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Irregularly Appearing Early Afterdepolarizations in Cardiac Myocytes:
Random Fluctuations or Dynamical Chaos?
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ABSTRACT Irregularly occurring early afterdepolarizations (EADs) in cardiac myocytes are traditionally hypothesized to be
caused by random ion channel fluctuations. In this study, we combined 1), patch-clamp experiments in which action potentials
were recorded at different pacing cycle lengths from isolated rabbit ventricular myocytes under several experimental conditions
inducing EADs, including oxidative stress with hydrogen peroxide, calcium overload with BayK8644, and ionic stress with hypoka-
lemia; 2), computer simulations using a physiologically detailed rabbit ventricular action potential model, in which repolarization
reservewas reduced togenerateEADsand random ion channel or path cycle length fluctuationswere implemented; and3), iterated
mapswithorwithout noise.Bycomparingexperimental,modeling, andbifurcationanalyses,wepresentevidence thatnoise-induced
transitions between bistable states (i.e., between an action potential with and without an EAD) is not sufficient to account for the
large variation in action potential duration fluctuations observed in experimental studies. We conclude that the irregular dynamics
of EADs is intrinsically chaotic, with random fluctuations playing a nonessential, auxiliary role potentiating the complex dynamics.
INTRODUCTION
Early afterdepolarizations (EADs) are voltage oscillations
that occur during the repolarizing phase of the cardiac action
potential (AP) and are associated with lethal cardiac arrhyth-
mias (1–7). EADs usually occur in the setting of reduced
repolarization reserve, which can result from either a reduc-
tion in outward currents or an increase in inward currents, or
both, such as in congenital long-QT syndromes (8–11) and
heart failure (12,13), or in the presence of drugs (14–19).

Awidely observed phenomenon is that EADs often occur
irregularly (5,12,20,21). This irregularity has traditionally
been attributed to randomfluctuations, particularly stochastic
behavior of ion channels. Supporting this view, Tanskanen
et al. (22) simulated a Markovian model of the L-type
calcium (Ca) channel to show that the irregular behavior of
EADs could be attributed to random channel fluctuations
triggering bistable transitions. On the other hand, modeling
studies (23,24) using completely deterministic models have
shown similar irregular EAD dynamics. In recent studies
(5,25), we analyzed this irregular EADdynamics usingmath-
ematical AP models and showed that the irregular EAD
behavior in these models was dynamical chaos arising from
a homoclinic bifurcation (25) and could be described by iter-
ated maps (5). A characteristic feature of the mathematical
models is that this chaotic behavior only occurs over an
intermediate range of pacing rates, whereas at fast or slow
heart rates, AP duration (APD) shows little variation, because
either noAPs exhibit EADs, or all APs exhibit EADs. Similar
features were observed in our experimental recordings
from isolated rabbit myocytes exposed to H2O2 to induce
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EADs (5). However, in real myocytes, random fluctuations
are always present, which raises two questions: 1), are the
large irregular fluctuations in APD at intermediate pacing
rates observed in the experiments due to random transitions
between bistable (or multistable) states triggered by channel
noise, as suggested by Tanskanen et al. (22), or to dynamical
chaos, as shown in our models (5,25)? 2), if irregular EADs
that cause large random APD fluctuations are triggered by
noise, are they stochastic or still chaotic?

In this study, we combined experiments in isolated patch-
clamped rabbit ventricular myocytes, computer simulations
in physiologically detailed APmodels, and iteratedmap anal-
ysis to dissect the underlying mechanisms of irregularly
occurring EADs. We show that purely noise-induced transi-
tions between bistable states (i.e., between an AP with and
without an EAD) is not sufficient to account for the large vari-
ation in APD fluctuations observed in the experimental and
modeling studies. Therefore, our major conclusion is that
irregular EAD behavior is intrinsically chaotic, with random
ion channel or heart rate fluctuations playing an auxiliary role.
METHODS

Experimental methods

Cell isolation

The use and care of the animals in these experiments were reviewed and

approved by the Chancellor’s Animal Research Committee at the Univer-

sity of California, Los Angeles, and the Institutional Animal Care and

Use Committee at the University of Medicine and Dentistry of New Jersey,

Newark, NJ. Ventricular myocytes were enzymatically isolated from adult

rabbit hearts (19,26). Briefly, hearts were removed from adult New Zealand

white rabbits (2–3 kg) anesthetized with intravenous pentobarbital, and

perfused retrogradely in Langendorff fashion at 37�C with nominally

Ca-free Tyrode’s solution containing ~1.4 mg/ml collagenase (Type II,
doi: 10.1016/j.bpj.2010.05.019
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Worthington, Freehold, NJ) and 0.1 mg/ml protease (type XIV, Sigma,

St. Louis, MO) for 25–30 min. After washing out the enzyme solution,

the hearts were removed from the perfusion apparatus and swirled in a

culture dish. The Ca concentration was slowly increased to 1.8 mM and

the cells were stored at room temperature and used within 8 h.

Patch-clamp methods

Myocytes were patch-clamped using the whole-cell configuration of the

patch-clamp technique in the current clamp mode (19,26). Patch pipettes

(resistance 2–4 MU) were filled with internal solution containing (in mM)

110 K-Aspartate, 30 KCl, 5 NaCl, 10 HEPES, 0.1 EGTA, 5 MgATP, 5 crea-

tine phosphate, and 0.05 cAMP, pH 7.2 adjusted with KOH. Myocytes were

superfused with standard Tyrode’s solution containing (in mM) 136 NaCl,

5.4 KCl, 0.33 Na2PO4, 1.8 CaCl2, 1 MgCl2, 10 glucose, and 10 HEPES,

pH 7.4 adjusted with NaOH. H2O2 (0.1–1 mM) or BayK8644 (50 nM,

from a stock solution dissolved in dimethylsulfoxide) were added directly

to the superfusate. APs were elicited with 2 ms, 2–4 nA square pulses at

various pacing cycle lengths (PCLs). Voltage signals were measured with

an Axopatch 200B patch-clamp amplifier controlled by a personal com-

puter using a Digidata 1200 acquisition board driven by pCLAMP 8.0 soft-

ware. All experiments were carried out at ~35�C.
Simulation methods

Isolated cell

Voltage is described by the differential equation

dV=dt ¼ ð � Iion þ IstiÞ=Cm; (1)

where V is the membrane potential, Cm ¼ 1 mF/cm2, Iion is the total

membrane ionic current Iion ¼ INa þ Ito;f þ Ito;s þ IKr þ IKs þ IK1 þ INaKþ
ICa;L þ INaCa, Isti is the stimulus pulse (amplitude 40 mA/cm2 and duration

1 ms). To simulate EADs, we modified the AP model originally developed

by our group (27) by altering the rate constants in the Markovian model of

the L-type Ca current (ICa,L) to cause steeper activation and inactivation

kinetics, increasing the maximum conductance of the L-type Ca current,

and reducing the maximum conductance of IKs, as summarized in our

previous study (5). The modifications to ICa were based on our own exper-

imental data of rabbit ventricular myocytes under the conditions of isopre-

tenenol (A. Mahajan, L.-H. Xie, and J. N. Weiss, unpublished data). Eq.1

was numerically solved using a Euler method with adaptive time steps

varying from 0.01 ms to 0.1 ms. APD was defined as the time duration

when V > �80 mV. The APD restitution curve was calculated using the

S1S2 pacing protocol, in which the cell was paced with an S1S1 interval

of 2 s to the steady state, followed by a variable S1S2 interval to determine

the relationship between the diastolic interval (DI) and the APD.

One-dimensional cable

The partial differential equation that describes the membrane potential V in

the 1D cable is

vV

vt
¼ ð � Iion þ IstiÞ=Cm þ D

v2V

vx2
; (2)

where D is the diffusion constant, which was set to 0.001 cm2/ms. With this

diffusion constant, the conduction velocity is ~55 cm/s. No-flux boundary

conditions were used for Eq. 2. Eq. 2 was discretized with Dx ¼ 0.15 mm

(roughly the length of a myocyte). Isti is the stimulation current, with a dura-

tion of 1 ms and amplitude of 40 mA/cm2.

Stochastic ion channel fluctuations

To simulate stochastic channel fluctuations, we modified the ionic currents

in the AP model by modeling the gating variables using a Langevin
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equation developed by Fox (28). For example, for the gating variable xs1
of IKs, the Langevin equation is

dxs1
dt

¼ kþ ð1� xs1Þ � k�xs1 þ hðtÞ; (3)

where h is the stochastic noise with the correlation relation

hhðtÞhðt0Þi ¼ kþ ð1� xs1Þ þ k�xs1
N

dðt � t0Þ; (4)

kþ ¼ xNs =txs1, k� ¼ 1=txs1 � kþ, and N is the total number of IKs channels.

Similar equations were used for the gating variables of INa, IKr, Ito,f, and Ito,s
to simulate the random channel fluctuations. Since the calcium current ICa,L
is described by a Markovian model, and therefore we cannot use Fox’s

approximation, we used an algorithm to simulate the random Markov tran-

sitions, similar to the one developed by Gillespie (29) for chemical reac-

tions, which is computationally much more tedious than the Langevin

representation. As indicated in Eq. 4, the noise strength is inversely propor-

tional to
ffiffiffiffi

N
p

, so that larger N corresponds to weaker noise strength. The

number of ion channels in a myocyte may be different for different currents,

and may vary from cell to cell, e.g., it was estimated that a ventricular

myocyte might contain 40,000 to 200,000 Ca channels (22). In this study,

we used N ¼ 22,000 for most of the simulations. We also varied N (but

maintained the maximum conductance of ion currents unchanged to main-

tain the same average APD) to investigate the effects of the noise strength

on the APD dynamics. These results are shown in Fig. S6, Fig. S7, Fig. S8,

and Fig. S9 in the Supporting Material.
RESULTS

Irregular EAD dynamics in isolated
ventricular myocytes

It has been shown that H2O2 promotes EADs in cardiac
myocytes, a process that is dependent on oxidative activa-
tion of Ca-calmodulin kinase enhancing the late Na current
and L-type Ca current (17,19,30). The typical pattern of
H2O2-induced EAD dynamics has been shown in our
previous study (5): at slow pacing (PCL ¼ 6 s), the APD
is regular from beat to beat, with EADs present on every
AP; at fast pacing (PCL ¼ 2 s and 1 s), the APD is also
regular from beat to beat, but no EADs are present; however,
in the intermediate range of pacing rates (PCL ¼ 3 s and
4 s), the APD and the occurrence of EADs are irregular
from beat to beat. Here, we plot the APD histograms
(Fig. 1), which show that APD variation at either slow or
fast pacing rates is much less than at the intermediate rates.

We also induced EADs in rabbit ventricular myocytes
by a different method, exposure to the L-type Ca channel
agonist BayK8644 (14,15), and the resulting voltage traces
at different PCLs can be seen in Fig. 2 A. The APD histo-
grams (Fig. 2 B) for different PCLs show the same charac-
teristics as in H2O2-induced EADs, i.e., small APD variation
at both slow and fast pacing rates, but much larger variation
with multiple peaks at the intermediate pacing rates. Note
that the ranges of intermediate rates that produce irregular
EADs vary depending on the method of EAD induction.
This is also true in the computer models, in which the inter-
mediate range of rates can vary depending on parameter
changes or the model (5,25).
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Finally, we induced EADs in rabbit ventricular myocytes
by a third method, exposure to hypokalemia (2.7 mM).
Fig. 3 shows the recordings of APs (left) and APD histo-
grams (right) at different PCLs. The AP behavior was
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multiple EADs occurred on each AP, eventually culminating
in repolarization failure. This is similar to EAD behavior in
the modified Luo and Rudy model shown in Tran et al. (25).
In that case, at long PCLs, the APD variation did not
become smaller, but increased due to the increasing number
of EADs. The PCL at which repolarization failure occurred
varied from cell to cell, as illustrated in Fig. S1.

With all three methods, EADs occurred in the majority of
myocytes studied (>50 in each case). In the H2O2 and
BayK8644 cases, large APD variations due to irregular
EADs (mostly single) always occurred in the intermediate
range of pacing rates. At very slow rates, single EADs
occurred after each beat, and APD variation decreased.
In the case of hypokalemia, APD variation continuously
increased as the pacing rate decreased, due to the occurrence
of multiple EADs on each AP, until repolarization failure
occurred.
Irregular EADs caused by dynamical chaos

In a completely deterministic rabbit ventricular AP model
(27) tuned to generate EADs (5), we observed similar
EAD rate dependence (although the range of intermediate
PCLs producing irregular variation in APD was different).
Fig. 4 A shows the bifurcation diagram, reproduced from
Sato et al. (5): at the slow pacing rates, APD was constant
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from beat to beat, with an equal number of EADs on each
AP; at fast pacing rates, APD was constant with no EADs
present; at the intermediate pacing rates (0.67–1.04 s), the
APD was mostly irregular, due to the variable appearance
of EADs from beat to beat. However, periodic windows
also existed in this range. For example, between PCL ¼
0.85 s and PCL ¼ 0.9 s, APD exhibited only two values
(called period 2) for each PCL, a type of APD alternans
with an EAD occurring on every other beat. Other periodic
behaviors also occurred (e.g., period 4 between PCL ¼
0.92 s and PCL ¼ 0.95 s). Periodic windows, i.e., PCL
ranges exhibiting periodic behaviors between two chaotic
regions, are a characteristic feature of chaotic systems (31).
The fraction of APs exhibiting EADs increased from 0 to 1
as the PCL increased over the intermediate pacing rates
(Fig. 4 B). APD histograms from different PCLs (Fig. 4 C)
show that the chaotic region resembles that in the experi-
mental data in Fig. 1. The mechanism underlying EAD
chaos has been described in our previous studies (5,25),
and is related to a homoclinic bifurcation.

To better understand the dynamical mechanisms of irreg-
ular EAD behavior, we also developed a minimum three-
variable model (Supporting Material), which exhibited
complex EAD dynamics (Fig. S2 and Fig. S3), such as chaos
and period 2 behavior (EAD alternans), similar to those
shown in the physiologically detailed rabbit ventricular AP
model. Since there is almost no memory in the three-vari-
able model, the S1S2 APD restitution curve (APD versus
DI) is quantitatively similar to the plot of APDnþ1 versus
DIn from the chaotic EAD region, and the bifurcation
diagram obtained from an iterated map using the S1S2 resti-
tution curve is also quantitatively similar to that obtained
from the three-variable model (Fig. S4). The analysis of
the three-variable model establishes that complex EAD
dynamics from the high-dimensional system can be repli-
cated by a minimal three-variable system, in which chaos
can be more rigorously analyzed.
Role of random fluctuations

To study the role of random ion channel fluctuations, we
added random fluctuations (noise) to one of the currents
(IKs) in the AP model, as described in Methods. Fig. 5 A
shows that after the addition of noise, the bifurcation
diagram is similar to that in Fig. 4 A, except that the periodic
windows have disappeared. The minimum PCL at which
EADs occurred decreased from 0.67 s to 0.63 s, whereas
the minimum PCL at which every AP exhibited EADs
was almost unchanged, at 1.04 s. The fraction of APs exhib-
iting EADs increased almost linearly from zero (PCL %
0.63 s) to 1 (PCLR 1.04 s) as the PCL increased (Fig. 5 B).
The APD histograms from different PCLs (Fig. 5 C) were
similar to the experimental data.

The presence of noise caused onset of EAD irregularity to
occur at a shorter PCL interval of 0.63 s, compared to 0.67 s
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in the absence of noise (Fig. 6 A). A question that arises is
whether the irregular behavior in this region is random or
chaotic. To answer this question, we first carried out two
simulations in which the sequence of the random variation
in IKs was exactly the same, but the initial conditions were
slightly different. After several beats, the two AP patterns
became completely different, indicating a sensitive depen-
dence on initial conditions, which is the hallmark of chaos.
If the irregular behavior had been due to randomness alone,
the APs should have converged to the same values for the
same sequence of IKs noise. To substantiate this point fur-
ther, we carried out simulations in a 1D cable in which every
myocyte was paced simultaneously, in the absence and pres-
ence of IKs fluctuations (Fig. 6 B). In the absence of IKs
noise, APD remained spatially uniform throughout, but in
the presence of IKs noise, APD heterogeneities developed
in space and changed from beat to beat. This agrees with
our previous studies (5,32), which showed that regional
chaos synchronization causes dispersion of refractoriness
in homogeneous tissue. Therefore, the noise-induced irreg-
ular EAD behavior is still chaotic, reflecting the phenom-
enon of noise-induced chaos widely studied in general
nonlinear systems (33–36) and in a recent study in cardiac
tissue (37).

The disappearance of the periodic windows in Fig. 4 A
and their replacement by irregular behavior in Fig. 5 A
was also due to noise-induced chaos, as shown by the simu-
lation in Fig. 6 C. When this 1D cable was paced in a period
2 window, APD distribution was uniform before noise was
added, but became nonuniform and changed from beat to
beat after noise was added to IKs. However, noise in a peri-
odic window does not always induce irregular EAD
dynamics and chaos. In the three-variable model, the large
period 2 window (EAD alternans) is still maintained in
the presence of random channel fluctuations (see Fig. S5).
Also note that although random fluctuations of ion channels
can cause large APD fluctuations in isolated myocytes, large
spatial APD gradients cannot occur in well-coupled tissue in
the absence of chaotic or all-or-none behaviors of EADs
(see Fig. S6).

The behaviors shown above did not depend on the specific
source of the noise. When random fluctuations were added
to other ion currents, the same behaviors were observed
(see Fig. S7 and Fig. S8). In addition, if, instead of ion
channel noise, we added a 10% random fluctuation in the
PCL, we observed the same bifurcation diagram (Fig. 7, A
and B). That is, the periodic windows disappeared and the
Biophysical Journal 99(3) 765–773
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minimum PCL for EADs decreased to 0.65 s, whereas the
PCL transition from irregular to regular EAD behavior
remained at 1.04 s. Simulations in the 1D cable show that
the irregular behavior induced by the PCL fluctuations
caused large dispersion in APD, which changed from beat
to beat (Fig. 7 C).

Thus, regardless of its specific type or origin, noise
changed only the PCL threshold for the transition from no
EADs to irregular EADs, but almost did not alter the PCL
threshold for the transition from irregular EADs to regular
EADs, which remained fixed at PCL ¼ 1.04 s. Even when
the noise strength was increased almost threefold, this
threshold only had a small change (Fig. S9).
Iterated map analysis

We showed in our previous studies (5,25) that chaos in EAD
behavior can be understood by an iterated map derived from
APD restitution properties. Here, we use the iterated map
method to study the roles of chaos and random fluctuations
in irregular EAD dynamics.

In the absence of memory, the current APD can be ex-
pressed as a function of the previous DI, i.e., APDnþ1 ¼ f
(DIn). During periodic stimulation, DIn¼ PCL�APDn, and

APDnþ 1 ¼ f ðDInÞ ¼ f ðPCL� APDnÞ: (5)

To study the effects of random fluctuations, we added
random variations to the APD, i.e.,

APDnþ 1 ¼ f ðDInÞ þ xn ¼ f ðPCL� APDnÞ þ xn; (6)

where xn is a random number with a Gaussian distribution.
For f(DIn), we used the APD restitution curve measured with
Biophysical Journal 99(3) 765–773
an S1S2 protocol from the AP model (Fig. 8 A). The iterated
map shows that at either long PCL or short PCL in the
absence of noise, APDs are constant from beat to beat, but
at intermediate PCLs, higher periodic states and chaos
occur. In Fig. 8 B, the histograms of APD distributions for
several PCLs show different APD behaviors. In the presence
of Gaussian noise (Fig. 8 C), the APD distributions in the
periodic windows exhibit similar Gaussian distributions,
whereas in chaotic regions, the presence of noise does not
markedly alter the histograms but makes them smoother,
as in the ordinary differential equation simulations. Note
that EAD alternans is still maintained in the presence of
noise, similar to the case of the three-variable model shown
in the Supporting Material.

In contrast, if we constructed a map f(DIn) function with
no elements capable of generating chaos, using a trivial step
function (Fig. 9 A) to model an all-or-none transition to
EADs, i.e.,

APDnþ 1 ¼ APD0½1 þ aqðDInÞ� þ xn; (7)

where q is the step function, such that q(DIn) ¼ 0 if DIn <
DIc, and q(DIn) ¼ 1 if DIn R DIc. DIn ¼ PCL � APDn.
In the absence of noise, the APD is constant for either
long PCL or short PCL, whereas APD alternans occurs at
intermediate PCL (Fig. 9 B). No chaos can occur in this
map. In the presence of noise, the APD distributions are still
Gaussian distributions, with roughly the same deviation at
all PCLs, changing from unimodal to bimodal and back to
unimodal (Fig. 9 C). Note that we used a discontinuous
map of a trivial step function in which the slopes of the
two segments are zero. For a discontinuous map with two
nonzero sloped segments, the additive noise does not get
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FIGURE 8 APD histograms in a chaotic iterated

map model. (A) APD versus DI obtained using

a S1S2 protocol (5). (B) APD histograms for dif-

ferent PCLs (as labeled) obtained using the map

function in A and Eq. 5 in the absence of noise.

(C) APD histograms for the same PCLs as in B

in the presence of noise. The noise, xn (Eq. 6),

was a Gaussian random number, with hxni ¼ 0

and standard deviation s ¼ 3 ms.
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amplified into large variations as long as the slope is <1 to

avoid chaos, and the histogram distributions remain similar

to those in Fig. 9 C. This is different from either the chaotic

map (Fig. 8) or the experimental observations (Figs. 1–3), in

which the APD distributions are much broader for the inter-

mediate PCLs (for the cases of H2O2 and BayK8644), or

become progressively broader as PCL increases (for the

case of hypokalemia). In other words, the large APD fluctu-

ations and their sensitive dependence on PCL cannot be

explained by noise. Rather, they agree better with the

chaotic EAD dynamics shown in this study and our previous

studies (5,25). This leads us to conclude cautiously that

irregular EADs in rabbit ventricular myocytes are due to

dynamical chaos, with random fluctuations playing a sec-

ondary role.
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DISCUSSION

Ion channel and other intrinsic random fluctuations natu-
rally exist in cardiac myocytes, and they cause irregular
variations in AP morphology and duration. In this study,
we present evidence that the irregular EAD behavior widely
observed in cardiac myocytes is not simply due to random
fluctuations, or noise-mediated bistable transitions, as pro-
posed by Tanskanen et al. (22), but is caused by dynamical
chaos. Although we can prove the existence of EAD chaos
in a mathematical model, and show that the noise-induced
irregular EADs are still chaotic, we cannot absolutely
exclude that a nonchaotic behavior induced by random fluc-
tuations could account for irregular EAD behavior in real
cardiac myocytes, especially if the magnitude of the random
fluctuations is very large. However, three completely
800 900 1000
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FIGURE 9 APD histograms in a nonchaotic map

model. (A) APD as a step function of DI. (B) APD

histograms for different PCLs (as labeled) obtained

using the map function in A and Eq. 7 in the

absence of noise. (C) APD histograms for the same

PCLs as in B in the presence of noise. The noise xn
(Eq. 7) was a Gaussian random number with

hxni ¼ 0 and standard deviation s ¼ 3 ms.
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different methods of inducing EADs gave similar findings
consistent with the modeling and bifurcation analyses, sug-
gesting that a common mechanism, consistent with the
dynamical chaos explanation, is at play. The nonpharmaco-
logic method of inducing EADs, hypokalemia, is also
directly relevant to the clinical setting. These findings indi-
cate that although other mechanisms may also be important,
real myocytes have an intrinsic mechanism in place to
explain irregular EAD behavior as a form of chaos, with
random fluctuations playing an auxiliary role.

Dynamical chaos and other complex behaviors have been
widely studied in real cardiac myocytes and AP models
(32,38–44). Here, and in our previous studies (5,25), we
have identified another type of chaotic behavior, EAD
chaos. Since chaos arises from dynamical instabilities,
understanding the dynamical mechanisms of chaos may
lead to insights into novel therapeutic approaches based on
suppressing dynamical instabilities (45), whereas random-
ness is very difficult to target therapeutically.
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