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ABSTRACT

Motivation: A typical approach for the interpretation of
high-throughput experiments, such as gene expression microarrays,
is to produce groups of genes based on certain criteria (e.g. genes
that are differentially expressed). To gain more mechanistic insights
into the underlying biology, overrepresentation analysis (ORA) is
often conducted to investigate whether gene sets associated with
particular biological functions, for example, as represented by Gene
Ontology (GO) annotations, are statistically overrepresented in the
identified gene groups. However, the standard ORA, which is based
on the hypergeometric test, analyzes each GO term in isolation
and does not take into account the dependence structure of the
GO-term hierarchy.
Results: We have developed a Bayesian approach (GO-Bayes) to
measure overrepresentation of GO terms that incorporates the GO
dependence structure by taking into account evidence not only
from individual GO terms, but also from their related terms (i.e.
parents, children, siblings, etc.). The Bayesian framework borrows
information across related GO terms to strengthen the detection of
overrepresentation signals. As a result, this method tends to identify
sets of closely related GO terms rather than individual isolated GO
terms. The advantage of the GO-Bayes approach is demonstrated
with a simulation study and an application example.
Contact: song.zhang@utsouthwestern.edu;
richard.scheuermann@utsouthwestern.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on August 4, 2009; revised on December 21, 2009;
accepted on February 3, 2010

1 INTRODUCTION
In typical high-throughput experiments, such as gene expression
microarrays, the first step in the analysis of the results is often to
produce groups of genes based on certain criteria (e.g. genes that are
differentially expressed). To gain more mechanistic insights into the
underlying biology, overrepresentation analysis (ORA) is conducted
to use the knowledge of the functional characteristics of the genes to
investigate whether gene sets associated with particular biological
functions are overrepresented in the identified gene groups. Drǎghici
et al. (2003) is the first paper to discuss the overrepresentation
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problem and propose different statistical methods that can be used
in this area. ORA is based on the postulate that if a biological
process has more identified genes than expected by chance alone,
that biological process is probably linked to the experiment.

One of the most popular gene description databases used in ORA
was developed by the Gene Ontology (GO) Consortium (Ashburner
et al., 2000). Each GO term annotates a set of genes, indicating their
known molecular functions, involvement in biological processes
and cellular component locations. GO terms are structured in a
directed acyclic graph (DAG) of parent–child relationship, where
a child indicates a more specific biological classification than its
parent(s). Based on the true-path rule the annotation of a gene to
a GO term implies automatic annotation to all the ancestors of that
term. Another feature is that a GO term is allowed to have more
than one parent nodes, a feature known as multiple inheritance. For
example, immune response is not only a specific form of organismal
movement but also a part of defense response. Furthermore, some
genes might be annotated by a parent GO node but not by any of its
children because less is known about that gene’s specific function.
For a rigorous analysis, these dependency characteristics of the GO
DAG need to be considered when developing statistical methods to
detect overrepresentation of GO annotations.

In ORA, the most commonly used statistical test is based on
the hypergeometric distribution or its binomial approximation (Cho
et al., 2001; Khatri et al., 2002; Drǎghici et al., 2003; Al-Shahrour
et al., 2004; Beissbarth and Speed, 2004; Lee et al., 2005; Lee et al.,
2006; Luo et al., 2007; among others). Let A denote a GO term or
the set of genes annotated to A (with cardinality IA), and let S denote
the set of genes (with cardinality IS) based on a certain criterion (i.e.
differential expression) from a full gene list G (with cardinality I)
in an experiment. The number of genes belonging to both S and
A (S∩A), denoted by nA, indicates the representation of A in S.
Under the null hypothesis that S and A are independent (i.e. the GO
term is irrelevant to the gene cluster), nA follows a hypergeometric
distribution. The P-value measuring the significance of association
is the tail probability of observing nA or more genes annotated by A
in S,

P-value=
min(IA,Is)∑

k=nA

(IA
k

)(I−IA
IS−k

)
( I
IS

) , (1)

where
(m

n
)= m!

n!(m−n)! is the binomial coefficient. Many software

and webtools (Onto-Express, CLASSIFI, GoMiner, EASEonline,
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Fig. 1. Comparison of the P-value and the B-score with an artificial DAG. The full list of genes (G) are denoted as lowercase letters; the genes in set S are
marked in red. The rectangles contain the subset of genes annotated by each node, where (IA,nA ) are listed under each rectangle. The hypergeometric P-values
are listed in blue and the B-scores are listed in black underneath the P-values.

GeneMerge, FuncAssociate, GOTree Machine, etc.) have been
developed based on the hypergeometric P-value. Detailed review
can be found in Khatri and Drǎghici (2005).

The hypergeometric P-value provides a straightforward measure
of overrepresentation for each individual GO term. However, the
major drawback of this approach is that it ignores the hierarchical
structure in the GO DAG, which contains a substantial amount of
information regarding the interactions among the GO terms.

We use an artificial DAG (Fig. 1) to illustrate this issue. It consists
of 25 nodes

{
Aj,j=1,...,25

}
, each denoted by a circle. Let G=

{a,b,...,z} denote the full list of genes, and 10 genes in S are marked
in red. The rectangles contain the subset of genes annotated by
each node, where (IA,nA ) are listed under each rectangle. Figure 1
includes some important features of the GO DAG, such as multiple
inheritance (e.g. A14 and A23 have two parent nodes) and that a gene
might be annotated at different specific level (eg. gene k is annotated
by A2, but not by any of its children: A5, A6 and A7). Note that in
this example S is overrepresented in the regions under A2, while
underrepresented in the regions under A3 and A4. We report the
hypergeometric P-values estimated by (1) in blue.

First, given I and IS , GO terms with the same (IA,nA ) have
exactly the same hypergeometric P-values. For example, with
(IA,nA)= (2,2), the P-values for A14 and A24 are both 0.139.
Based on Figure 1, A14 is more likely to be linked with S because
of the stronger evidence of overrepresentation in its neighboring
nodes (related biological functions). Using evidence only from
individual terms, the hypergeometric P-value does not differentiate
between A14 and A24. Second, given I and IS , the hypergeometric
P-value has a lower limit determined by IA , which is denoted

as L(IA). Specifically, L(IA) is achieved when nA = IA, i.e. the
P-value reaches its lower limit when all the genes annotated by
A are in S. The smaller the IA, the larger the L(IA). For example,
we have L(3)=0.046 as in A12 and L(2)=0.139 as in A14. This
observation suggests that if we set the threshold for the P-value
at L(k), then the hypergeometric test could not identify any GO
terms with IA <k. In ORA, detecting more specific GO terms, which
usually have a relatively smaller IA, might be more desirable because
they provide more detailed biological information. However, the
hypergeometric test tends to identify less specific GO terms because
of the constraint of L(IA). In Figure 1, the most significant term
selected by the P-value is A2, a term next to the root. The more
specific terms that are associated with S (i.e. A12 and A14) are
considered less significant compared with A2. All of these issues
essentially stem from the limitation of the hypergeometric test in
treating the GO terms as independent entities and ignoring their
interrelated structure.

Recently some new methods have been proposed in ORA. Lewin
and Grieve (2006) propose to group closely related GO nodes
together and then compute a hypergeometric P-value for each group.
In their approach, the graphical distance between nodes in the GO
DAG is assumed to have some quantitative biological meaning.
Alexa et al. (2006) calculate the overrepresentation of a GO term
from leaf to root by downweighting the contribution of genes which
are annotated by a child term that has been found to be significantly
enriched. Grossmann et al. (2007) measure the overrepresentation
of each GO term relative to its parent(s). From root to leaf, their
method computes the significance of overrepresentation for a GO
term conditional on the representation at the parent term(s). The last
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two methods purposely remove the dependence between parent and
child terms.

In this article, we develop a Bayesian hierarchical model to
incorporate the dependence structure of the DAG in assessing GO
term overrepresentation. It takes into account evidence not only from
individual GO terms, but also from their related terms (i.e. parents,
children, siblings, etc.). The Bayesian framework enables borrowing
information across related GO terms to strengthen the detection of
overrepresentation signals. As a result, this method tends to identify
sets of closely related GO terms rather than individual unrelated
GO terms. The utility of the method is demonstrated using a gene
expression microarray dataset from a human B cell stimulation
experiment.

2 METHOD

2.1 The Bayesian model
The proposed method is called GO-Bayes: GO-based ORA using a Bayesian
approach. In the model, each GO term has a relevance parameter measuring
its association with the selected genes in S. The novelty of the model is
that the complex dependence structure in the GO DAG is incorporated via a
hierarchical prior on the relevance parameters.

To introduce GO-Bayes, we define the following notations. Let A=
{Aj,j=1,...,J} be the set of GO terms involved in the annotation of the
full list of I genes (i.e. IAj >0, for j=1,...,J), among which IS genes are
grouped in S in the experiment. We use Aj1 →Aj2 to indicate that Aj1 is
a parent of Aj2 . We define Pj ={Ak :Ak →Aj} and Cj ={Ak :Aj →Ak} to be
the sets of parent and child nodes of Aj , respectively. We use |U| to denote
the cardinality of set U. Without loss of generality, let A1 denotes the root
node and |P1|=0. For the non-root nodes, we have |Pj|≥1, where |Pj|>1
indicates multiple inheritance. We call Aj an end node if |Cj|=0 and an inner
node otherwise. For example, in Figure 1, A1 is the root node, P10 ={A4},
C10 ={A22,A23} and |P14|=|P23|=2 indicating multiple inheritance.

At the gene level, we use gi ∈Aj to denote that gene i is annotated by
Aj . We further use gi �Aj to indicate that Aj is the most specific GO term
that annotates gene i, with the formal definition being gi ∈Aj and gi /∈Ak for
any Ak ∈Cj . We define Bi =

{
Aj :gi �Aj

}
to be the set of the most specific

annotations of gene i. The true-path rule implies that Bi contains all the
annotation information about gene i. In Figure 1, we have Ba ={A12} and
Bk ={A2,A18,A22}. Let yi (i=1,··· ,I) be the observed expression status of
gene i, yi =1 if gene i is in S and yi =0 otherwise.

The binary yi is assumed to follow a Bernoulli distribution,
yi |pi ∼Bernoulli(pi), where pi is the probability that gene i belongs to S.
Using the idea that if Aj is associated with S, the genes annotated by Aj have
a higher chance of being grouped in S, we construct the following logistic
model,

log

(
pi

1−pi

)
=b0 +

J∑
j=1

I(Aj ∈Bi)αj +ei. (2)

We specify b0 as a constant and set b0 = log[p0/(1−p0)] with p0 = IS/I ,
where p0 is the background probability that gene i is grouped in S by chance.
The random error ei is assumed to have a normal distribution with mean 0

and variance σ2, denoted by ei
iid∼N(0,σ2). Parameter αj characterizes the

relevance of GO term Aj to the set of identified genes S, where it modifies
the odds of gene i being grouped in S by a factor of exp(αj) if gi �Aj . Thus,
positive (negative) values of αj indicate over(under)-representation. Based on
the true-path rule, we only include α′

js from Bi, the most specific annotations,
in model (2) to avoid repeated use of information. The α′

js from less-specific
annotations are assumed to affect the odds indirectly via a hierarchical prior
on α={

αj,j=1,...,J
}
, constructed according to the dependence structure in

the GO DAG. We set α1 =0 for the root node. Then the prior of αj (j=2,...,J)
is specified conditionally given the relevance parameters of its parent nodes,

denoted by αPj ={αk :Ak ∈Pj}. Specifically,

αj |αPj ,δ
2 ∼

∑
k:Ak∈Pj

1

|Pj| N(αk,δ
2). (3)

Prior (3) assumes that αj arises from a mixture distribution of |Pj|
components, each component being a normal distribution centered at the
relevance parameter of one of its parents. The equal mixing probability 1/|Pj|
in (3) assumes a priori that each parent has equal influence over αj . Parameter
δ2 characterizes the variability among the children nodes. The joint prior of
α is obtained by the product of (3) over j=2,...,J . This prior provides a
mechanism to share information among the GO terms based on the DAG
structure. It also naturally accommodates multiple inheritance.

We assign an inverse gamma prior, IG(aδ,bδ), on δ2, which has been
used extensively in Bayesian models (Gelman et al., 2003). Similarly, an
IG(aσ,bσ ) prior is assumed for σ2. We infer the relevance of GO term
Aj based on the posterior distribution of αj , denoted by [αj |Y]. Here,
Y ={yi,i=1,...,I} is the collection of observations. Specifically, we use
rj ≡P(αj >0 |Y) (denoted as the B-score) to measure the relevance of a GO
term to S. It is the posterior probability of Aj being positively associated with
S. Making inferences based on posterior probabilities is a common practice
in Bayesian analysis of microarray data (Newton et al. 2004; Do et al., 2005;
Cao et al., 2009). Markov Chain Monte Carlo (MCMC) sampling algorithm
is employed to simulate random samples from the joint posterior distribution.
We implement the adaptive-rejection sampling method to take advantage of
the log-concave property of the full conditional distributions (Gilks and Wild,
1992). The computation can be performed efficiently.

2.2 Demonstration of GO-Bayes with the artificial DAG
GO-Bayes is applied to the artificial DAG (Fig. 1) to detect
overrepresentation of the terms. We present the B-score, rj , below the
hypergeometric P-value. In the following discussion, we use association
to refer to positive association between a GO term and S.

By incorporating the dependence structure of the GO DAG, GO-Bayes
shows distinctive advantages over the hypergeometric test. First, GO-Bayes
is capable of distinguishing terms with the same (IAj ,nAj ). For example, GO-
Bayes produces r14 =0.958 and r24 =0.772, for A14 and A24, respectively,
indicating that A14 is more likely to be associated with S based on the stronger
evidence of overrepresentation of its neighboring nodes. Second, the B-score
for all nodes has a range of 0–1 regardless of IA. Thus, GO-Bayes can identify
more specific GO terms as long as their neighboring nodes are consistently
overrepresented. For example, the top two terms selected by GO-Bayes are
A12 and A14. Third, GO-Bayes also highlights underrepresentations as well
as overrepresentations. In Figure 1, all the terms with nA =0 have the same
P-value of 1.0. Under all the branches of A2, A3 and A4, there are terms with
a P-value of 1.0. GO-Bayes suggests that it is the terms under A3, whose rj’s
are close to 0, that are most underrepresented in S.

We have also compared the GO-Bayes B-score with the elim P-value
(Alexa et al., 2006) and the parent–child (union) P-value (Grossmann
et al., 2007) based on the artificial DAG. Due to the space limit, the
results are presented in Supplementary Figure 3. In general, both the elim
method and the parent–child method address the ‘dependency problem’
caused by overlapping annotations between parent–child GO terms. The elim
method removes (or downweights) all genes annotated to a significantly
enriched node from all its ancestors. By doing this, the method tends to
identify strongly overrepresented GO terms that remain significant even
after discounting evidence from their offsprings. For illustrative purpose,
we set the P-value cutoff at 0.05 for the elim method. Thus, A12 is
considered significantly overrepresented and genes (a,b,c) are removed
from its ancestor terms A5 and A2. Based on the elim P-value, the
term A12 becomes the most significant, where A2 ranks second and A5

ranks sixth. The parent–child method computes the significance of a node
conditional on the significance of its parents. It implements the idea by
computing a hypergeometric P-value for each GO term in the context
of its parent (treating the genes annotated by the parent term as the full
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gene list). This approach tends to identify GO terms that show stronger
overrepresentation compared with their parents. Take A7 and A11, for
example, which have the same (IA, nA). Based on the parent–child P-value,
A11 has a higher rank (second) because its overrepresentation (2 out of 3)
is stronger than its parent A4 (3 out of 11). In contrast, A7 has a lower rank
(10th) because its overrepresentation (2 out of 3) is weaker compared with
its parent A2 (8 out of 11). The GO-Bayes method accounts for the parent–
child relationship through the hierarchical prior. The strategy of borrowing
information from neighboring terms allows GO-Bayes to detect moderate but
consistent signals from closely related GO terms. As a result, A7 has a higher
rank than A11 (r7 =0.802 and r11 =0.397) because the overrepresentation in
A7 is corroborated by related terms in its neighborhood. With the biological
truth unknown, there is no gold standard to compare the methods in real
studies (Grossmann et al., 2007). The results based on the artificial DAG,
however, help to illustrate the distinctive characteristics of each method.

3 APPLICATION

3.1 Dataset
In order to test the utility of the GO-Bayes approach, we
selected a gene expression microarray dataset in which a B-cell
lymphoma cell line (Ramos) was stimulated either through the
B-cell antigen receptor (BCR), CD40 or a combination of the two
(Basso et al., 2005). Specifically, we used an Affymetrix gene
expression dataset selected from the GSE2350 series (GSM44051
to GSM44074) downloaded from the NCBI GEO database
(http://www.ncbi.nlm.nih.gov/projects/geo/). The expression values
of all six replicates under four experimental conditions were
normalized by rows and a list of 3952 differentially expressed
genes (I =3952) were selected using the Significance Analysis of
Microarray (SAM) approach (Tusher et al., 2001). The differentially
expressed genes were subdivided into 20 groups based on their
expression pattern by K-means clustering using Euclidean distance
as the similarity metric.

Gene Cluster #7 (GC7) was chosen for detailed analysis because it
promised to reveal some interesting biology about B-cell responses
to receptor signaling. The 196 genes (IS =196) present in GC7
showed a particularly interesting expression pattern: these genes
were upregulated in response to BCR signaling alone; however, this
upregulation was suppressed when CD40 signaling was included
(Fig. 2). These treatment conditions mimic important biological
responses of immature B cells (Hsueh and Scheuermann, 2000).
Immature B cells must learn to distinguish between signals delivered
by authentic pathogen-derived antigens and signals delivered by
self-antigens. In the former case, B cells need to respond by
productive proliferation and differentiation into immune effector
cells. In the later case, B-cell responses need to be suppressed either
through the induction of a state of unresponsiveness or apoptotic
cell death. The two-signal hypothesis is one mechanism proposed
to elicit either responsiveness or non-responsiveness to antigen
exposure, which states that B cells receiving only one signal, through
the BCR, will proliferate and die, but B cells receiving two signals
both through the BCR and a co-stimulatory receptor-like CD40 will
proliferate and survive due to suppression of the cell death response.
Thus, gene present in GC7 are those genes whose expression is
suppressed with the addition of CD40 signaling and could thus be
involved either in the cell death response or in the induction of
unresponsiveness.

UNTR CD40 BCR
CD40
+ BCR

damage-specific DNA binding protein 1
eukaryotic translation initiation factor
PDZ and LIM domain 7
makorin, ring finger protein, 1
stromal cell-derived factor 2
interleukin-1 receptor-associated kinase
adenosine A2a receptor
NIMA-related kinase
dihydrolipoamide S-succinyltransferase
deltex 4 homolog
Rho GEF
ring finger protein 14
hypothetical protein A-211C6.1
translin-associated factor X
protein phosphatase 2, regulatory subunit
epidermodysplasia verruciformis 1
microtubule-actin crosslinking factor 1
protein phosphatase 2, regulatory subunit B
dCMP deaminase
CD1a antigen
protective protein for beta-galatosidase
KIAA0476
CD63 antigen
reticulon 4
dihydropyrimidine dehydrogenase
ubiquitin-conjugating enzyme E2D
early growth response 3
hypothetical protein FLJ20232
importin 13
cathepsin C
lysosomal-associated protein transmembrane
ATP-binding cassette, sub-family C
glucan (1,4-alpha-), branching enzyme 1
ring finger protein 167
solute carrier family 2
---
CD53 antigen
WD repeat and SOCS box-containing 2
G protein-coupled receptor kinase 5
early growth response 2
checkpoint suppressor 1
potassium channel, subfamily K, member 1
Kruppel-like factor 12
death-inducing protein
NGFI-A binding protein 2
chromosome 9 open reading frame 132
RNA binding region (RNP1, RRM) containing
checkpoint suppressor 1
major histocompatibility complex, class II

Fig. 2. Gene expression pattern of Gene Cluster #7. A heat map of
normalized expression values is shown in which green represents relatively
low expression and red represents relatively high expression. Each column
represents data from a single microarray. Six replicates from each of four
experiment conditions were performed—untreated (UNTR), stimulation
through the CD40 receptor (CD40), stimulation through the BCR and the
combined stimulation. The expression pattern for a subset of 196 genes in
GC#7 is shown.

3.2 Result
For the full list of 3952 differentially expressed genes (I =3952),
6768 GO terms (J =6768) have been used to annotate their
functions. Four groups of GO terms are found in the top 20 list of
most significant terms based on the GO-Bayes approach (Table 1).
The GO term with the highest B-score (0.9004) is ‘transferase
activity, transferring hexosyl groups’ (GO:0016758). Nine of the top
20 GO terms based on the B-score are related to this group. Five of
the top 20 GO terms are related to ‘G-protein signaling, coupled to
cAMP nucleotide second messenger’ (GO:0007188); six are related
to ‘lysosome’ (GO:0005764); and two are in the group of ‘negative
regulation of transcription, DNA-dependent’ (GO:0045892). In the
case of the ‘transferase activity, transferring hexosyl groups’, all
nine related terms (GO:0016758, GO:0016757, GO:0000030,
GO:0003844, GO:0008375, GO:0015020, GO:0042328,
GO:0004703, GO:0004674) can be found near GO:0016758
in the GO hierarchy (see Supplementary Fig. 4). Even though
some of these terms are poorly represented in this dataset (e.g.
GO:0003844 represented by only a single gene in the dataset),
all of these terms have relatively high B-scores due to the
overrepresentation of other terms that are close relatives in the
hierarchy.

In some cases, the association of the group of GO terms
highlighted by the GO-Bayes approach matches our expectations.

908

http://www.ncbi.nlm.nih.gov/projects/geo/


[10:40 5/3/2010 Bioinformatics-btq059.tex] Page: 909 905–911

GO-Bayes

Table 1. The top 20 lists GO terms associated with Gene Cluster #7 by CLASSIFI and GO-Bayes

GO ID IA nA P-value RankP B-score RankB Group GO name

GO:0019933 21 6 4.00E-04 1 0.7652 149 a cAMP-mediated signaling
GO:0005773 91 13 4.61E-04 2 0.7544 187 b Vacuole
GO:0001726 23 6 6.85E-04 3 0.7724 118 b Ruffle
GO:0007188 16 5 7.95E-04 4 0.8688 7 a G-protein signaling, coupled to cAMP nucleotide second messenger
GO:0007190 10 4 9.73E-04 5 0.6928 508 a Activation of adenylate cyclase activity
GO:0045762 10 4 9.73E-04 5 0.6582 778 a Positive regulation of adenylate cyclase activity
GO:0031281 10 4 9.73E-04 5 0.4976 3148 a Positive regulation of cyclase activity
GO:0051349 10 4 9.73E-04 5 0.4712 3545 a Positive regulation of lyase activity
GO:0019935 25 6 1.11E-03 9 0.7568 177 a Cyclic-nucleotide-mediated signaling
GO:0007189 5 3 1.12E-03 10 0.8346 27 a G-protein signaling, adenylate cyclase activating pathway
GO:0016757 57 9 1.71E-03 11 0.8716 6 c Transferase activity, transferring glycosyl groups
GO:0000323 80 11 1.74E-03 12 0.8276 33 b Lytic vacuole
GO:0005764 80 11 1.74E-03 12 0.8762 5 b Lysosome
GO:0010324 69 10 1.87E-03 14 0.5084 2957 b Membrane invagination
GO:0006897 69 10 1.87E-03 14 0.5596 2015 b Endocytosis
GO:0007187 20 5 2.40E-03 16 0.8220 43 a G-protein signaling, coupled to cyclic nucleotide second messenger
GO:0006898 20 5 2.40E-03 16 0.5870 1601 b Receptor -mediated endocytosis
GO:0001609 2 2 2.45E-03 18 0.2706 6218 a Adenosine receptor activity, G-protein coupled
GO:0032230 2 2 2.45E-03 18 0.7562 178 f Positive regulation of synaptic transmission, GABAergic
GO:0048285 2 2 2.45E-03 18 0.5246 2625 f Organelle fission
GO:0007217 2 2 2.45E-03 18 0.8452 17 a Tachykinin signaling pathway
GO:0051319 2 2 2.45E-03 18 0.5124 2878 f G2-phase
GO:0015851 2 2 2.45E-03 18 0.3764 5103 f Nucleobase transport
GO:0016519 2 2 2.45E-03 18 0.1972 6600 f Gastric inhibitory peptide receptor activity
GO:0000085 2 2 2.45E-03 18 0.5650 1945 f G2-phase of mitotic cell cycle
GO:0016021 874 59 4.68E-03 31 0.8924 3 a, b Integral to membrane
GO:0005886 727 50 6.95E-03 36 0.8562 9 a, b Plasma membrane
GO:0004703 3 2 7.10E-03 40 0.8536 15 c G-protein-coupled receptor kinase activity
GO:0000030 4 2 1.37E-02 61 0.8556 11 c Mannosyltransferase activity
GO:0016758 41 6 1.45E-02 70 0.9004 1 c Transferase activity, transferring hexosyl groups
GO:0015020 5 2 2.22E-02 92 0.8538 14 c glucuronosyltransferase activity
GO:0045892 89 9 3.09E-02 104 0.8996 2 d Negative regulation of transcription, DNA dependent
GO:0015075 135 12 3.41E-02 115 0.8568 8 b Ion transmembrane transporter activity
GO:0003844 1 1 4.96E-02 281 0.8506 16 c 1,4-Alpha-glucan branching enzyme activity
GO:0022891 160 13 5.22E-02 289 0.8562 10 b Substrate -specific transmembrane transporter activity
GO:0042328 2 1 9.67E-02 471 0.8414 20 c Heparan sulfate N-acetylglucosaminyltransferase activity
GO:0000122 66 6 1.07E-01 491 0.8556 12 d Negative regulation of transcription from RNA polymerase II promoter
GO:0004674 200 14 1.18E-01 512 0.8550 13 c Protein serine/threonine kinase activity
GO:0008375 14 2 1.51E-01 620 0.8770 4 c Acetylglucosaminyltransferase activity
GO:0007186 101 7 2.33E-01 814 0.8430 19 a G-protein-coupled receptor protein signaling pathway
GO:0042629 2 0 1.0 NA 0.8432 18 b Mast cell granule

The columns IA and nA represent the cardinality of the relevant GO term and the number of genes in the GO term that also appear in Gene Cluster #7; P-value and RankP
represent the hypergeometric P-value computed by CLASSIFI, and the rank of the GO terms based on the P-value; and B-score and RankB represent the GO-Bayes measure and the
corresponding rank of the GO terms. Under the column ‘Group’, ‘a’ represents GO terms closely related to GO:0007188 (G-protein signaling, coupled to cAMP nucleotide second
messenger) in the GO hierarchy; ‘b’ represents GO terms closely related to GO:0005764 (lysosome); ‘c’ represents GO terms closely related to GO:0016757 (transferase activity,
transferring glycosyl groups); ‘d’ represents GO terms closely related to GO:0045892 (negative regulation of transcription, DNA-dependent); and ‘f’ represents GO terms unrelated
to the above four groups. NA, not applicable.

It is well known that activation of B cells through the BCR induces
endocytosis and the fusion of endocytic vesicles with lysosomes
as a mechanism to capture antigen for presentation to T cells
in order to stimulate the helper immune response (Lee et al.,
2006). Thus, the presence of lysosome-related GO terms in the
cluster of genes upregulated in response to BRC stimulation might
be expected. In other cases, the association is not immediately
expected, but subsequent investigations revealed that the association
is supported by previous experiment data. For example, the majority

of genes giving rise to the ‘negative regulation of transcription,
DNA-dependent’ association, including ID3 (Pan et al., 1999),
CTCF (Qi et al., 2003), SMAD3 (Ramesh et al., 2009), KLF12
(Roth et al., 2000), E2F6 (Xu et al., 2007), FosB (Yin et al., 2007)
and PA2G4 (Zhang et al., 2008), have been found to be upregulated
in response to BCR stimulation in B cells or somehow involved in
B-cell signaling responses. In the case of CTCF, Qi et al. (2003)
showed that this upregulation is associated with the induction of
apoptosis in B cells and can be suppressed by co-stimulation through
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CD40 in agreement with the findings reported here. In still other
cases, no direct corroborative evidence could be found (e.g. for
‘transferase activity, transferring hexosyl groups’). Thus, this finding
serves as a hypothesis for future testing.

In order to compare the results of the GO-Bayes approach with the
standard ORA based on the hypergeometric test, we processed the
gene set in GC7 with the CLASSIFI algorithm (Lee et al., 2006) and
selected the top 20 GO terms. The top 20 lists by CLASSIFI and
GO-Bayes, respectively, are presented in Table 1. While four GO
terms were ranked in the top 20 by both methods, the remaining top
20 terms from each method were distinct. Based on this comparison,
several distinctions between the two approaches can be made.

First, three of the four GO term groups are found in both top 20
term lists. Two of the groups, G protein signaling and lysosome,
have multiple terms in both top 20 lists. One group, transferase
activity, is only represented once in the CLASSIFI list, but multiple
times in the GO-Bayes list. Given that little could be found in the
literature about these genes in B cell biology, this association would
likely be ignored from the hypergeometric analysis. One group,
the negative regulation of transcription group was not found in the
hypergeometric top 20, and yet is potentially the most interesting
given the strong literature support described above.

Second, eight GO terms in GC7 with (IA,nA)= (2,2) have the
same hypergeometric P-value of 0.0024, and all of them are in the
hypergeometric top 20. The GO-Bayes measure suggests that they
are very different in their association with the cluster. For example,
GO:0007217 (tachykinin signaling pathway) has a B-score of 0.8452
and it ranks in the GO-Bayes top 20. In contrast, GO:0016519
(gastric inhibitory peptide receptor activity) has a B-score of 0.1972
and its GO-Bayes rank is 6600. To shed light on the difference
in the B-scores between these two terms, we compare their regional
DAGs, which are shown in Supplementary Figures 5 and 6. The three
direct ancestors of GO:0007217 have a stronger association with the
cluster than those of GO:0016519. In addition, GO:0007217 has nine
siblings, five of which have genes represented in the cluster (nA >0).
By comparison, GO:0016519 has 13 siblings, of which only one
sibling has genes represented in the cluster. The support from the
related GO terms is substantially higher for GO:0007217 than for
GO:0016519, and thus GO:0007217 is judged to be more likely
associated with the cluster based on the GO-Bayes measure. While
there is no evidence for the involvement of the gastric inhibitory
peptide receptor activity in the regulation of B-cell function in
the literature, tachykinin (also known as hemokinin-1) has been
found to be secreted during the differentiation of B-cell precursors
thereby regulating their own development (Milne et al., 2004). Thus,
GO:0007217 does appear to be biologically associated with GC7.

Among the top 20 GO terms identified by GO-Bayes, 8 GO terms
have two genes or fewer belonging to GC7 (GO: 0007217,
GO:0004703, GO:0000030, GO:0015020, GO:0003844,
GO:42328, GO:0008375 and GO:0042629). Researchers may
have concern over these findings, suspecting that they may
be false positives. Based on the GO hierarchy, GO: 0007217
is a child of GO:0007186, which ranked seventh in the top
20 GO-Bayes list. The term is also found to be biologically
associated with the experiment (Milne et al., 2004). Six of the GO
terms (GO:0004703, GO:0000030, GO:0015020, GO:0003844,
GO:42328 and GO:0008375) are all related to ‘transferase activity’,
and all of them are in a close neighborhood in the GO DAG
as shown in Supplementary Figure 4. As for GO:0042629, the

fact that none of the two annotated genes were found in GC7
requires in-depth discussion on the term. Note that GO:0042629
is a direct child of ‘lysosome’ (GO:0005764), which ranked
fifth in the top 20 GO-Bayes list. The two genes annotated with
GO:0042629 are IL8 receptor beta (IL8RB) and serglycin (SRGN).
IL8RB has been found to be involved in B-cell chemotaxis across
the blood-brain barrier (Alter et al., 2003). Mice deficient for
IL8RB show lymphadenopathy due to a specific expansion of the
B-cell compartment (Cacalano et al., 1994). Importantly, IL8RB
was found to be dramatically upregulated (∼9-fold) in response
to BCR stimulation of primary splenic B cells by microarray
analysis (Sato et al., 2005) (see IL8RB expression profile in
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1467).
Although less is known about the function of SRGN in B cells, it was
also found to be upregulated following BCR stimulation of B cells
from TAK1-deficient mice in the same microarray experiment.
Taken together, these findings suggest that the identification of
GO:0042629 by GO-Bayes is significant and represents an example
where the GO-Bayes approach was able to overcome false negative
results generated by deficiencies in microarray data generation or
processing. Thus, GO-Bayes will only identify a GO term with
relatively few annotated genes belonging to S when there is strong
evidence of overrepresentation from its neighboring GO terms.

4 DISCUSSION
In this article, we proposed GO-Bayes, a Bayesian approach for
GO-based OR. The model has a relatively simple format, with
the first level as a logistic regression model and straightforward
prior specification. The key innovation is that it can incorporate
the dependence structure of the GO DAG on a global scale.
The resulting measure on the association between GO terms and
selected genes borrows information across related GO terms to
strengthen the detection of overrepresentation signals. We have
given detailed comparison between the GO-Bayes approach and the
hypergeometric test, which is widely used in ORA. Our analysis
using an artificial dataset and a real microarray dataset suggests that
the GO-Bayes approach can produce more biologically meaningful
results than the hypergeometric test.

Relying on individual GO terms, the hypergeometric P-value
has a closed form, which only requires the information on I , IS
and (IA,nA) for each GO term. GO-Bayes, on the other hand,
does not have a closed form and it needs the information on the
structure of the GO DAG. We have developed a program in C to
implement the GO-Bayes approach. For the B-cell lymphoma cell
line example in the application section, the B-score calculations
were completed in ∼10 min on a MAC (OS X 10.4.11, 1.83 GHz
Intel Core Duo processor) computer. The program is available upon
request from S.Z.

The GO-Bayes measure, rj ≡P(αj >0 |Y), is the posterior
probability of a GO term being positively associated with S. As a
reviewer pointed out, rj behaves like a frequentist P-value under the
null hypothesis (Bochkina and Richardson, 2007), and a frequentist-
type estimator of false discovery rate (Storey, 2002) can be employed
to assess the statistical significance.

Currently, the proposed method is based on binary outcomes
(membership of genes in S). We are working on generalizing
the GO-Bayes approach to cases with ordinal or continuous
outcomes. Although we have focused on the use of this approach
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for the interpretation of gene expression microarray data and
GO annotation, the general strategy can be applied to any
circumstance in which groups of entities are annotated with
terms derived from any ontology hierarchy or similar dependency
structure.
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