted backprojection technique [9]. However,
the authors of [4] did not elaborate how their method relates to other reconstruction and/or
correction approaches, and they provided only a heuristic (rather than mathematical)
justification as to why the method should work.

In our recent work [8] we provided a mathematical verification of the DGCBP concept for
the case in which projections are obtained from a single axis rotation mode of data
collection. We demonstrated that, for that geometry, DGCBP and the frequency distance
relation method described by Dubowy and Herman [6] are equivalent in the sense that the
mathematical formulas that describe a 2D object reconstructed by the two methods from its
distance-dependently distorted 1D projections from all directions around the axis of rotation
are in fact the same.

In this paper we generalize that proof to 3D objects to be reconstructed from 2D projections
taken from arbitrary directions, again with the assumption that data for all directions are
available. We make use of stationary phase approximation, which was introduced to the
field by Edholm and Lewitt [10] and Xia et al. [11] and then used by Dubowy and Herman
[6] in the frequency distance relation method mentioned above. (For a brief review of
stationary phase approximation, see Appendix C.) We show that results obtained using the
DGCBP concept are equivalent to the results produced by a classical reconstruction method
from ideal projection data. This completes the mathematical justification of the DGCBP
approach.
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Our paper is organized as follows. In the next section we present a nonmathematical
overview of our ideas. The rest of the paper contains mathematical discussions (including
proofs of our claims) and simulation results. In Sec. 3 we provide the background and
introduce the notation used throughout the paper. In Sec. 4 we review the principles of
image formation in an electron microscope and the model for the CTF. In Sec. 5 we outline
the DGCBP concept in terms of integral equations and explore its effect on the 3D delta
function as a test object. We also derive the main result of our work regarding the
equivalence of the DGCBP concept and deblurred (weighted) backprojection applied to
undistorted projection data. In Sec. 6 we present numerical test results. For clarity, only
essential mathematical formulas are included in the text. Details of mathematics and
implementation are delayed until the appendices, so as not to interrupt the flow of the main
ideas.

2. Overview
This section provides an overview of the material presented in this paper. We describe
operators that are defined in the following sections and their use in modeling of and in
correcting for distance-dependent CTF blurring in cryoEM, without any mathematical
derivations. All claims made here are proven in the following sections and the appendices.

We first model mathematically the process of projection taking in cryoEM. Such a model
needs to incorporate the distance-dependent nature of the CTF. We then mathematically
model the correction for distance-dependent CTF that Jensen and Kornberg [4] incorporated
into the weighted backprojection reconstruction algorithm.

We start by defining several operators which we first use to describe ideal projections (line
integrals with no blurring at all). This projection operator  is composed of a rotation
operator  and a compression operator . The imaged molecule is represented by a function
of three variables v, v (x1, x2, x3) is the density of this molecule at the point (x1, x2, x3)T.
Given a function v and two angles θ and φ, the operator  gives us a function [ v] (θ, φ, x1,
x2, x3) that represents the density value of the molecule at a point (x1, x2, x3) after it has been
rotated by the angle θ around X3-axis and then by the angle φ around X2-axis. Note that the
coordinate system is attached to the microscope, so that the values of the molecule at a point
(x1, x2, x3)T before and after the rotation are different. To obtain the projection of the
molecule rotated in this fashion, we compute line integrals through rotated molecule v
along lines parallel to the X3-axis. This is modeled by the compression operator . The
projection v = v is a function of four variables: x1 and x2, which describe positions in
the two dimensional projection plane, and θ and φ, which describe how the molecule was
rotated before the compression. In order to model the reconstruction from projection data we
define the backprojection operator , which is again composed of two simpler operators
that, so to speak, reverse the actions of the compression and rotation operators. Given a
projection image, the spreading back operator  returns a function of five variables: x1, x2,
and x3, which describe a point’s position in 3D space, and θ and φ, which keep the
information about direction from which projection was obtained. The values of the function
that results from this spreading back operation are independent of x3, the planes
perpendicular to the X3-axis contain copies of the projection image. The totaling operator 
combines the functions that are provided by the spreading back operator by rotating them
into appropriate positions and adding them together. The backprojection operator is then  =

 To obtain a final reconstruction, we need a deblurring operator  that compensates for
the blurring introduced by the projection followed by backprojection. For these operators we
show that the function v can be recovered exactly from all its projections by applying
backprojection followed by deblurring, i.e., v = v.
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We then incorporate the distance-dependent CTF into the model described above by
redefining the compression and spreading back operators. In order to add a distance-
dependent CTF to the compression operator, each slice of the imaged object v perpendicular
to the X3-axis is two-dimensionally convolved with a blurring function before taking the
integral along the X3 direction. The blurring, which depends on x3, is specified by a function
h and the resulting operator is called the distance-dependent compression operator . The
distance-dependent projection operator is  = . To compensate for the distance-
dependent CTF, we make use of a distance-dependent spreading back operator  that
deconvolves the image that is spread in the direction of X3-axis in a way that is appropriate
to compensate for the CTF blurring that changes from plane-to-plane perpendicular to the
X3-axis. Consequently, the function produced by the distance-dependent spreading back
operator depends on x3; each plane perpendicular to the X3-axis contains the projection
image that has been deconcolved in a manner that is dependent on x3. The distance-
dependent backprojection operator is  =  .

We show that v ≈ v, which leads to our main result: v ≈ v. This implies that
the molecule, described by the function v, can be approximately reconstructed from its
distance-dependently blurred projections using the distance-dependent backprojection
followed by deblurring. This provides a mathematical justification for the proposed
reconstruction procedure.

Finally, using numerical experiments we demonstrate that the proposed method that makes
use of distance-dependent backprojection recovers more details from various types of noisy
projections than a reconstruction method that is based on the assumption that the CTF is not
dependent on distance.

3. Mathematical background
In this section we describe the necessary background material, notational conventions and
the operators used in the rest of the paper.

3.1. Notation
Let X1, X2, and X3 be the axes of a Cartesian coordinate system. It is common in the electron
microscopy literature to attach the coordinate system to the object to be reconstructed. Then
the microscope is treated as if it were rotating around this object to obtain projections from
various directions. In this paper, we follow a different, but equivalent, convention. Our
coordinate system is attached to the microscope, with the X3-axis parallel to the electron
beam. Thus, the projections are always taken parallel to the X3-axis and it is the molecule
that is rotated around the origin of the coordinate system (assumed to be fixed) to obtain
various projections. This allows a simpler mathematical description of distance-dependent
blurring than what would be needed using the more common convention.

We use four vector spaces, ℝ3,  × ℝ3, ℝ2, and  × ℝ2, where ℝ is a set of all real numbers,
ℝ2 and ℝ3 are short for ℝ × ℝ and ℝ × ℝ × ℝ, respectively, and  = [0, 2π) × [0, π) is the
set of directions on the unit sphere in ℝ3.

ℝ3 is the vector space of the molecule, i.e., the object to be reconstructed. We represent
points in ℝ3 using vectors, an arbitrary point is given by (x1, x2, x3)T. Similarly, we use (ξ1,
ξ2, ξ3)T to represent points in the frequency domain. We denote by v the object being
imaged. The value v (x1, x2, x3) of the function v at a point (x1, x2, x3)T is the value of the
molecule at the appropriate place. We assume that v is a square integrable function with an
origin-centered ball as its finite support.
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 × ℝ3 is the space of rotated molecules. A point is specified by (θ, φ, x1, x2, x3)T, where θ
and φ specify how the molecule was rotated inside the microscope and x1, x2, and x3 refer to
the microscope’s coordinate system. The value of a rotated molecule at (θ, φ, x1, x2, x3)T for
a fixed x1, x2, and x3 is different for different values of θ and φ.

ℝ2 is the space of single micrographs.  × ℝ2 is the space of projection data, i.e., the set of
all micrographs. An arbitrary point is given by (θ, φ, x1, x2)T, where x1 and x2 specify a
location in the micrograph and θ and φ specify how the molecule was rotated before the
micrograph was taken.

We use four function spaces:

(1)

(2)

(3)

(4)

We do not define these function spaces with complete mathematical rigor; such treatment
can be found in Herman and Tuy [12] or in Natterer and Wübbeling [13]. We use spaces of
functions that are general enough to include ordinary functions as well as generalized
functions, such as the impulse functions ι and κ in V, defined by Eqs. (A.2) and (26) based
on the Dirac delta δ of Eq. (A.1).

We make use of the following rotation matrices:

(5)

Dθ is a right-hand rotation by θ in the X1X2-plane and Dφis a right-hand rotation by φ in the
X1X3-plane. For shorter and clearer notation we make the following definitions:

(6)

and
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(7)

Given a point (x1, x2, x3)T in a rotated object,  is this point’s
location before rotation. Similarly, given a point (x1, x2, x3)T in a not rotated object,

 is this point’s location after rotation. F in Eq. (6) stands for
forward, since it is used in forward model of electron microscopy data collection. B in Eq.
(7) stands for backward, since it is used in the reconstruction.

3.2. Operators
An operator is a mapping that acts on a function or functions and produces another function.
We use capital script letters to denote operators; for example,  denotes the projection
operator. In the remainder of this section we define several operators that are used later.

An arbitrary rotation of the function v can be represented by a rotation around the X3-axis
(multiplication by a matrix Dθ in Eq. (5)), followed by a rotation around the X2-axis
(multiplication by the matrix Dφ in Eq. (5)), followed by another rotation around the X3-axis.
The last rotation is known as an in-plane rotation and without loss of generality can be
ignored, as it is just a rotation in the projection plane. See Fig. 2 for illustrations of the first
two rotations.

The rotation operator : V → W associates with a function of three variables a function of
five variables. [ v] (θ, φ, x1, x2, x3) is the value of a molecule v at a point (x1, x2, x3) after it
is rotated by θ and φ as illustrated in Fig. 2. The rotation operator is defined by

(8)

The operator  maps functions in V into functions in W, but there are functions w ∈ W for
which there is no v ∈ V such that w = v.

The compression operator : W → G takes a function of five variables (θ, φ, x1, x2, x3) and
produces a function of four variables (θ, φ, x1, x2) by integrating along the X3-axis. The first
two variables are included to denote the angles by which the molecule was rotated before the
compression, and the other two variables indicate the location of a point in the X1X2-plane.
The compression operator  is defined by

(9)

The operator  maps any function in W (not just those that are in the range of the operator
) into functions in G. In electron microscopy we apply  only to functions that are in the

range of .

The composition  =  of these two operators defines the projection operator : V → G,
such that, for all v ∈ V and (θ, φ, x1, x2),
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(10)

Data that are provided to an algorithm for 3D reconstruction consist of imperfect samples of
v [14]. Geometries of data collection used in electron microscopy (as described, for

example, in Subsection 3.3 of [14]) can be identified by considering the ranges over which θ
and φ are sampled. For example, if θ ranges over the whole of [0, 2π) and φ has any fixed
value in (0, π) other than , then we have the so-called conical tilt mode of data collection
that provides us (via the central section theorem) with information about the Fourier
transform of v outside a missing cone. The choice  is special: when combined with θ
ranging over the whole of [0, 2π), it provides us with a complete single-axis tilt series and,
hence, with information about the Fourier transform of v without any missing region. In
view of this, it is not altogether surprising that  plays a special role also in the
mathematical derivation provided in Appendix C.

During the reconstruction process we make use of operators that, so to speak, undo the
actions of the operators described above. One of these is : G → W, which we call the
spreading back operator. If g ∈ G, then g is commonly referred to as a ridge function
resulting from spreading back g (ridge functions are functions whose values do not change
in one direction, in this case it is the direction of the X3-axis). The value of g at the point
(θ, φ, x1, x2, x3) is

(11)

: W → V is the totaling operator that performs integration of functions in W over the unit
sphere . The value of w, which is sometimes referred to as an integral image, at the point
(x1, x2, x3) is

(12)

where the term sin φ is required to achieve uniform integration over all directions. The
operator  maps any function in W into V. In our applications we apply  to ridge
functions that are in the range of .  unrotates the ridge functions w(θ, φ, x1, x2, x3) by the
angles θ and φ (the same angles by which the molecule was rotated before the projection
was obtained), and then the unrotated ridge functions for all θ and φ are totaled together.

The composition  defines the backprojection operator : G → V, such that, for all g ∈
G and (x1, x2, x3),

(13)

In Appendix A we give precise mathematical definitions of additional operators including
both 2D and 3D Fourier transforms (both denoted by ), their inverses (denoted by ),
special Fourier transforms and their inverses operating on functions in V, W, and G
(denoted by , , , , , and , respectively), 2D and 3D convolutions, and
even an operator that convolves a function from W with one from V (all three denoted by *),
and an operator that divides a function in G by a function in V.
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Using the inverse 3D Fourier transform, Eq. (A.16), and the 3D convolution, Eq. (A.18),
operators, we define the 3D deblurring operator : V → V as follows. Let r ̂ ∈ V, be the

function defined by . Then, for any v ∈ V,

(14)

The operators and spaces of functions on which they act are summarized in Fig. 3.

The mathematical idealization of data collection in 3D cryoEM (no noise, no blurring, data
from all projection directions available) gets us from the molecule v ∈ V to its projection
data v. A well-known significant fact is that the molecule can be recovered from v by
application of backprojection followed by deblurring:

(15)

A justification for this claim is given in Appendix B.

4. Image formation model in 3D cryoEM
The image formation by an electron microscope includes a blurring, which is different in
each layer (plane perpendicular to the electron beam) of the specimen during the projection
generation in 3D cryoEM. A projection data set that consists of all distorted 2D projections
(micrographs) is defined as a compression of v ∈ W after it has been convolved with a
point spread function h ∈ V. Mathematically, the distance-dependent compression operator

: W → G is defined by

(16)

(it follows from Eq. (A.20) that  = ), and the distance-dependent projection operator :
V → G is defined by

(17)

The Fourier transform of the distance-dependent projection data satisfies the formula

(18)

where

(19)

Kazantsev et al. Page 8

Ultramicroscopy. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This is easily proved by starting with its left hand side and then applying Eqs. (17), (A.12),
(A.6), (A.5), (16), (9), a change in the order of integration, (A.19), (A.6), (A.21), (A.10), and
(A.8). Equation (18) indicates an efficient layer-by-layer method of calculating v.

The approach proposed in this paper can be used to correct for any kind of distance-
dependent blurring, specified by any point spread function h ∈ V. In 3D cryoEM, the
Fourier transform H of h is called the contrast transfer function (CTF). It can be assumed to
be radially symmetric in the (ξ1, ξ2) plane (even when this is not the case, our mathematics
is often still applicable after a simple change of variables) and has the form [1, Ch. 3]

(20)

where

(21)

and the parameters involved are:

•
 is a spatial frequency,

• a is a fraction of the amplitude contrast, 0 ≤ a ≤ 1,

• λ is the electron wavelength,

• Cs is the lens spherical aberration coefficient,

• Δf(x3) is the value of the defocus,

• q0 is a quantity of dimension 1/length specifying the size of the source as it appears
in the back focal plane,

• Fs is the lens focal spread coefficient.

Note that the defocus Δf(x3) depends explicitly on the distance from the electron source.

5. Defocus-gradient corrected backprojection
Irrespective of the choice of the point spread function h, our mathematical version of the
DGCBP concept of [4] has the following essence. A distance-dependent backprojection
operator : G → V is specified so that it has the property that, for all v ∈ V,

(22)

where ≈ stands for approximately equal. This, combined with Eq. (15), implies that

(23)
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and so the required volume can be approximated from the distance-dependently blurred
projection data v by applying to it first the distance-dependent backprojection operator and
then the deblurring operator.

More specifically, we define the distance-dependent spreading back operator : G → W
by

(24)

This is a generalization of the spreading back operator, as defined in Eq. (11), because  =
, as can be seen by applying to the right hand side of Eq. (24), for this case, Eqs. (A.11),

(A.7), (A.4), (A.22), (A.14), (A.12), (A.6), (A.5), the fact that the 2D inverse Fourier
transform is in fact the inverse of the 2D Fourier transform, and (11). The distance-
dependent backprojection operator is

(25)

(Note: = .) To complete our mathematical justification we need to show that Eq. (22)
holds for all v ∈ V.

By the linearity of the operators this follows from the special case when v is the 3D impulse
function centered at an arbitrary point (x̂1, x̂2, x̂3) ∈ ℝ3, defined by

(26)

According to Eq. (8), the rotated version of this function, for any pair of angles θ and φ, is

(27)

Notice that the expression on the right hand side of Eq. (27) is equivalent to

(28)

In the rest of the paper we use Eq. (28) to express [ κ] (θ, φ, x1, x2, x3).

We first observe that

(29)

This can be derived by using Eqs. (18), (A.10), (A.6), (A.4), (28), and (A.1).
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To get an integral expression for κ, we apply Eqs. (25), (24), (12), (A.11), (A.7), (A.4),
(A.22), and (29) and obtain

(30)

To work with the outermost two integrals in Eq. (30), we rewrite κ by introducing two
functions

(31)

(32)

In definition of Ψ2, we set arbitrarily φ = 0 in  and  because, by Eq. (7), they do not
depend on φ. After changing the order of integration, Eq. (30) becomes

(33)

Consider first the special case when (x1, x2, x3)T = (x̂1, x̂2, x̂3)T. In this case it follows
trivially from Eq. (7) that , for all (θ, φ), and so the value of the fraction
inside the integral in Eq. (33) is always 1, independently of the choice of h. This means that
[ κ] (x̂1, x̂2, x̂3) = [ κ] (x̂1, x̂2, x̂3) = [ κ] (x̂1, x̂2, x̂3) and Eq. (22) is satisfied exactly
at this point.

Our proof that [ κ] (x1, x2, x3) ≈ [ κ] (x1, x2, x3) in all other cases as well requires
making use of the stationary phase approximation and therefore we placed it into Appendix
C.

This gives us our main mathematical result: When projections from all the directions on the
unit sphere are available and no noise is present during projection generation process, v
is approximately equal to v The meaning of this is that the integral image produced from
the distance-dependently blurred projection data of an object using the DGCBP concept is
approximately the same as the integral image produced by a standard backprojection that
uses true mathematical projection data of the same object. This gives a mathematical
verification of the method of correction for distance-dependent blurring proposed by Jensen
and Kornberg [4].

6. Numerical experiments
For experiments we selected the following parameters for the forward model of 3D cryoEM
(see Section 4):

• a = 0,

• λ = 0.033487 Å,
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• Cs = 22, 000, 000 Å,

• Δf ∈ [1000, 3000] (in Å),

• q0 = 0.00746558 Å−1

• Fs = 141.35 Å.

We computed the distance-dependently blurred projection data g(θ, φ, x1, x2) of
mathematically-defined phantoms, for randomly-selected directions (θ, φ) and 128 × 128
values of (x1, x2) in each direction, based on Eq. (17).

From these values we reconstructed the phantoms by numerically approximating [ g] (x1,
x2, x3) at 128 × 128 × 128 values of (x1, x2, x3). We see from Eqs. (25) and (24) that this
involves a division, see Eq. (A.22). To avoid dividing by zero, we used a Tikhonov filter
approximation

(34)

with α = 0.01 ï¿œ2; see [16]. More details regarding implementation can be found in
Appendix D.

We first report on an experiment in which the phantom consists of seven identical spheres
(Fig. 4) with centers located in a horizontal plane. We chose this phantom to illustrate the
effects of distance-dependent blurring in the projection data. A 128 ×128 digital
approximation of the central slice of the phantom and its 3D plot can be compared with
matching images of the DGCBP reconstruction in Fig. 5.

A single tilted view (from one of the 5,000 generated directions) was chosen to illustrate the
projection v (Fig. 6(a)) and the micrograph v (Fig. 6(b)). The variation in distortion (for
example, for the spheres marked as A and B in Fig. 6(b)) caused by change in defocus is
clearly seen. Profiles of the upper half of column number 59 and bottom half of column 53,
as indicated in Fig. 6(a), are shown in Fig. 6(c) and (d).

We used a more complex phantom, shown in Fig. 7, to demonstrate the difference between
reconstructions that take the distance-dependence of the CTF into account and those that
ignore the distance-dependence of the CTF and assume a constant defocus appropriate only
for the center layer of the phantom, which in our case is 2000 Å. We ran several simulations
with this phantom with varying amounts of noise in the data to examine the sensitivity of
our DGCBP-like correction. In the rest of this section we refer to a reconstruction that takes
distance-dependence into account as a DD backprojection and to a reconstruction that
corrects for the CTF corresponding to the center layer of the phantom as a CL
backprojection.

Figure 1 demonstrates cross sections through the phantom, row (a), corresponding cross
sections through the DD backprojection, row (b), cross sections through the CL
backprojection, row (c), and the reconstruction that does not correct for the CTF at all, row
(d). The projection data used for these reconstruction consisted of 5000 projection images
that were affected only by the distance-dependent CTF blurring with no noise added to the
distance-dependently blurred projections. In the CL backprojection the smallest spheres are
blurred to the point that they do not appear to be separate from each other and there is also
more cross-slice blurring than in the DD backprojection.
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Next we modified our experiment by introducing different types of noise. We simulated
structural noise, shot noise and digitization noise based on the guidance of Baxter et al. [15].
We needed to modify the model of noise suggested there in order to incorporate distance-
dependent blurring into the structural noise. The structural noise originates from ice and
often carbon film surrounding the molecule during imaging. As such it is different for each
molecule and is subject to distance-dependent blurring. As a rough simulation of this
phenomenon, prior to the distance-dependent projection taking we added to each voxel value
in the rotated molecule a random sample from a zero-mean Gaussian distribution with
standard deviation σ1. This was done independently for each projection direction. This noise
is convolved during the projection taking with the point spread function resulting in
correlated noise in the projection images. Then, we simulated the shot noise and the
digitization noise by adding, this time to each of the pixel values in the projection images, a
random sample from a zero-mean Gaussian distribution with standard deviation σ2. This was
also done independently for each projection direction. Sample projection images for
different values of σ1 and σ2 are compared to the ideal and noise-less projections in Fig. 8.
We used the projection data sets obtained in this manner to reconstruct using DD
backprojection and CL backprojection. The results for different values of σ1 and σ2 are
shown in Fig. 9. The second and third columns are cross-sections of reconstructions from
5,000 projections with noise described by σ1 = 0.3052 and σ2 = 2.99. This value of σ1 results
in equal values of standard deviation of signal and noise after projections are taken. The
value of σ brings down the signal to noise ratio to ½. The fourth and fifth columns are cross
sections of reconstructions from 10,000 projections with noise described by σ = 0.6103 and
σ2 = 6.0 (which results in signal to noise ratio of ¼). The surface rendering of
reconstructions obtained using the second set of standard deviation values are also shown in
Fig. 10. Because surface rendering is done for a particular voxel threshold value, a lot of
information is lost in such representations. For the rest of the simulations we only show
cross-section images.

The parameters of the CTF need to be estimated from the projection images before
reconstructions can be performed. To evaluate how DD backprojection is affected by
incorrectly determined CTF parameters, we simulated projections in which the defocus
parameters were not the same as the ones used in reconstruction. In all our experiments the
defocus varies from 1000 Å to 3000 Å according to the function Δf(x3) = m(x3 − 1/2) + b,
where m = 2000/n, b = 1000, and n = 128 is the number of discrete layers into which the
molecule is subdivided. (Here x3 is the layer index that goes from 1 to 128.) For each
projection direction, we introduced a random variation to the distance-dependent CTF, by
using a defocus function in which we added to m a sample from a zero-mean Gaussian
distribution with standard deviation σ3 and added to b a sample from a zero-mean Gaussian
distribution with standard deviation σ4. The reconstructions were performed by correcting
for the CTF with the unperturbed values of m and b. We demonstrate the results for two
different values of σ3 and σ4. The cross-sections of reconstructions are shown in Fig. 11. The
DD backprojection results are again less blurred than the reconstructions obtained using CL
backprojection on the same projection data.

In cryoEM the direction of each projection has to be estimated before the reconstruction can
be performed. We repeated our experiment introducing, independently for each projection, a
small difference between the direction from which the particular projection was actually
obtained and the direction that was used during the reconstruction. The difference was
introduced by adding to θ and φ used in the projection simulation two different samples
from a zero-mean Gaussian distribution with standard deviation σ5 and using the modified
angles in the reconstruction. The resulting cross sections for two different values of σ5 are
shown in Fig. 12. For σ5 = 1 the DD backprojection is once again less blurred than the CL
backprojection from the same data. When we increased σ5 to 3, both reconstruction are

Kazantsev et al. Page 13

Ultramicroscopy. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



blurred and even the larger spheres become indistinguishable. For comparison we also show
a reconstruction obtained from projection data unaffected by the CTF, just by the incorrectly
determined projection angles.

7. Conclusions
In this work we have shown that distance-dependent backprojection applied to distance-
dependently blurred projections found in micrographs and backprojection applied to data
produced by the true (no blurring) projection operator produce similar integral images.
Theoretically, the DGCBP reconstruction is obtained by deblurring the integral image with
the  filter. In practice, where only a limited number of projections are available, one can
use a numerical approximation to the mathematical formula; we have demonstrated that
such an approximation can produce satisfactory results under both noiseless and noisy
conditions.
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Appendix

A. Impulse functions, Fourier transforms, convolutions, and division of
functions

The Dirac delta δ is a (generalized) function on ℝ whose defining property is that, for any
function f: ℝ → ℝ and for any x ∈ ℝ,

(A.1)

Using δ we are able to define various impulse functions, such as the κ of Eq. (26) and the ι in
V that is defined by

(A.2)

The slicing operators  are used for defining various Fourier transform and convolution
operators. For v ∈ V, w ∈ W, and g ∈ G, respectively, they are defined by

(A.3)
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(A.4)

(A.5)

The 2D Fourier transform operator : P → P and its inverse : P → P are defined by

(A.6)

(A.7)

The 2D Fourier transform operators for other function spaces : V → V, : W → W, and

: G → G and their inverses , and  are defined by

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

An example of how such definitions are used in our work, we note that combining Eqs. (A.
8), (A.6), (A.3), (A.2), and (A.1) yields that, for all (ξ1, ξ2, x3),

(A.14)
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The 3D Fourier transform operator : V → V and its inverse : V → V are defined by

(A.15)

(A.16)

Note that we use the same symbol for the 2D and the 3D Fourier transform operators, the
actual operator that is being referred to is determined by the context.

The 2D convolution operator *: P × P → P is defined by

(A.17)

The 3D convolution operator *: V × V → V is defined by

(A.18)

We also need a convolution operator * that acts on two functions, w ∈ W and v ∈ V. This is
used for modeling distance-dependent blurring that occurs during data collection by an
electron microscope, see Eq. (16). A function in W represents the collection of the rotations
of an imaged object and the distance-dependent blurring of the electron microscope can be
specified by a point spread function h in V. This convolution operator (whose outcome
represents the distance-dependently blurred rotations of the molecule) is defined by

(A.19)

In the special case when h is the ι of Eq. (A.2), we get that, for w ∈ W,

(A.20)

This is easily seen using Eqs. (A.19), (A.17), (A.4), (A.3), and (A.1). We use the same
symbol for the three different convolution operators, but the meaning is clear from the
functions on which they are acting.

The convolution theorem provides a well-known relationship between the convolution
operator in the spatial domain and multiplication in the frequency domain. For all f1 ∈ P, f2
∈ P, and (ξ1, ξ2) ∈ ℝ2, [13, Eq. (1.7)] implies that
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(A.21)

The division operator/: G × V → W is defined by

(A.22)

Instead of/(g, v) we use the notation .

B. Inversion of the projection operator
The purpose of this appendix is to justify the claim made in Eq. (15). We do this by
appealing to known results presented in the book by Natterer and Wübbeling [13].
Essentially, all we need to do is to establish the relationship between our notation and that
used in [13].

Let  (the unit sphere in ℝ3). For β ∈ S2, let β⊥ = {x ∈ ℝ3| 〈x,
β〉 = 0}, where 〈x, β〉 = x1β1 + x2β2 + x3β3, for x = (x1, x2, x3)T and β = (β1, β2, β3)T (β⊥ is
the plane through the origin perpendicular to β). Let  = {(β, x)|β ∈ S2, x ∈ β⊥} (the set of
all lines in ℝ3). We introduce a new function space

(B.1)

The 3D ray transform operator : V → L is defined by Natterer and Wübbeling [13, Eq.
(2.28)] by

(B.2)

for all β ∈ S2 and x ∈ β⊥. The backprojection operator for the 3D ray transform : L → V
is defined by Natterer and Wübbeling [13, Eq. (2.31)] by

(B.3)

for x ∈ ℝ3. We now prove that

(B.4)

We first show that the operators  and  are in some sense equivalent. In Eq. (B.2) the
integral through the object is taken along the line determined by a direction β ∈ S2 and a
point y ∈ β⊥; the line consist of the points in the set {y + tβ: t ∈ ℝ}. In Eq. (10) the object
has been rotated by angles θ and φ and the integral is taken along a line parallel to the X3-
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axis. The two lines are really the same line through the object provided that β and y are
appropriately defined in terms of θ, φ, and (x1, x2)T.

To be mathematically precise, we show that, for all v ∈ V, θ ∈ [0, 2π), φ ∈ [0, π), and (x1,
x2)T ∈ ℝ2, if

(B.5)

and

(B.6)

then

(B.7)

This is done by first observing that, for β and y defined by Eqs. (B.5) and (B.6),
respectively, we have by Eq. (6)

(B.8)

Eq. (B.7) follows, by starting with its right hand side and applying Eqs. (B.2), (B.8), (8), (9),
and (10).

We now prove Eq. (B.4) by showing that, for all v ∈ V and x = (x1, x2, x3)T ∈ ℝ3,

(B.9)

We first observe that, for β defined by Eqs. (B.5), it follows from Eq. (7) that

(B.10)

By applying Eqs. (13), (12), and (11), we get that

(B.11)
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To prove Eq. (B.9), we change the variables as indicated in Eq. (B.5) on the right hand side
of Eq. (B.11) and combine Eqs. (B.6), (B.7), (B.10), and (B.3) to yield that [ v] (x) is
equal to

(B.12)

From Theorem 2.14 (with α = 1) and Eqs. (1.15) and (1.7) of [13], it follows that, for all v ∈
V,

(B.13)

where, as before, . Then Eq. (15) follows from Eqs. (B.13), (B.4),
and (14).

C. Stationary phase approximation
The method of stationary phase [17, Chapter 1] is used for evaluation of highly oscillatory
integrals of the form

(C.1)

If G is a smooth function, F is twice differentiable, and all critical points of F (i.e., points at
which the first derivative F′ is zero-valued) are nondegenerate (i.e., the second derivative F″
is not zero-valued), then as ξ → ∞

(C.2)

where S is the set of critical points of F and sgn (a) denotes the sign of the argument a. This
result implies that I (ξ) can be well approximated by the sum on the right hand side, as long
as ξ is sufficiently large. However, it has been shown in many practical applications
[6,11,18,19,20] that the sum approximates the original integral very well even for small
values of ξ.

We consider the following a reasonable working tool based on the method of stationary
phase. If two integrals of the kind shown in Eq. (C.1) differ only in G (they use the same ξ
and F) and the values of G at the critical points of F are approximately the same, then the
values of the integrals are also approximately the same.

Consider the two innermost integrals of Eq. (33),
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(C.3)

Let us assume that ξ1, ξ1, x1, x2, x3 are fixed. We define

(C.4)

where

(C.5)

(C.6)

and

(C.7)

where

(C.8)

(C.9)

The iterated integral of Eq. (C.3) can be written, using these functions, as I2. What we are
going to show is that I2 is (essentially) independent of the blurring function h or,
equivalently, of its Fourier transom H; see Eq. (19). Our way of doing this relies on the
following two facts. First, the critical points θ of F2 = Ψ2 satisfy

(C.10)

this follows from Eqs. (32) and (7). Second, for any θ ∈ [0, 2π), the critical points φ of 
satisfy
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(C.11)

see Eqs. (C.6), (31), and (7). From Eq. (7) follows that

(C.12)

which, combined with Eq. (C.11), yields that, for all θ ∈ [0, 2π), if φ is a critical point of ,
then . We consider three cases.

Case 1. x1 = x̂1, x2 = x̂2, and x3 = x̂3.

This case has been dealt with in Section 5.

Case 2. x1 = x̂1, x2 = x̂2, and x3 ≠ x̂3.

In this case it follows from Eq. (C.11) that the only critical point φ ∈ [0, π) is .
Furthermore, this critical point is nondegenerate, since . Observing Eq. (C.
5) and the statement following Eq. (C.12), we see that the stationary phase approximation
applied to the integral in Eq. (C.4) implies that, for all θ ∈ [0, 2π),  is (essentially)
independent of H. That I2 is (essentially) independent of H follows from Eqs. (C.8) and (C.
7).

Case 3. Either x1 ≠ x̂1, or x2 ≠ x̂2, or both.

In this case there are exactly two critical points θ ∈ [0, 2π) of F2, they both satisfy Eq. (C.
10). We now show that they are both nondegenerate, by demonstrating that the alternative
leads to a contradiction. If θ is a degenerate critical point of F2, then by taking the second
derivative of F2 we get that

(C.13)

Multiplying Eq. (C.10) by cosθ and Eq. (C.13) by sinθ and adding them together yields x1 =
x̂1. Multiplying Eq. (C.10) by −sinθ and Eq. (C.13) by cosθ and adding them together yields
x2 = x̂2. These together contradict the assumption of Case 3.

By the stationary phase approximation applied to the integral in Eq. (C.7), we see that if we
could prove that G2 (θ) is (essentially) independent of H for the two critical points θ ∈ [0,
2π) of F2, then it would follow that I2 is (essentially) independent of H. This is what we are
going to do now to complete our proof.

It follows from Eqs. (C.10) and (C.11) that if θ is a critical point of F2, then φ is a critical
point of  if, and only if,

(C.14)

Subcase 3a. x3 = x̂3.
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In this subcase every φ ∈ [0, π) is a critical point of . Hence Eqs. (C.8), (C.4), and (C.5),
combined with the remark after Eq. (C.12), yield that G2 (θ) is (essentially) independent of
H for the critical points θ ∈[0, 2π) of F2.

Subcase 3b. x3 ≠ x̂3.

In this subcase the only critical point φ ∈ [0, π) of  is . Furthermore, this critical point
is nondegenerate, as can be seen by taking the second derivative of , applying Eq. (C.10)
and observing that . Hence we can apply the stationary phase approximation
to the integral in Eq. (C.4), and then Eqs. (C.8), (C.4), and (C.5), combined with the remark
after Eq. (C.12), yield that G2 (θ) is (essentially) independent of H for the two critical points
θ ∈ [0, 2π) of F2.

This completes our proof that I2 is (essentially) independent of the blurring function h or,
equivalently, of its Fourier transform H; see (19). In other words, the integral in Eq. (C.3)
and, hence, the integral in Eq. (33), is (essentially) independent of h, proving that κ ≈ 
κ. This implies the validity of the concept of DGCBP, as expressed in Eq. (23).

D. Implementation
Jensen and Kornberg [4] altered the weighted backprojection method [9] to introduce the
distance-dependent CTF correction in their implementation. Our implementation follows the
mathematical developments of this paper and, hence, it is quite different in its details from
the implementation in [4]

We make repeated use of the fast Fourier transform (FFT) and its inverse [21]. In using
FFTs attention has to be paid to the scaling factor in Eq. (14) that is dependent on our
definitions of Fourier transforms given in Eqs. (A.6)–(A.16), which may be scaled
differently from the chosen FFT. Also, in order to reduce effects of various approximations
in the implementation, intermediate working arrays could be set larger than the final array
that needs to be produced. This can be done by padding the arrays representing projection
data with zeros and working with such larger arrays through all the steps described below. In
our implementation, we did not make use of this approach, since we were able to obtain
acceptable results without it.

While our own actual implementation has been done in MATLAB, that choice is not
essential and, most likely, is not optimal. Alternative computing environments can also be
used to carry out the same sequence of logical steps, a description of which now follows.

We start with a projection data set [ v] (θ, φ, x1, x2) for a finite set M of (θ, φ) and, in each
case, for an N × N square array of (x1, x2) with sampling distance Δ Å. Based on this
projection data set, we need to estimate [ v] (x1, x2, x3) for an N × N × N cubic array of
(x1, x2, x3) with sampling distance Δ Å. This is done in three stages.

Distance-dependent spreading back
In the first stage [ v] (θ, φ, x1, x2, x3) is estimated as the N × N × N cubic array of (x1, x2,
x3) with sampling distance Δ Å for all (θ, φ) ∈ M. In our description we assume that x3 is
fixed; in practice, the process has to be carried out for each value of x3.

First we calculate H (ξ1, ξ2, x3) for a square array of (ξ1, ξ2). Since we have an expression
for H (ξ1, (ξ2, x3) in Eqs. (20) and (21), we can calculate its values for an N × N array with
sampling distance 1/ΔN Å−1.
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Applying the 2D FFT to the measured N × N array of samples of [ v] (θ, φ, x1, x2), we
estimate [ v] (θ, φ, ξ1, ξ2) on an N × N array of (ξ1, ξ2) with sampling distance 1/ΔN Å−1.
For each point (ξ1, ξ2) of this array, we define

(D.1)

We see from Eqs. (34) and (24) that, for our fixed (θ, φ) and x3, the 2D inverse FFT of the
array in Eq. (D.1) provides estimates of [ v] (θ, φ, x1, x2, x3) for an N × N square array of
(x1, x2) with sampling distance Δ Å.

By repeating this for all x3, we obtain estimates of [ v] (θ, φ, x1, x2, x3) as an N × N × N
cubic array of (x1, x2, x3) with sampling distance Δ Å. This needs to be repeated for all (θ, φ)
∈ M.

Distance-dependent backprojection via totaling
In the second stage [ ] (x1, x2, x3) = [ v] (x1, x2, x3) is estimated on an N × N × N
cubic array of (x1, x2, x3) with sampling distance Δ Å by a discrete implementation of the
totaling operator of Eq. (12) applied to the arrays obtained in the previous subsection.

First, for each value of (θ, φ) ∈ M, we find estimates of

(D.2)

for points of an N × N × N cubic array with sampling distance Δ Å. According to Eq. (7),
ρθ,φ(x1, x2, x3) is obtained by unrotation by (θ, φ) of [ v] (θ, φ, x1, x2, x3), which is the
array defined at the end of the last sub-section. In our actual implementation the unrotation
of the 3D voxel array is done by MATLAB’s imrotate function with bicubic interpolation.
There are potentially more accurate approaches; see, e.g., [22].

The integration in Eq. (12) is approximated by

(D.3)

where dθ,φ, can be chosen to be simply 4π/|M|, which is valid if the sampling in (θ, φ) is
reasonably uniform, or proportional to the size of the Voronoi neighborhood on the
sampling point (θ, φ) on the unit sphere. Equation (D.3) is evaluated for an N × N × N cubic
array with sampling distance Δ Å.

Deblurring
The last stage is the implementation of Eq. (14) applied to the array of values obtained in the
last section. A way to do this is to apply the 3D FFT and then to multiply the values in the

resulting array at the point (ξ1, ξ2, ξ3,) by . To suppress the (less reliable) values
at the higher frequencies we use a window function; in our implementation we used a
window that sets the values to zero at points (ξ1, ξ2, ξ3,) whose distance from the origin in
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Fourier space is greater than 0.9/2Δ. The required final N × N × N cubic array of
reconstructed values at points (x1, x2, x3) with sampling distance Δ Å is obtained by an
application of the inverse 3D FFT.

Display of the result
The described method looses information regarding the absolute (as opposed to relative)
values in the object to be reconstructed due to its Fourier transform being set to zero at the
origin. This problem is not purely mathematical: the CTF also causes the same if the value
of a is (near) zero, see Eqs. (20) and (21). In order to obtain biologically useful information,
the reconstructed values need to be mapped into displayed values in a careful manner.

To produce the illustrations for this paper, we applied an affine transformation to the
reconstructed values obtained as in the last subsection in such a way that after the
transformation the mean and standard deviation in the reconstruction are the same as in the
phantom. After this the two arrays (phantom and reconstruction) are mapped into displayed
values by the same rule.
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Figure 1.
Cross sections of a phantom (a) and of three reconstructions from projection data that were
calculated with distance-dependent blurring: with correction for the distance-dependent
contrast transfer function (b), with correction appropriate for the central layer of the
specimen (c), and with no correction for the contrast transfer function (d).
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Figure 2.
Rotation of a molecule inside the microscope. (a) Molecule in standard position. (b) First
rotation: by angle θ around the X3-axis. (c) Second rotation: by angle φ around the X2-axis.
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Figure 3.
Operators and the spaces of functions on which they act.
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Figure 4.
Numerical test phantom.
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Figure 5.
(a) Image of a section of the phantom in Fig. 4. (b) Image of matching section of the
DGCBP reconstruction from 5,000 distance-dependently blurred micrographs. (c)
MATLAB 3D plot of (a). (d) MATLAB 3D plot of (b).
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Figure 6.
(a) Image of a single unblurred projection of the phantom shown in Fig. 4; white lines
indicate the pixels for which profiles are plotted. (b) Image of the matching distance-
dependently blurred micrograph of the phantom. (c) Profiles for lines in (a). (d) Matching
profiles in (b).
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Figure 7.
Numerical test phantom composed of concentric rings of spheres of various sizes, digitized
into a 128 × 128 × 128 voxel array.
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Figure 8.
A single projection of the phantom in Fig. 7: (a) ideal projection with no CTF blurring, (b)
distance-dependently blurred projection, (c) distance-dependently blurred projection with
added noise using σ1 = 0.3052 and σ2 = 2.99, (d) distance-dependently blurred projection
with added noise using σ1 = 0.6103 and σ2 = 6.
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Figure 9.
Three different cross-sections of the phantom (first column), of the reconstructions from
noisy projection data generated using σ1 = 0.3052 and σ2 = 2.99 obtained by DD
backprojection (second column) and by CL backprojection (third column) and of the
reconstructions from noisy projection data generated using σ1 = 0.6103 and σ2 = 6 obtained
by DD backprojection (fourth column) and by CL backprojection (fifth column).

Kazantsev et al. Page 34

Ultramicroscopy. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Surface renderings of two reconstructions from the noisy projection data generated using σ1
= 0.6103 and σ2 = 6. (a) and (b) are rendered for voxel values thresholded at 0.5; (c) and (d)
are rendered for voxel value thresholded at 0.9. (a) and (c) were obtained using DD
backprojection; (b) and (d) were obtained using CL backprojection.
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Figure 11.
Three different cross-sections of the phantom (first column), of the reconstructions from
projection data with incorrectly determined defocus parameters using σ3 = 1 and σ4 = 50
obtained by DD backprojection (second column) and by CL backprojection (third column)
and of the reconstructions from projection data with incorrectly determined defocus
parameters using σ3 =5 and σ4 = 100 obtained by DD backprojection (fourth column) and by
CL backprojection (fifth column).
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Figure 12.
Three different cross-sections of the reconstructions from projection data with incorrectly
estimated projection angles using σ5 = 1 obtained by DD backprojection (first column) and
by CL backprojection (second column) and of the reconstructions from projection data with
incorrectly estimated projection angles using σ5 = 3 obtained by DD backprojection (third
column), by CL backprojection (fourth column) and by backprojection from the data
unaffected by a CTF (fifth column).
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