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Antiretroviral drugs suppress virus burden in the ce-
rebrospinal fluid of HIV-infected individuals; how-
ever, the direct effect of antiretrovirals on virus rep-
lication in brain parenchyma is poorly understood.
We investigated the effect of short-term combined
antiretroviral therapy (CART) on brain virus burden
in rhesus monkeys using the CD8-depletion model of
accelerated simian immunodeficiency virus (SIV) en-
cephalitis. Four monkeys received CART (consisting
of the nonpenetrating agents PMPA and RCV) for four
weeks, beginning 28 days after SIV inoculation. Lower
virus burdens were measured by real-time RT-PCR in
four of four regions of brain from monkeys that re-
ceived CART as compared with four SIV-infected, un-
treated controls; however, the difference was only
significant for the frontal cortex (P < 0.05). In con-
trast, significantly lower virus burdens were mea-
sured in plasma and four of five lymphoid compart-
ments from animals that received CART. Surprisingly,
despite normalization of neuronal function in treated
animals , the numbers of activated macrophages/
microglia and the magnitude of TNF-� mRNA
expression in brain were similar between treated
animals and controls. These results suggest that
short-term therapy with antiretrovirals that fail to
penetrate the blood–cerebrospinal fluid barrier can
reduce brain virus burden provided systemic virus

burden is suppressed; however , longer treatment
may be required to completely resolve encephalitic
lesions and microglial activation, which may reflect
the longer half-life of the principal target cells of
HIV/SIV in the brain (macrophages) versus lym-
phoid tissues (T lymphocytes). (Am J Pathol 2010,

177:777–791; DOI: 10.2353/ajpath.2010.091248; DOI:

10.2353/ajpath.2010.091248)

Human immunodeficiency virus (HIV) infects the central
nervous system (CNS) in addition to lymphoid tissues,
which can lead to the development of a variety of neuro-
logical conditions that are collectively referred to as HIV-
associated neurocognitive disorders. HIV-associated de-
mentia is the most severe neurological complication of
AIDS, occurring in 20 to 30% of HIV-infected individuals
before the advent of highly active antiretroviral therapy
(HAART).1 HAART significantly reduces peripheral virus
burden in most HIV-infected patients, and is credited with
increasing the numbers of CD4� T lymphocytes, restor-
ing immune function, and extending AIDS-free survival.2

Clinical studies have also correlated HAART with a re-
duction in the prevalence of HIV-associated dementia.3–8

Moreover, reports that neurologically impaired patients
experience improvements in neuropsychological, cogni-
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tive, and psychomotor functions and undergo normaliza-
tion of alterations in brain metabolites after the initiation of
HAART suggest that treatment may reduce the severity of
neurological disease.9–13 In addition, viral load in cere-
brospinal fluid (CSF) usually decreases after the onset of
HAART in treatment-naïve patients, despite poor pene-
tration of the blood–brain and blood–CSF barriers by
most antiretroviral agents.14–23

Nevertheless, despite clinical evidence supporting the
efficacy of antiretroviral therapy for HIV-associated de-
mentia, the prevalence of encephalitic and neurodegen-
erative lesions is often high in postmortem studies of
AIDS patients who received HAART,24–27 and there is
evidence of a renewed increase in the frequency of HIV
encephalopathy (HIVE) in response to the greater prev-
alence of multidrug-resistant HIV strains, as well as the
emergence of new variants of HIVE, like severe leukoen-
cephalopathy.28,29 Moreover, there are neuroimaging
and neuropsychological data indicating that there is pro-
gression of brain injury due to HIV despite HAART.30–32

Taken together, these observations suggest that while
HAART may alleviate some of the neurological symptoms
associated with HIV infection, current regimens fail to
eliminate the virus from the CNS and long-term sup-
pression of brain virus burden may be required before
inflammatory and neurodegenerative lesions in the
CNS subside.33,34

The detection of distinct viral variants in blood versus
brain compartments in both antiretroviral-treated and
naïve populations provides evidence that the CNS serves
as an anatomical reservoir for HIV,35,36 and virus seques-
tered in anatomical sanctuaries like the CNS and male
genital tract may pose a significant problem for the ther-
apeutic eradication of HIV from infected individuals.37–41

Many antiretroviral agents, especially protease inhibitors,
exhibit poor penetration across the blood–brain barrier
(BBB); thus, therapeutic levels of these drugs are not
usually established in the extracellular space of the
brain.42,43 Furthermore, the activity of many protease
inhibitors is several fold lower in chronically-infected
macrophages as opposed to chronically infected lym-
phocytes,44 and productive lentiviral infection in the pri-
mate brain is confined almost exclusively to cells of mac-
rophage lineage.45–47 Ongoing viral replication in the
face of subtherapeutic concentrations of antiretroviral
agents is likely to promote the expansion of drug-resis-
tant viral clones, which could potentially repopulate pe-
ripheral lymphoid tissues as macrophages recirculate out
of the CNS.41 A better understanding of the direct effects
of antiretroviral therapy on brain virus burden and on the
encephalitic and neurodegenerative lesions that corre-
late with HIV-associated neurocognitive disorders could
facilitate the development of therapeutic strategies that
are more effective at targeting the CNS; however, the
inaccessibility of brain tissue impedes direct antemortem
measurements of antiretroviral efficacy in the CNS.

SIV infection of Asian macaque monkeys serves as an
excellent model for investigating the neuropathogenesis
of HIVE.48–50 The incidence of encephalitis in macaques
infected with conventional isolates and clones of SIV
ranges from 18 to 32%,51,52 however the frequency of SIV

encephalitis (SIVE) can be increased to more than 80% in
rhesus macaques that are infected after the depletion of
CD8� cells.47,53,54 In this study, we used the CD8� cell-
depletion model of accelerated SIVE in rhesus macaques
to compare the effect of short-term CART on brain versus
peripheral (plasma and lymphoid tissue) virus burdens,
using a therapeutic regimen consisting of one nucleoside
and one nucleotide reverse transcriptase inhibitor, nei-
ther of which penetrate the BBB effectively. Longitudinal
in vivo imaging and magnetic resonance spectroscopy
(MRS) of these animals revealed a near normalization of
neuronal metabolism with short-term CART.54 Given
these findings, we also sought to evaluate the effect of
short-term CART on macrophage activation and the ex-
pression of TNF-� mRNA transcripts in the brain paren-
chyma, two well-established surrogate markers of neu-
roinflammation during primate lentiviral encephalitis.

Materials and Methods

SIV Inoculations, CD8� Lymphocyte Depletions,
and Antiretroviral Therapy

Eight adult rhesus macaques were inoculated with SIV-
mac251 (20 ng of SIV p27 each) by the intravenous route.
To increase the incidence of encephalitis, CD8� cells
were depleted with the anti-CD8 antibody cM-T807,
which was administered subcutaneously (10 mg/kg) on
day 6 after inoculation and intravenously (5 mg/kg) on
days 8 and 12 after inoculation. Four of the eight animals
were randomly selected for CART and received subcu-
taneous injections of PMPA [(R)-9-(2-phosphonylme-
thoxypropyl) adenine] at 30 mg/kg/day and Racivir [(�/�)-
�-2�,3�-dideoxy-5-fluoro-3�-thiacytidine] (RCV), at 10 mg/
kg/day, beginning day 28 after inoculation. All animals
that received CART were euthanized 28 days after
initiation of therapy; untreated control macaques were
euthanized when they developed simian AIDS (SAIDS)
(Table 1).

Necropsy and Tissue Collection

Complete necropsies were performed on all of the mon-
keys, and brain and lymphoid tissues were collected and
fixed in 10% neutral buffered formalin for histopatholog-
ical examination, immunohistochemistry (IHC), and in situ
hybridization (ISH). Matching tissue specimens were col-
lected in RNAlater (Applied Biosystems/Ambion, Austin,
TX) and frozen according to the manufacturer’s instruc-
tions and stored at �80°C for later RNA extraction. For-
malin-fixed tissues were processed to paraffin blocks
according to routine protocols, and paraffin sections
were stained with hematoxylin and eosin for histopatho-
logical examination.

Quantification of Viral RNA in Plasma and CSF

Plasma was obtained by centrifugation of whole blood
that had been collected in EDTA anticoagulant and was
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frozen and stored at �80°C until analyzed. CSF was
acquired from the cerebellomedullary cistern of anesthe-
tized macaques at 21 days post inoculation (dpi) and
immediately before euthanasia, and was snap-frozen and
stored at �80°C until analyzed. Virion-associated RNA
was measured in plasma and CSF by real-time RT-PCR
as previously described.55

Cloning and in Vitro Transcription of SIVgag and
TNF-�

The SIVmac239 gag coding sequence was subcloned by
PCR from a plasmid that contained the 5�-portion of SIV-
mac239 into the pGEMTeasy vector (Promega Corp.,
Madison, WI). Rhesus macaque TNF-� was cloned using
total RNA obtained from the spleen of a healthy animal.
The cDNA was amplified using PCR and cloned into the
pGEMTeasy vector. The clones were verified by se-
quencing both strands of DNA.

In vitro transcription reactions for the SIVmac239 gag,
TNF-�, and RPL13A genes were conducted using T7
RNA polymerase (Megascript kit, Applied Biosystems/
Ambion). Briefly, plasmid constructs were linearized with
restriction enzymes, and in vitro transcription was per-
formed for 7 hours at 37°C using 1 �g of linearized
plasmid as template. Plasmid DNA was digested with
Turbo DNase (Applied Biosystems/Ambion), and the
transcripts were purified on RNeasy spin columns (Qia-
gen, Valencia, CA) and eluted in RNase free water. Tran-
scripts were stored in aliquots at �80°C after the addition
of RNase inhibitor (RNasin, Promega) at a concentration
of 2 units/�l. The concentration of transcripts was deter-
mined using the QuanTi Ribo Green kit (Invitrogen Corp.,
Carlsbad, CA), and the copy numbers were calculated
from the molecular mass of the transcripts. RNA stan-
dards were generated for each real-time RT-PCR reac-
tion by serial dilution of the transcripts in RNase free
water.

Immunohistochemistry

IHC was performed to detect macrophages, B lympho-
cytes, CD8� T lymphocytes, and SIV-infected cells. Mac-
rophages were localized using antibodies directed

against CD68 (clone KP1, Dako Corp., Carpinteria, CA),
Iba-1 (Wako Chemicals USA, Inc., Richmond, VA), and
HLA-DR (clone CR3/43, Dako Corp.). B lymphocytes
were identified with antibodies directed against CD20
(clone L26, Dako Corp.), while CD8� T lymphocytes were
localized with antibody clone 1A5 (Vector Laboratories,
Burlingame, CA). SIV-infected cells were identified with
antibodies directed against SIVnef [clone KK75, Pro-
grame EVA Centre for AIDS Reagents, National Institute
for Biological Standards and Control (NIBSC), UK]56 or
the major capsid protein, SIVp27 [clone 183-H12-5C,
National Institutes of Health (NIH) AIDS Research & Ref-
erence Reagent Program].57 IHC reactions were per-
formed on formalin-fixed paraffin-embedded sections of
the frontal cortex, putamen, hippocampus, and brain-
stem, using a commercial kit (LSAB plus, DAKO Corp.).
The tissue sections were deparaffinized in xylene and
rehydrated through graded ethanol to distilled water. For
CD68 and CD20 immunostaining, antigen retrieval was
performed by microwaving the sections for 20 minutes in
citrate buffer (DAKO Corp.) followed by incubation in 3%
H2O2 to block endogenous peroxidase activity. For anti-
CD8 immunostaining, deparaffinization, rehydration, and
antigen retrieval were performed simultaneously in Tril-
ogy solution (Cell Marque, Rocklin CA), using a pressure
cooker. After 60 minutes of incubation with the respective
primary antibody, the sections were sequentially treated
with biotinylated secondary antibody and horseradish
peroxidase-conjugated streptavidin. The chromogenic
substrate 3, 3�–diaminobenzidine (DAB, DAKO Corp.)
was used to localize antigen-antibody complexes. Tissue
sections were counterstained with Mayer’s hematoxylin
(Sigma Aldrich, St. Louis, MO), cleared, and cover-
slipped with permanent mounting medium.

ISH for SIV RNA

The relative cell-associated virus burden was measured
in four regions of brain parenchyma (frontal cortex, puta-
men, hippocampus, and brainstem) and mesenteric
lymph nodes from each infected macaque in formalin-
fixed paraffin-embedded sections by ISH for SIV RNA, as
described elsewhere.45 Tissue sections were deparaf-
finized in xylene and rehydrated in graded ethanol to

Table 1. Plasma and CSF Virus Load

Group
Case

number
Age

(days)
NDI

(days)

Plasma virus load
(log10 copies/ml)

CSF virus load
(log10 copies/ml)

Encephalitis21 dpi Terminal 21 dpi Terminal

Untreated 1 3116 70 7.7 6.7 4.8 6.00 ���
2 3487 57 7.7 7.6 5.2 5.5 ���
3 3489 63 7.1 7.7 4.5 4.3 ��
4 4606 85 6.6 7.6 5.7 5.0 ����

CART 5 4025 57 7.4 5.4 5.7 3.9 �
6 7584 57 7.1 6.1 6.1 5.9 �
7 3782 57 6.5 4.6 * 4.9 �
8 3778 57 7.2 5.8 * 5.4 �

*Samples not available; Neuropathology scores for encephalitis severity: ��mild, ���moderate, ����severe, �absent. NDI, number of days
postinfection upon which animal was sacrificed.
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diethyl pyrocarbonate (Sigma) treated water. Endoge-
nous alkaline phosphatase activity was blocked with le-
vamisole (Sigma). Tissue sections were hydrolyzed in
HCl (Sigma), digested with proteinase K (Roche Diag-
nostics Corp., Indianapolis, IN), acetylated in acetic an-
hydride (Sigma), and hybridized overnight at 50°C with a
digoxigenin-labeled antisense riboprobe which spans
the entire genome of the SIVmac239 molecular clone of
SIVmac251 (Lofstrand Labs, Gaithersburg, MD). The fol-
lowing day, tissue sections were washed extensively and
bound probe was detected by IHC, using alkaline phos-
phatase-conjugated sheep anti-digoxigenin F(ab) frag-
ments (Roche) and the chromogen nitroblue tetrazolium/
5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP, Roche).
Sections were counterstained with nuclear fast red (Vector
Labs, Burlingame, CA). Sections of brain from a rhesus
macaque with SIVmac251 encephalitis served as both pos-
itive control (when incubated with SIV antisense probe) and
negative control (when reacted with SIV sense probe). Ad-
ditional negative controls included sections of brain from
uninfected macaques reacted with SIV antisense probe.

Computer Image Analysis

SIV-infected cells and macrophages were enumerated in
sections of brain tissue and lymph node biopsy speci-
mens from each of the SIV-infected macaques by com-
puter image analysis as described elsewhere.45 Images
of tissue sections were captured without manipulation
using an Olympus 3-CCD T60C color video camera
mounted on an Olympus Vanox-SI microscope and ana-
lyzed using NIH Image J software. For each anatomical
compartment, virus burden was measured by counting
the number of chromogen-positive cells per unit area
(mm2) on tissue sections that had been subjected to a
carefully controlled ISH assay for SIV RNA; similarly, the
numbers of chromogen-positive SIV-infected cells (in
lymph node) and macrophages (in brain) per mm2 were
quantified in tissue sections after IHC for SIVnef and
CD68 or Iba-1, respectively. For each evaluation, particle
size and threshold parameters were established on con-
trol sections of brain from infected and uninfected ma-
caques that had been processed in parallel with experi-
mental sections. The mean cell-associated virus burden
for each anatomical compartment of brain (regional mean)
and the average number of CD68 or Iba-1 immunoreactive
macrophages was determined for each SIV-infected
macaque by counting the number of chromogen-pos-
itive cells in 20 random fields at 200x magnification,
and dividing by the total area analyzed (reported as
SIV�, CD68�, or Iba-1� cells per mm2, respectively).

Real-Time RT-PCR for SIVgag, TNF-�, and
RPL13A

RNA Isolation

Total RNA was isolated from brain and lymphoid tis-
sues collected in RNAlater using Trizol reagent (Invitro-
gen). Briefly, 75–100 mg pieces of tissue were homoge-

nized with a bead beater using 1-mm-diameter silica
beads and 1.5 ml Trizol. The aqueous phase was col-
lected after adding of 0.2 volumes of chloroform to the
homogenate and centrifuging at 8000 � g for 5 minutes
at 4°C. One milliliter of 4 mol/L guanidium thiocyanide
and an equal volume of 70% ethanol were added to the
aqueous phase and loaded on to a spin column. On-
column DNase treatment was performed to digest con-
taminating DNA, and the total RNA was eluted in RNase
free water and stored at �80°C after addition of two
units/�l of recombinant RNase inhibitor (Promega).

One-Step Real-Time RT-PCR

Absolute quantification of SIVgag, TNF-� or RPL13A
transcripts in samples of total RNA were performed using
gene specific TaqMan probes (Applied Biosystems) and
Taqman one-step RT-PCR master mix reagents (Applied
Biosystems) on an ABI 7700 thermocycler in separate
reactions. The reaction substrate, 100–500 ng of total
RNA, was combined with 200 nmol/L each of forward and
reverse primers and 100 nmol/L of Taqman probe in a 50
�l reaction (sequences for the primers and probe used
are shown in Table 2). For mRNA copy number determi-
nation, stocks containing known copy numbers of SIV-
gag, TNF-�, or RPL13A RNA transcripts that had been
generated by in vitro transcription were serially diluted in
RNase free water to create standards ranging from 106 to
101 copies. Both standards and test samples were run in
duplicate. At the end of each run, the data were analyzed
using the Sequence Detection version 1 software pro-
gram (Applied Biosystems).

Statistical Analyses

A two-tailed, nonparametric Mann-Whitney U-test was
used to compare numbers of activated macrophages in
the brain, TNF-� expression, virus burden measured by
ISH and real-time RT-PCR, and virus burden in plasma
and CSF between control animals and animals that re-
ceived CART. Significant differences were assumed for
probability values of P � 0.05.

Results

Short-Term CART Significantly Reduces Plasma
but Not CSF Virus Burdens

Viral loads in plasma and CSF were measured by real-
time RT-PCR at 21 dpi and at necropsy and are reported
as log10 SIVgag copies per ml (Table 1). The median
plasma virus burden of animals that received CART de-
creased from 7.15 log10 copies/ml at 21 dpi (before onset
of treatment) to 5.60 log10 copies/ml after 28 days of
therapy (P � 0.03). In contrast, plasma viral loads were
unchanged between 21 dpi and necropsy in macaques
that did not receive CART (median plasma viral loads of
7.4 vs. 7.6 log10 copies/ml, respectively; P � 0.88). CSF
viral loads were similarly unchanged between 21 dpi and
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necropsy in untreated controls (median values of 5.00
and 5.25 log10 copies/ml, respectively, P � 0.89). Paired
pre- (21 dpi) and posttherapy (terminal) CSF specimens
were only available for two of the animals from the CART
group, and while the CSF viral load decreased 1.8 logs
during the 28-day treatment period in one macaque
(Case 5), it was unchanged in the other animal. Thus, no
conclusions could be drawn regarding the efficacy of
CART on CSF virus burden in individual animals over
time.

Terminal plasma virus burdens were significantly lower
in animals that received CART than in untreated controls
(median values of 5.6 vs. 7.6 log10 copies/ml, respec-
tively; P � 0.03); however, terminal CSF viral loads were
not significantly different between the CART and un-
treated groups (median values of 5.15 vs. 5.25 log10

copies/ml, respectively; P � 0.69) (Figure 1, A and B).
Thus, short-term CART was effective in reducing the sys-
temic viral burden but not the quantity of viral RNA in the
CSF compartment, suggesting that therapy was more

successful at suppressing viral replication in lymphoid
tissues than in the central nervous system.

Comparison of plasma viral loads at 21 dpi between
the CART and control groups revealed no difference in
systemic virus burden before the onset of therapy (me-
dian viral loads of 7.15 versus 7.40, respectively; P �
0.56). This was further supported by IHC for SIVnef on
peripheral lymph nodes collected from all eight animals
by surgical biopsy at 28 dpi (Figure 2, A–C), as large
numbers of productively infected cells were observed in
sections of lymph node from each of the animals. Based
on histomorphology, the infected cell populations in
lymph nodes from all of the animals consisted primarily of
lymphocytes and macrophages, with occasional multinu-
cleated giant cells. Thus, similar high levels of systemic
virus replication were present in all eight animals before
the onset of CART.

SIVE Lesions Were Not Present in Animals that
Received CART

Histopathological examinations were performed on H&E-
stained sections from four regions of the brain (frontal
cortex, basal ganglia, hippocampus, and brainstem) and
from five hematopoietic/lymphoid tissues (mesenteric, in-
guinal and axillary lymph nodes, spleen, and bone mar-
row) from each of the animals. Neuropathological lesions
characteristic of SIVE45,47 were observed in brain sec-
tions from all of the untreated control macaques and
included perivascular accumulations of macrophages,
multinucleated giant cells, microglial nodules, white mat-
ter vacuolation, mild meningitis, and choroid plexitis (Fig-
ure 3, A–F). Parenchymal lesions were present in both
white and gray matter in macaque number 4 but were
confined primarily to the white matter tracts in the other
control animals. In contrast, lesions characteristic of SIVE
were not observed in brain sections from the animals in
the CART group; however, mild multifocal perivascular
infiltrates of mononuclear inflammatory cells, morpholog-
ically consistent with lymphocytes, were present in all
regions of brain examined from macaque number 8. These
lesions were highly atypical of SIVE, and subsequent IHC
assays revealed that these perivascular infiltrates were pre-
dominantly composed of CD20� B lymphocytes rather than
the macrophages and T lymphocytes that are typical of
SIVE, suggesting a different etiology (Supplemental Figure
S1 at http://ajp.amjpathol.org).

Table 2. Primers and Probes

Accession number Gene Primers and probes used for TaqMan assay

M33262 SIV gag Forward: 5�-AGAAAGCCTGTTGGAGAACAAAGAAGG-3�
Reverse: 5�-AGTGTGTTTCACTTTCTCTTCTGCGTG-3�
Probe: 6FAM-5�-CTGTCTGCCTCATCTGGTGC-3�-TAMRA

NM_001047149 TNF-� Forward: 5�-CTCTTCAAGGGCCAAGGCT-3�
Reverse: 5�-GATGCGGCTGATGGTGTG-3�
Probe: 6FAM-5�-CCCCTCCAACCATGTGCTCCTCA-3�-TAMRA

FM208094 RPL13A Forward: 5�-CGAGAAAGTTTGCCTATCTGGG*-3�
Reverse: 5�-GGTGGTTGTCACTGCCTGGTA*�3�
Probe: 6FAM-5�-CCTGGCTCACGAGGTTGGCTGG-3�-TAMRA

Figure 1. Viral load in terminal plasma and CSF. The terminal plasma viral
load was significantly lower in animals that received CART than in untreated
controls (A). In contrast, the quantities of viral RNA measured in CSF were
similar between animals that received CART and untreated controls (B).
Results are reported as log10 copies of SIV RNA/ml; horizontal bars indicate
group median values.
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We used IHC to further characterize the brain lesions
observed in control macaques. As expected, the micro-
glial nodules and multinucleated giants cells ex-
pressed macrophage/microglia markers CD68, Iba-1,
and HLA-DR and were active sites of viral replication,
confirmed through the expression of SIV Nef by IHC
(Figure 4, A–D). These results are similar to those de-
scribed for SIVE lesions in monkeys in which CD8� cells
have not been depleted.47 Evaluation of peripheral lym-
phocytes by flow cytometry revealed that CD8� cells
were depleted from the systemic circulation of both
groups of monkeys for nearly four weeks before they
began to recover.54 We performed IHC for CD8 on sec-
tions of brain from all of the animals to investigate the
impact of prior peripheral CD8� cell depletion on CD8�

cell populations in the CNS at necropsy. CD8� cells were
localized in brain sections from all animals in the CART
group, which were sacrificed at 57 dpi, as well as from all
controls, which lived for a slightly longer duration (median
survival of 66.5 days) (data not shown). These findings
indicate that at the time of necropsy, CD8� cells were
present in circulation and capable of transmigration
across the blood–brain barrier and into the CNS, despite
prior CD8 depletion.

The most significant lesion observed in the lymphoid
organs was severe lymphoid depletion of the periarterial
lymphoid sheaths of the spleen and paracortical regions
of lymph nodes, which was present in lymphoid tissues
from all of the monkeys. Follicular hyperplasia was also
present in lymph nodes from animals in both groups, but
was more established in macaques that received CART,
while multinucleated giant cells were only observed in
lymphoid tissues from the untreated controls (Supple-
mental Figure S2 at http://ajp.amjpathol.org). In summary,
these histopathological and immunohistochemical data
suggest that while all macaques had lesions in lymphoid
tissues that were typical of SIV infection at the time of
necropsy, only the four animals that did not receive CART
developed SIVE.

Monkeys that Receive CART Have Lower Brain
Virus Burdens

Two methods were used to evaluate the effect of short
term CART on tissue virus burden in frontal cortex, puta-

men, hippocampus, and brainstem. The cell-associated
virus burden was measured in tissue sections by com-
puter image quantification of productively infected cells
that were localized by ISH for viral RNA. In addition,
absolute copy numbers of virion-associated RNA were
measured by TaqMan real-time RT-PCR.

Significantly fewer SIV-infected cells were localized by
ISH in the frontal cortex and brainstem (P � 0.05) of
animals that received CART than in untreated controls
(Figure 5, A–D). Fewer SIV-positive cells were present in
the hippocampus of animals that received CART as well,
but the difference was not statistically significant (P �
0.5); indeed, very few infected cells were localized in the
hippocampus or putamen from either treated or control
animals.

Absolute virus copy numbers were determined in total
RNA isolated from the same four regions of brain by one
step real-time RT-PCR using a TaqMan probe for SIVgag.
Because the expression of RPL13A is unaltered in SIVE
(manuscript in submission), we used RPL13A copy num-
bers in each specimen to normalize the input RNA in
parallel reactions. Lower quantities of viral RNA were
measured in all four regions of brain from animals that
received CART than in untreated controls; however, the
difference was statistically significant only in the frontal
cortex (P � 0.03) (Figure 6, A–D). We found no correla-
tion between viral load in CSF and the tissue virus burden
in any of the regions of brain examined. Taken together,
these data suggest that a short-term regimen of CART
composed of agents with limited CNS penetrance was
still successful at reducing brain virus burden. We hy-
pothesized that the reduction in brain virus burden ob-
served in animals that received CART reflected de-
creased recruitment of SIV-infected monocytes from
peripheral blood as a result of antiretroviral-mediated
suppression of systemic virus burden. Thus we sought
further evidence that short-term CART was effective at
reducing the virus burden in lymphoid tissues.

Animals that Receive CART Have Significantly
Lower Lymphoid Tissue Virus Burdens

To study the effect of short-term CART on virus burden in
bone marrow and peripheral lymphoid tissue, we quan-

Figure 2. Productively infected cells are localized in the inguinal lymph nodes of animals at 28 dpi. Numerous productively infected cells were localized by IHC
for SIVnef in inguinal lymph node biopsy specimens collected before the onset of CART at 28 dpi from all eight animals, including animals randomly assigned
to the untreated control group (A) and the CART group (B). Quantitative image analysis for SIVnef confirms comparable levels of infection in peripheral lymph
nodes at 28 dpi before onset of CART (C).
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tified the SIV copy numbers by real-time RT-PCR in total
RNA isolated from bone marrow, spleen, and mesenteric,
axillary, and inguinal lymph nodes. Tissue virus loads
were significantly lower in bone marrow, spleen, mesen-
teric lymph node, and inguinal lymph node (P � 0.03)
from animals that received CART than from controls (Fig-
ure 7, A–E). In light of the effect of CART on plasma viral
loads, these data provide further evidence that short-term
CART was effective in suppressing viral replication in

peripheral lymphoid tissues and reducing systemic virus
burden.

TNF-� Expression in Brain and Lymphoid
Tissues

TNF-� is a principle proinflammatory mediator of leniviral
encephalitis; thus, we measured the absolute numbers of

Figure 3. SIV RNA is localized in the lesions of untreated animals. A: Microglial nodule in a section of brain tissue from an untreated control, (H&E, �200). Inset: Higher
magnification showing a multinucleated giant cell (H&E, �1000). B: Section of brain tissue from a treated animal with no lesions (H&E, �200). C: ISH for SIV RNA,
showing productively infected cells (arrow) in the brain, and mesenteric lymph nodes (arrows; D) from untreated animals. NBT/BCIP chromogen (blue) with nuclear
fast red counterstain (�200). E: SIV RNA is not localized in brain sections, and rare infected mononuclear cells (arrowhead) are identified in the mesenteric lymph nodes
(F) by ISH in monkeys that received CART.

Figure 4. Brain lesions are composed of cells of
macrophage lineage. Sections of brain tissue from
an untreated infected control animal showing mi-
croglial nodules that are composed of cells ex-
pressing CD68 (A), which identifies activated mac-
rophages/microglia; Iba-1 (B), expressed by
microglia/macrophages; and HLA-DR (C). Local-
ization of SIV major capsid protein p27 in a micro-
glial nodule by IHC (D). Immunoperoxidase im-
munohistochemistry with DAB chromogen
(brown) and hematoxylin counterstain (�100).

SIV Brain Virus Burden with CART 783
AJP August 2010, Vol. 177, No. 2



TNF-� mRNA transcripts expressed in brain tissues from
all eight animals by real-time RT-PCR to assess the im-
pact of short-term CART on encephalitis. Significantly
lower quantities of TNF-� mRNA transcripts were mea-
sured in the putamen of macaques that received CART
than in controls (P � 0.03); however, there was no differ-
ence in TNF-� expression between treatment groups in
the other regions of brain (Figure 8, A–E). To evaluate the
effect of short-term CART on inflammation in systemic
lymphoid tissue, we also measured TNF-� expression in
RNA extracted from the spleen of all eight macaques;
however, no differences in TNF-� mRNA expression were
found in splenic tissue from treated animals versus un-

treated controls (Figure 8). These data suggest that
short-term antiretroviral therapy did not significantly alter
the general severity of systemic inflammation or enceph-
alitis in CD8-depleted SIV-infected rhesus monkeys.

Impact of CART on Brain Macrophage
Populations

Since activated perivascular macrophages and microglia
are central to the pathogenesis of lentiviral encephalitis,

Figure 5. A: In situ hybridization for SIV RNA in brain. Quantitative image
analysis for SIV RNA revealed significantly fewer SIV RNA particles in frontal
cortex (A) and brainstem (B) from animals that received CART as compared
with untreated controls (P � 0.05). Fewer SIV RNA particles were also
localized in hippocampus (C) and putamen (D) from macaques that received
CART as compared with untreated controls; however, the results were not
significant. Horizontal bars indicate group median values.

Figure 6. Virus burden in brain tissue measured by real-time RT-PCR. Lower
quantities of SIV RNA were measured by real-time RT-PCR in the frontal
cortex (A), brainstem (B), hippocampus (C), and putamen (D) from animals
that received CART as compared with untreated controls; however, the
difference was only significant in the frontal cortex (P � 0.05). Results are
reported as log10 copies of SIV RNA/mg of tissue; horizontal bars indicate
group median values.
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we performed IHC for CD68 on sections of brain to local-
ize activated macrophages and quantified immunoreac-
tive cells by computer image analysis. Significant differ-
ences in the numbers of CD68-positive macrophages
were not identified in any of the four regions of brain that
were evaluated between antiretroviral treated animals
and controls (Figure 9, A–D). Calcium binding adaptor
protein, Iba-1 is expressed by resting as well as activated
microglia and its expression is increased in traumatic
injury and under conditions of oxidative stress. In rhesus
macaques, Iba-1 expression has been documented in
resting and activated microglia in brain sections from
normal and SIV-infected animals, respectively.58 Fewer
Iba-1-reactive cells were present in the frontal cortex,
brainstem, and putamen of animals in the CART group
than in untreated animals, although these differences did
not reach significance (Figure 10, A–D). These findings
suggest that short-term antiretroviral therapy with non-
penetrating agents was modestly effective at reducing
the numbers of activated macrophages and microglia in
the CNS, but residual activation remained.

Discussion

Infection of Asian macaque monkeys with SIV is widely
considered to be the best animal model for investigations of
HIV neuropathogenesis.59 Nevertheless, very few studies
addressing the impact of antiviral therapy on brain virus
burden have been conducted in this model.60–62 This is
partially because of the low incidence of SIVE, which at
18–32% is comparable to the incidence of HIVE observed
in adult, untreated, HIV-infected humans.51,52,63 Conse-
quently, various manipulations of the SIV/macaque model
have been engineered in an attempt to increase the inci-
dence of SIVE, including the isolation of neurovirulent SIV
strains,64 coinfections with immunosuppressive and neuro-
virulent viruses,65 and depletion of CD8 lymphocytes to
impair antiviral cellular immunity.66,67 In this study, we used
the CD8-depletion model of accelerated SIVE in rhesus
macaques to compare the impact of short-term CART on
brain versus lymphoid tissue virus burden.

Short-term CART resulted in significant decreases in
systemic virus burden, as revealed by viral load mea-
surements in pre- and posttherapy plasma specimens.
Moreover, significantly lower virus burdens were mea-
sured by real-time RT-PCR in four of five lymphoid tissues
collected at necropsy from animals that received CART
as compared with untreated animals. Notably, short-term
CART was associated with lower brain virus burdens,
despite the use of antiretroviral agents with poor CNS
penetration.61,68 The tissue virus burden was significantly
lower in frontal cortex using both ISH and RT-PCR meth-
ods and was significantly lower in brainstem by ISH and
approached significance by RT-PCR (P � 0.11). These
findings are in agreement with other studies in which
brain virus burden has been measured in HIV-infected
humans and SIV-infected macaques after therapy with
antiretroviral regimens that included agents with poor
BBB and blood–CSF barrier penetration pharmacokinet-
ics.62,69 Moreover, these results help explain the previ-

Figure 7. Virus burden in systemic lymphoid tissue measured by real-time
RT-PCR. Lower quantities of SIV RNA were measured by real-time RT-PCR in the
spleen (A), bone marrow (B), mesenteric lymph node (C), axillary lymph node
(D), and inguinal lymph node (E) from macaques that received CART as compared
with untreated controls. Differences were statistically significant in all tissue com-
partments (P � 0.05) except axillary lymph node. Results are reported as log10

copies of SIV RNA/mg of tissue; horizontal bars indicate group median values.
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ously reported observation that monkeys that received
CART in this study experienced near normalization of
neuronal metabolism (NAA/Cr) as measured by in vivo
MRI.54 In the context that neuronal injury was completely

reversed in these animals despite treatment with a regi-
men composed of low-potency antiretroviral agents, the
results presented in this article are highly significant and
help explain the previous clinical observations of marked
improvement in cognitive disorders in HIV patients

Figure 8. TNF-� mRNA expression in spleen and brain tissue. TNF-� mRNA
transcripts were measured by real-time RT-PCR in the frontal cortex (A),
brainstem (B), hippocampus (C), and putamen (D) from untreated controls
and animals that received CART. Significantly lower quantities of TNF-� RNA
were measured in the putamen of macaques that received CART than in
untreated controls (P � 0.05); however, the differences were not significant
in the other regions of brain. Similar quantities of TNF-� mRNA were mea-
sured in spleen specimens from animals that received CART and untreated
controls (E). Results are reported as log10 copies of TNF-� mRNA/mg of
tissue; horizontal bars indicate group median values.

Figure 9. Immunohistochemistry for CD68 in brain. Quantitative immuno-
histochemistry for CD68 in frontal cortex (A), brainstem (B), hippocampus
(C), and putamen (D) from untreated controls and macaques that received
CART, reported as positive particles/mm2 of tissue. Note that significant
differences were not observed in any of the regions of brain. Horizontal bars
indicate group median values.
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treated with first generation (pre-HAART) antiretroviral
drugs.70 Viral loads in CSF did not correlate with brain or
plasma virus burdens; however, plasma viral loads cor-
related well with lymphoid tissue virus burdens. In light of
the effect of CART on systemic virus burden, we hypoth-
esize that the lower brain virus burdens measured in the
treated animals were the result of decreased recruitment
to the brain of new SIV-positive monocytes from the pe-
ripheral circulation. This hypothesis is supported by the
findings of a related study (that used blood specimens
from the same animals) which reported reduced frequen-
cies of SIV-positive blood monocytes in animals that re-
ceived CART.54

Cells of macrophage lineage, including blood–mono-
cyte-derived perivascular macrophages and CNS-resi-
dent microglia, are central to all stages of HIVE/SIVE
pathogenesis, serving as the vectors of lentiviral neuro-
invasion, the principle targets of viral replication in the
brain, and mediators of both direct and indirect mecha-
nisms of neuropathogenic injury.71–74 Increased num-
bers of activated macrophages and microglia have re-
peatedly been correlated with active HIV and SIV
replication in the brain45,47,75–78; thus, having observed
lower levels of virus replication in the brains of macaques
that received CART, we sought to investigate the impact
of short-term antiretroviral treatment on the numbers and
activation state of macrophages in the CNS using quan-
titative image analysis. SIV RNA was localized by ISH
in perivascular macrophages, microglial nodules, and
multinucleated giant cells in brain sections from un-
treated controls. The majority of cells in these lesions
expressed the macrophage markers CD68 and Iba-1 as
well as HLA-DR, suggesting that macrophages and mi-
croglia remain the principle targets of infection in the
CD8-depletion model of accelerated SIVE. Surprisingly,
although encephalitic lesions were not observed in mon-
keys that received CART, the numbers of cells express-
ing Iba-1 and CD68 in treated animals were similar to
those measured in untreated animals. This may in part be
due to the multifocal nature of the distribution of CD68�

lesions and the random unbiased selection of analyzed
fields. This may also reflect the longer turnover time of
tissue macrophages in the CNS compartment79 and sug-
gests that longer periods of therapy or the use of regi-
mens that include CNS-penetrating agents may be re-
quired to accomplish reductions in brain macrophage
numbers and activation state. In support of this hypoth-
esis, Clements and colleagues60 reported significantly
lower numbers of CD68� cells in the brains of SIV-posi-
tive macaques after 32 weeks of combined PMPA/FTC
therapy. Although CD68 expression was not measured in
a parallel SIV negative control group in the current study,
previous studies in both CD8-intact and depleted ma-
caques have shown that CD68 is not expressed signifi-
cantly in the CNS of animals that do not have SIVE45,80;
thus, the presence of similar numbers of CD68� macro-
phages in treated and control groups provides circum-
stantial evidence that SIVE was established in the brains
of the animals in the CART group before the onset of
therapy. Moreover, in vivo neuroimaging and MRS data
showed evidence of neurodegeneration in the brains of
all of the animals before onset of antiretroviral therapy.54

Collectively, these data suggest that the absence of en-
cephalitic lesions and lower brain virus burdens ob-
served in monkeys that received CART is attributable to
short-term therapy and that macrophage/microglial acti-
vation may persist after reduction of virus in the brain
parenchyma.

Lentiviral encephalitis is associated with severe dys-
regulation of cytokine and chemokine production in the
CNS, including marked upregulation of TNF-� expres-
sion.81 TNF-� is produced primarily by activated macro-
phages and microglia in the brain,82–85 and its overex-
pression is thought to be a significant contributor to HIVE/

Figure 10. Immunohistochemistry for Iba-1 in brain. Quantitative immuno-
histochemistry for Iba-1 in frontal cortex (A), brainstem (B), hippocampus
(C), and putamen (D) from untreated controls and macaques that received
CART, reported as positive particles/mm2 of tissue. Note that significant
differences were not observed in any of the regions of brain. Horizontal bars
indicate group median values.
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SIVE neuropathogenesis.73 TNF-� induces apoptosis of
neurons in culture86 and has been shown to increase the
permeability of endothelial cells in an in vitro BBB model,
which suggests that it may facilitate transendothelial mi-
gration of monocytes, thus promoting neuroinvasion in
vivo.87 In addition, TNF-� induces the expression of ad-
hesion molecules (eg, ICAM-1, VCAM-1) and chemo-
kines (MCP-1, CXCL10), which further induce the recruit-
ment of monocytes to the CNS.88–90 Because of its
central role in neuroinvasion and lentiviral neuropatho-
genesis, we measured TNF-� expression by real-time
RT-PCR in brain specimens from treated and untreated
monkeys. TNF-� mRNA expression was significantly
lower in the putamen of macaques that received CART;
however, the levels of expression were similar between
treated and untreated animals in all other regions of the
brain evaluated, as well as in spleen. These findings are
in alignment with our observation that similar numbers of
activated macrophages/microglia were present in brain
sections from treated and untreated macaques and pro-
vide further evidence that the suppression of macro-
phage activation trails the control of viral replication by
combined therapy with PMPA and RCV.

Two additional observations in macaques that re-
ceived short-term CART merit discussion: 1) differences
in lymphoid tissue histomorphology in all treated animals,
and 2) encephalitic lesions that were atypical of SIVE in
macaque number 8. As opposed to untreated monkeys,
greater follicular hyperplasia was observed in secondary
lymphoid tissues from monkeys that received 28 days of
CART, while multinucleated giant cells were conspicu-
ously absent in lymphoid tissues from treated animals.
Whether exaggeration of germinal center development
correlates with reconstitution of the host immune re-
sponse as a consequence of treatment or reflects further
dysregulation of humoral immunity is beyond the scope
of this study. However, the absence of multinucleated
giant cells may be significant in that these cells are a
consistent pathological feature of the encephalitic lesions
induced by HIV and SIV.

Of greater interest are the multifocal encephalitic le-
sions observed in macaque number 8; these perivascular
accumulations of primarily B lymphocytes were not asso-
ciated with SIV replication, as confirmed by ISH and IHC.
Moreover, the lesions were not only uncharacteristic of
SIVE but were also atypical of the opportunistic patho-
gens that have been described in the CNS of SIV-in-
fected macaques (eg, SV40, CMV, lymphocryptovirus,
Mycobacteria). Immune reconstitution inflammatory syn-
drome (IRIS), which has been described in HIV-positive
humans receiving HAART, has not yet been reported in
SIV-infected monkeys treated with antiretroviral agents.
In HIV-positive humans, IRIS most commonly presents as
a paradoxical deterioration of clinical response in previ-
ously immunosuppressed patients who have experi-
enced improvement in immune function shortly after the
initiation of antiretroviral therapy.91 Instances of IRIS in-
volving the CNS have been reported and have frequently
been associated with progressive multifocal leukoen-
cephalopathy (PML) or with Mycobacterial or Cryptococ-
cal infections of the CNS;92–94 however, in some cases

CNS-IRIS presents as an exaggerated form of HIVE.95

The systemic response to HAART in patients who de-
velop CNS-IRIS usually includes a significant increase in
CD4� T cells and marked reductions in plasma HIV-1
RNA levels, and the brain lesions most often involve
perivascular accumulations of CD8� T cells.95,96 Changes
in CD4� T cells during treatment were unavailable for case
number 8; however, the SIV RNA levels in plasma from this
animal decreased only 1.4 logs during treatment. Moreover,
the brain lesions were dominated by B cells rather than
cytotoxic CD8� T cells, although the character of the inflam-
matory infiltrate may have been skewed by experimental
CD8 depletion. Cumulatively, the available data would ar-
gue that this is not a case of CNS-IRIS in a nonhuman
primate; thus, the etiology of these lesions remains
unknown.

In summary, we found that four weeks of therapy with
two nonpenetrating antiretroviral agents significantly re-
duced plasma viral loads and was correlated with lower
virus burdens in four of five lymphoid tissues in CD8-
depleted SIV-infected rhesus macaques. In addition, sig-
nificantly lower virus burdens were measured in two of
four brain compartments by ISH quantitative image anal-
ysis and in one of four regions of brain by RT-PCR, while
numbers of macrophages, activated macrophages, and
TNF-� transcripts were similar between treated and con-
trol monkeys. Collectively, these data suggest that anti-
retroviral regimens composed of nonpenetrating agents
can reduce brain virus burden and permit normalization
of neuronal metabolism and function, provided significant
reduction in systemic virus burden is achieved. These
findings are highly significant in that they imply the exis-
tence of inherent mechanisms in the brain that allow full
recovery of neurons even though virus burden, while
reduced, is not completely eliminated from the CNS, and
in the face of large numbers of activated macrophages/
microglia and high levels of TNF-� expression in the
brain. Complete elimination of viral replication in the
brain, resolution of encephalitic lesions, and suppression
of macrophage and neuroimmune activation will likely
require extended periods of therapy.
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