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Abstract

Estrogen receptor ERα and ERβ heterodimerization has been implicated in cancer
chemoprevention. The discovery, structural elucidation and total synthesis of a new natural
product, actinopolymorphol A (1), from Actinopolymorpha rutilus (YIM45752) that preferentially
induces ERα/β heterodimerization is reported. Total synthesis of 1 has allowed us to determine its
absolute stereochemistry and that of a previously known deacetylated congener, and 1 represents
the first member of a new class of natural products not previously recognized to modulate ER
function.

The estrogen receptors (ERs) are ligand-inducible transcription factors implicated in a wide
array of biological processes. Binding of 17β-estradiol (E2) and other estrogenic ligands
triggers receptor dimerization and subsequent control of gene transcription. ERs exist in two
forms, ERα and ERβ, which have opposing roles in regulating estrogen action: ERα
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promotes, whereas ERβ, inhibits E2-dependent cell growth.1 Notably, the coexpression of
ERβ with ERα leads to reduced proliferation of breast cancer cells and ~60% of all breast
tumors express both receptors.2 Coexpression of ERβ has been correlated with a more
favorable prognosis relative to tumors expressing ERα alone, and many data now suggest
that ERα/β heterodimers function to regulate distinct E2-responsive genes.3 However, facile
homodimerization has obscured a clear understanding of heterodimer function.

We recently reported a bioluminescent resonance energy transfer (BRET) assay to monitor
the ERα/β heterodimer and its respective homodimer formation in live cells, setting the stage
to screen for homo- and heterodimer selective ER modulators.4 We now report the
discovery and total synthesis of a new natural product, actinopolymorphol A (1), that
preferentially induces ERα/β heterodimerization relative to either homodimer.
Actinopolymorphol A represents the first member of a new class of natural products not
previously recognized to modulate ER function.

During the course of our efforts to identify novel natural products from microorganisms
from diverse and unique ecological niches, we first subjected the crude extract from a
recently identified Actinopolymorpha rutilus (YIM45725)5 originating from a soil sample
from the Yunnan province of China to the BRET assay. Initial assays clearly indicated the
presence of potential ERα/β heterodimerization inducers in the crude extract. Subsequent
large-scale fermentation (5 L) and BRET assay-guided fractionation afforded an active
fraction, from which 1, actinopolymorphol B (2) and C (3) were purified. The 1H and 13C
NMR spectra of purified 1, 2, and 3 were fully assigned on the basis of extensive 1D and 2D
NMR (gCOSY, gHSQC, and gHMBC) and APCI-MS and high-resolution ESI-MS analyses
(Figure 1B and also see Supporting Information). Dereplication revealed 1, 2, and 3 to be
new natural products (Figure 1A) although a relationship to previously reported natural
products (Figure 1C)6–10 is clearly evident for 1 and 2.

Second, we determined, using the BRET assay and pure 1, 2, 3, that 1 was solely responsible
for ERα/β heterodimerization induction (EC50 = 19 μM) and 2 and 3 were devoid of any ER
dimerization inducing activity.11 Consequently, further studies focused exclusively on 1.
Significantly, none of the previously reported natural products to which 1 bears a structural
resemblance have been noted as ER modulators. Thus, the finding that 1 induces ERα/β
heterodimerization may have bearing on the scope of previously reported bioactivities for
this class of natural products (Figure 1C).6,7,9,10

Compound 1 was isolated as a colorless oil, for which HR-ESIMS established the molecular
formula as C15H20O4 (287.12567 [M + Na]+, calcd for C15H20O4Na, 287.12538) possessing
six degrees of unsaturation. Analysis of the NMR spectra revealed chemical shifts indicative
of a ketone (δC 207.8), acetoxyl (δC 170.9, s; δC 19.3, q), one 1,4-disubstituted benzene ring
[(δH 6.68, 2H; δC 115.1, d) and (δH 7.02, 2H; δC 130.3, d)], a secondary alcohol methine (δH
5.08, δC 79.6, d), one methine (δH 2.03, δC 35.7, d), two methylenes (δC 47.8, t; δC 35.7, t),
two secondary methyl groups [(δH 0.82, 3H; δC 21.7, q) and (δH 0.84, 3H; δC 21.7, q)]
(Table S1). On the basis of the gHMBC correlations from two methylene protons to
corresponding carbons and the gCOSY correlations, the connectivity of every carbon was
readily established (Figure 1B).

Third, we established the structure of 1 by total synthesis using the optically pure starting
material (S)-2-hydroxy-3-(4-hydroxyphenyl)-propionic acid (98% purity) (4, Figure 2A).
Conversion of 4 to methyl ester 5 was effected using methanolic HCl followed by treatment
with TBSCl and imidazole to afford diprotected methyl ester 6. The methyl ester underwent
smooth conversion to the Weinreb amide 7 by treatment with N, O-dimethyl-hydroxylamine
hydrochloride in the presence of (CH3)2CHMgCl. Grignard reaction of 7 with
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(CH3)2CHCH2MgCl proceeded extraordinarily slowly over the course of 24 hrs but
ultimately afforded the diprotected isobutyl ketone 8 in 67% yield from the Weinreb amide.
Subsequent cleavage of both silyl ethers with tetrabutylammonium fluoride (TBAF)
afforded the corresponding diol 9 in 81% yield. Notably, production of 9 from 4 constitutes
a total synthesis of the natural product 4-hydroxysattabacin from Sorangium cellulosum
(Figure 1C), for which absolute stereochemistry has been unclear.6 The optical rotation of 9
was found to be +18.3 (c 0.21, CH3OH), which compares favorably to the number
previously published for 4-hydroxysattabacin [+14 (0.3, CHCl3)],6 assigning 4-
hydroxysattabacin as the S-enantiomer. Diacetylation of 9 was accomplished in 72% yield
upon subjection of the diol to excess acetic anhydride and pyridine. Selective deacetylation
of the phenol moiety was accomplished using neat pyrrolidine at room temperature,
affording finally the synthetic 1 as the S-enantiomer. 1H- and 13C NMR spectral data for
synthetic 1 were identical to those previously obtained for natural 1 from A. rutilus
YIM45725. BRET assay confirmed that natural and synthetic 1 displayed identical (within
standard error) abilities to induce ERα/β heterodimerization.11

Finally, the absolute stereochemistry of 1 was confirmed by comparative chiral HPLC and
optical rotation analyses. Both the natural and synthetic 1 were found to be identical upon
chiral HPLC analyses, possessing the same retention time (Figure 2B) and identical UV-Vis
spectra, and to have almost identical optical rotations; +20.9 (c 0.15, CH3OH) for natural 1
and +23.5 (c 0.28, CH3OH) for synthetic 1 (the slight difference in optical rotations is
attributed to different concentrations). On the basis of these data, we conclude that 1 from A.
rutilus YIM45725 has the S-configuration at C8; this is consistent with the stereochemistries
found in the kurasoins and, as unveiled here, 4-hydroxysattabacin.6,8

Selective ER modulators are well established and a number of them are used clinically such
as the tamoxifen and raloxifene.12,13 Of particular significance during the development of
such agents has been the realization that diols or other agents, able to form H-bonding
networks with the ligand binding domains of ER spaced a distance of ~12Å apart, can
effectively compete for ER binding with E2 and thereby elicit clinically significant
activities. On this basis, we postulate that the phenol moiety of 1 is likely critical to ER
heterodimerization activity; an understanding of ER-E2 interactions in which the phenol
moiety of E2 is involved in H-bonding supports this hypothesis.13 The small size of 1 yet
pronounced ability to modulate ER activity, and relatedness to already established natural
products suggests that further study of this class of natural products is clearly warranted. Our
ability to produce 1 biosynthetically and via total synthesis provides an outstanding platform
to more rigorously elucidate ER heterodimerization by new analogues bearing this
privileged molecular scaffold.
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Figure 1.
Actinopolymorphol A (1), B (2), and C (3) from ERα/β heterodimerizing fraction of A.
rutilus crude extract: (A) structures of 1, 2, and 3; (B) COSY and HMBC correlations
observed for 1, 2, and 3; and (C) the sattabacin, sattazolin and kurasoin classes of natural
products bearing molecular scaffolds similar to 1 or 2.6–10
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Figure 2.
Synthesis and chiral HPLC analysis of natural vs. synthetic 1: (A) reagents and conditions
for total synthesis of 1 from the optically pure starting material 4 [(a) MeOH, HCl, rt.
quantative (b) TBSCl, imidazole., DMF, rt. 90%; (c) HN(OMe)CH3-HCl, (CH3)2CHMgCl,
THF, 0 °C, 81%; (d) (CH3)2CHCH2MgCl, THF, 0°C-rt, 67%; (e) TBAF, THF, rt. 86%; (f)
Ac2O, pyridine, rt. 72%; (g) pyrrolidine, 1 min., rt. 66%] and (B) chiral HPLC analysis of
racemic 1, 1 from A rutilus (blue), synthetic 1 (red). ●, 1, and ▼ the R-enantiomer of 1.
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