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Abstract
A phase-locked loop (PLL) model of the response of the postural control system to periodic
platform motion is proposed. The PLL model is based on the hypothesis that quiet standing (QS)
postural sway can be characterized as a weak sinusoidal oscillation corrupted with noise. Because
the signal to noise ratio is quite low, the characteristics of the QS oscillator are not measured
directly from the QS sway, instead they are inferred from the response of the oscillator to periodic
motion of the platform. When a sinusoidal stimulus is applied, the QS oscillator changes speed as
needed until its frequency matches that of the platform, thus achieving phase lock in a manner
consistent with a PLL control mechanism. The PLL model is highly effective in representing the
frequency, amplitude, and phase shift of the sinusoidal component of the phase-locked response
over a range of platform frequencies and amplitudes. Qualitative analysis of the PLL control
mechanism indicates that there is a finite range of frequencies over which phase lock is possible,
and that the size of this capture range decreases with decreasing platform amplitude. The PLL
model was tested experimentally using nine healthy subjects and the results reveal good agreement
with a mean phase shift error of 13.7° and a mean amplitude error of 0.8 mm.

Index Terms
Mathematical model; phase-locked loop; postural control

I. Introduction
The ability of humans to stand upright and maintain balance in the presence of disturbances
is achieved through the postural control system. Postural control consists of both postural
steadiness associated with the ability to maintain balance during quiet standing, and postural
stability that is associated with the response to applied external disturbances and volitional
postural movements [1]. The postural control system makes use of information from the
visual, vestibular, and somatosensory systems [2].

Balance is achieved when the subject’s center of gravity (COG) remains within the base of
support. The COG is the vertical projection of the center of mass onto the base of support. It
is a whole body characteristic that is difficult to directly measure, so typically the center of
pressure (CoP) is used instead. The CoP is the location of the vertical ground reaction force
on the surface upon which the subject stands. CoP movements are used to control the
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horizontal displacements of the center of mass. In general the CoP varies about the COG,
but with higher amplitude and higher frequency content [3]. Using a single force plate, it is
the net CoP from both feet that is measured [4]. Over an extended period of time of quiet
stance, the average of the CoP must equal the average of the COG [5].

During quiet standing, humans sway to maintain balance; and this motion can be measured
using the anterior–posterior (AP) and the medial–lateral (ML) components of the CoP.
Different control mechanisms and different muscle groups are used to control AP and ML
motion [3]. Most mathematical models of the postural control system are biomechanical and
employ a 1-D or 2-D inverted pendulum structure [6]–[9]. Some look at the contributions of
each leg separately and, therefore, include a pair of inverted pendulums [4], [5]. Others are
more refined and include an articulated chain of links interconnected by joints to model the
effects of the ankles, knees, hips, shoulders, elbows, and neck [5]. One control system
strategy suggests that high ankle stiffness accounts for most, but not all, of postural
steadiness [10]–[13]. Another approach employs continuous linear feedback including
proportion plus derivative (PD) and proportional plus integral plus derivative (PID) control
[14]–[16]. Both of these approaches achieve asymptotic stability with the residual sway
movements being noise driven. Another control system representation has been proposed
that relies on an intermittent controller that becomes activate when the sway motion moves
outside of a small dead zone [7], [17]. Here the persistent sway patterns are not noise driven
but result from the limited resolution of the controller.

Most of the control system model focus on the question of postural steadiness or the ability
to maintain balance during quiet standing. This paper focuses on the development of a
control system model that characterizes postural sway when human subjects are exposed to
periodic disturbances whose frequencies and amplitudes vary [14], [18]. It is hypothesized
that quiet standing motion can be represented mathematically as a noise-corrupted
oscillation. A nonlinear phase-locked loop (PLL) structure is used to control both the
frequency and the amplitude of the quiet standing oscillator when a periodic stimulus is
applied [19]. If the stimulus amplitude is sufficiently large and the stimulus frequency is
sufficiently close to the quiet standing frequency, the oscillator will achieve phase lock with
a well-defined phase angle between the periodic disturbance and the steady-state response.
Measurements of the amplitude and the phase of the steady-state response are used to
identify parameters of a PLL model.

To test this notion, subjects stood on an air bearing platform that was made to undergo
sinusoidal AP motion in order to generate a periodic disturbance to the postural control
system. The measured response was the CoP of the subjects along the direction of platform
motion. Nine healthy young adults were tested to collect the experimental data used to
develop and test the model. The results show that a PLL structure is highly effective in
describing the experimental behavior observed in this study.

II. Method
A. Subjects and Testing Procedures

To develop and test the proposed postural control system model, experimental sway
measurements were taken for sinusoidal disturbances. The set of subjects consisted of nine
healthy young adults ranging in age from 20 through 29 years. The number of males was
seven and there were two females. The subjects were recruited from the community by
advertising at Clarkson University. The recruiting, screening, testing, and informed consent
procedures were reviewed and approved by the appropriate Institutional Review Board. The
subjects that were recruited for this investigation all underwent visual, vestibular, auditory,
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musculoskeletal, and cognitive screening to maximize the likelihood that they had no
undiagnosed conditions that may have affected their balance [20].

The experimental data were obtained using the SLIP-FALLS system, a sliding linear
investigative platform for analyzing lower limb stability [21]. This is a computer-controlled
air-bearing mobile platform instrumented with a force plate to precisely measure CoP. For
the quiet standing portion of this study the platform was held motionless, and the subjects
stood barefoot with their arms at their sides. Throughout the data collection, the backs of
both heels were aligned in the frontal plane, with feet splayed out at natural stance. In the
ML direction, subjects were asked to maintain their normal width stance. In order to
minimize the effects of visual and audio cues, the subjects were blindfolded, and
headphones were used to provide masking noise (70 dB SPL) and instructions. The use of
the eyes-closed condition during 60 s of quiet stance did not appear to have any detrimental
effects on the subjects.

Each subject was also exposed to four trials, each of duration 120 s, where the platform
underwent sinusoidal motion in the AP direction. Two of the frequencies used were fixed at
0.5 and 0.75 Hz. The other two frequencies were determined using the two largest peaks in
the power density spectrum of the quiet standing sway. For each frequency, the amplitude
used was determined by first measuring a psychophysical threshold in which the subject is
able to correctly perceive that the platform is moving 75% of the time. A modified single-
interval-adjustment matrix (mSIAM) protocol based on 30 trials was used to adaptively
compute the threshold amplitude [22]. The resulting sinusoidal amplitudes were quite small
with a mean of 1.08 mm, and they varied from subject to subject.

III. A PLL Model
A. Quiet Standing Oscillator

Since humans sway in order to maintain balance, it seems reasonable to assume that there is
some form of underlying oscillation involved. For control system models that are
asymptotically stable such as ankle stiffness and PID feedback control, the oscillation is
noise driven. Alternatively, an intermittent or burst controller has been proposed that
achieves bounded stability with oscillations that are the result of a limited-resolution
controller [7]. Another approach suggests that imperfect perception of the body in space
(state estimation error) explains why humans sway slowly during quite stance [14], [23].
Our focus is on the response of the postural control system to periodic disturbances.
Consequently, no attempt is made to develop a detailed biomechanical model of quiet
standing sway itself. Instead, the following high-level representation of postural sway is
employed that consists of a sinusoidal oscillation corrupted with additive noise

(1)

(2)

Here, y(t) is the AP CoP, while Aq, ωq, and φq are the amplitude, frequency, and phase,
respectively, of an underlying quiet standing (QS) oscillator. The additive noise consists of
white noise v(t) processed by a linear filter whose impulse response, hq(t), shapes the
spectrum of the observed noise, d(t). The representation of y in (1) and (2) corresponds to
the Wold decomposition of a stationary random process into the sum of a general linear
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process d(t) plus a predictable process, xq(t), [24]. In order to identify the parameters of the
QS oscillator from samples of the AP CoP, it is useful to convert the system in (1) and (2) to
a discrete-equivalent model. Suppose ωs is the sampling frequency, T= 2π/fs is the sampling
interval, and k denotes discrete time. Then (1) and (2) can be written as follows where an nth
order auto-regressive filter is used to shape the spectrum of the noise

(3)

(4)

1) Extracting a Sinusoid—Suppose the measured postural sway consists of the N
samples y(k) for 0 ≤ k < N. When the platform is driven by a sinusoidal stimulus, it will be
necessary to estimate the amplitude, frequency, and phase angle of the sinusoidal component
of the steady-state response. In [25] a statistical approach was applied to visually-induced
sway using sinusoidal optical flow at two frequencies. In this paper a normalized cross-
correlation approach is used because it is effective in the presence of noise, and it provides
an indication of the degree of entrainment. To estimate the sinusoidal component of the AP
CoP, consider a cosine of frequency ω and unit amplitude

(5)

Let ρyx(j) denote the normalized cross correlation of y with x where j is the lag variable and
−1 ≤ ρyx(j) ≤ 1 for 0 ≤ j < N. The peak normalized cross correlation of y with x can be
regarded as a function of ω

(6)

The value of ω at which ρmax(ω) achieves a maximum is used to estimate the frequency

(7)

The peak normalized cross correlation, ρmax(ω), can have a number of local maxima.
However, since the frequency interval is bounded, one can start by examining the value of
ρmax(ωi) at the N discrete frequencies wi = iΔω for 0 < N where Δω = ωs/N is the precision
of the DFT of y(k). Once a discrete frequency ω ̂ that maximizes ρmax(ωi) is found, the
search process then can be repeated over the smaller interval [ω ̂ − Δω, ω ̂ + Δω]. This step-
wise refinement can be repeated as needed until the desired precision is reached. The
optimal phase angle, φ ̂, is obtained from the lag J at which the peak normalized cross
correlation in (6) occurs
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(8)

Given ω ̂ and φ ̂, the corresponding amplitude Â is determined by minimizing the sum of the
squares of the error e(k) = y(k) − A cos(kω̂T + φ ̂). Let z(k) = cos(kω̂T + φ ̂) and suppose y ∈
RN and z ∈ RN are column vectors. Then

(9)

This results in the following sinusoidal component of postural sway

(10)

The peak normalized cross correlation ρmax(ω ̂) can be used to determine the relative strength
of the sinusoidal component of the sway. For the idealized case y(k) = x̂(k), the peak is
ρmax(ω ̂) = 1. The relative strength of x̂(k) also can be expressed in terms of the signal to
noise ratio using x̂(k) as the signal and d(k) = y(k) − x̂(k) as the noise. Plots of the CoP and
platform for a 24-year-old healthy female are shown in Fig. 1. The heavy lines show the
extracted sinusoids of the CoP (ρmax = 0.38)and platform ρmax = 0.99). The platform cross
correlation is not quite 1.0 due to the start up transient which delays the sinusoidal platform
motion by about two seconds. Here N = 12000 and fs = 100 Hz.

2) Noise Parameters—The technique outlined in (7)–(9) can be used to extract the
sinusoidal component of the postural sway both with the platform moving and the platform
still. However, when the platform is motionless, the extracted QS signal typically has a
relatively weak peak cross correlation, ρmax(ω ̂), indicating that the signal to noise ratio is
poor. Since the quiet standing oscillation is often buried deep within the noise, the frequency
of the quiet standing oscillator will instead be inferred from phase shift measurements when
the postural sway is phased-locked to periodic motion of the platform. Once the quiet
standing frequency ωq is obtained in this manner, the quiet standing phase φq and amplitude
Aq can be computed using (8) and (9), respectively.

Given the sinusoidal component of the QS sway, the additive noise can be computed from
(3). An auto-regressive filter of order n is used to shape the spectrum of the white noise v(k)
to match that of d(k). The coefficient vector a ∈ Rn can be computed by solving the Yule-
Walker equations [24] using the autocorrelation of d(k).

B. Phase-Locked Loop
When a sinusoidal stimulus is applied to the platform, the steady-state CoP typically
becomes phase-locked with the periodic stimulus. Phase lock can be interpreted as the QS
oscillator changing speed, as needed, until its frequency exactly matches that of the periodic
stimulus. This interpretation suggests a phase-locked loop (PLL) feedback structure, as
shown in Fig. 2 [19]. Here the nonlinear PLL consists of a phase detector in the form of a
multiplier, a first-order low pass loop filter, and the QS oscillator with amplitude one and
adjustable frequency ω.
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1) Hold in Range—To analyze the steady-state operation of the PLL, suppose the
platform moves in a sinusoidal manner with amplitude Ai and frequency ωi

(11)

Consider the case when the frequency of the QS oscillator exactly matches that of the
platform

(12)

Using a trigonometric identity, the multiplier output xd(t)contains a sum frequency term and
a difference frequency term

(13)

If τf > 1/(2ωi), then the second harmonic will be attenuated by the loop filter, and only the dc
term will appear in the filter output

(14)

For phase lock to occur, it is necessary that ωq + xf = ωi. Setting ωi − ωq equal to xf in (14)
and solving for θ yields the QS oscillator phase shift during phase lock

(15)

From (15) it is clear that phase lock is possible only for input frequencies ωi and input
amplitudes Ai that satisfy the following constraint:

(16)

This is the hold-in range of the PLL where phase lock is possible, but not guaranteed. The
subset of the hold-in range over which phase lock occurs is the capture range of the PLL
[19].

The first-order loop filter is not an ideal low pass filter. Consequently, during phase lock the
oscillator frequency ω(t) will be periodic with period 2π/ωi, but it will have a mean value of
E[ω(t)] = ωi. The higher-order low pass filter HL(s) in Fig. 2 provides a smoothed estimate
of the input frequency ωi. For example, a fourth-order low pass Butterworth filter with a
cutoff frequency of Fc = 0.1 Hz can be used.
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2) PLL Parameters—Suppose that M measurements of the phase shift θi are available
corresponding to sinusoidal inputs with amplitude Ai and frequency ωi for 1 ≤ i ≤ M. The
parameters of the PLL that must be determined are the loop filter time constant τf, and the
loop filter gain Af. The loop filter time constant should be set to produce a cutoff frequency
ωc = 1/τf that removes the second harmonic at 2ωi. For example, the following cutoff
provides reasonable attenuation

(17)

The loop filter gain Af must be selected to ensure that the ωi and Ai fall well within the hold-
in range for 1 ≤ i ≤ M. For example, suppose θ in (15) is set to θM = π/4. Setting α = |ωi −
ωq|/Ai to its maximum value and solving for Af yields the following loop filter gain

(18)

(19)

Since Af can become very large as Ai approaches zero, for practical reasons Ai is replaced in
(18) by max{Ai, 0.2} to limit the loop filter gain. For the nine subjects, two of the input
frequencies were common, Fi = 0.5 Hz and Fi = 0.75 Hz. Plots of the variable F(t) = xF(t)/
(2π)for the two common frequencies are shown in Fig. 3. It is clear that the PLL has locked
onto the platform frequency in each case.

C. Amplitude Control
A PLL based on the QS oscillator can be used to represented the phase shift between the
steady-state CoP and sinusoidal platform motion. However, the amplitude of the PLL
oscillator remains fixed at one, independent of input amplitude Ai and input frequency ωi.
During phase lock, xF ≈ ωi. To measure the input amplitude, Ai, a basic envelope detector
system can be used that consists of a nonlinear element F(u) = (π/2)|u| followed by a low
pass filter

(20)

When u(t) is sinusoidal as in (11), the periodic signal xa(t) = (π/2)|u(t)| contains a dc term,
Ai, plus second and higher order harmonics. The function of the low pass filter HL(s) is to
remove the harmonics. This is the same role played by the low pass loop filter in Fig. 2 and
results in the envelope detector output, xA(t) ≈ Ai.
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D. Propagation Delay
The overall PLL model of sway motion includes a PLL block and an envelope detector
block configured as shown in Fig. 4. The system in Fig. 4 also includes a propagation delay
τd, and an amplitude gain function G.

The delay τd represents the time required for signal propagation associated with neural
transmission, sensory processing, and muscle activation. The propagation delay contributes
φd = − τdω to the overall phase shift between u(t) and xP(t). Thus the total phase shift can be
obtained by adding − τdωi to the PLL phase shift θ(ωi, Ai) in (15). To determine a suitable
value for the delay τd, recall that θi represents the measured phase shift. The propagation
delay is chosen to account for as much of the observed phase shift as possible by selecting τd
to minimize the sum of the squares of the error, ei = θi + τdωi for 1 ≤ i ≤ M. This yields the
following least-squares propagation delay where w ∈ RM and θ ∈ RM are column vectors

(21)

The residual phase shift, Δθ(ω) = θ + ωτd, represents the component of the phase shift
associated with the PLL. Suppose a first-order polynomial Δθ(ω) ≈ p1ω+ p2 is fitted to the
residual phase shift data Δθ(ωi) for 1 ≤ i ≤ M using a least-squares fit. The frequency at
which the residual phase shift is zero is then ω = −p2/p1. From (15), the PLL contributes a
phase shift of zero when ω =ωq. Consequently, the frequency of the QS oscillator is set as
follows:

(22)

1) Amplitude Parameters—The remaining component in Fig. 4 is the amplitude gain
function G. Note that the amplitude of the sinusoidal oscillation xq(t) appearing in output y(t)
is a = G(xA, xF). For the amplitude gain function, the following first-order bilinear form is
used:

(23)

Recall that xA ≈ Ai, and when the PLL is locked, xF ≈ ωi. During quiet standing, (xA, xF) =
(0, ωq), and the QS oscillator amplitude is a = Aq. To determine values for the coefficient
vector g ∈ R3, let Bi represent the measured amplitude of the QS oscillator when the
platform is driven with a sinusoid of frequency ωi and amplitude Ai for 1 ≤ i ≤ M. Next
define the M × 3 coefficient matrix D, and the M × 1 right-hand side vector b as follows:

(24)

(25)
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For M >3, the linear algebraic system Dg = b is over determined, and the least-squares
solution for the coefficient vector g is

(26)

IV. Results
A. Individual Models

The CoP data are available as sampled signals with a sampling rate of fs = 100 Hz.
Consequently, the PLL sway model is converted to discrete-equivalent form using a
backward Euler approximation for the loop filter, and a trapezoid rule integrator for the QS
oscillator.

The experimental data used to identify and test the model consisted of 2M +1 discrete-time
signals from each of the nine subjects. These included a vector Q ∈ RP/2 representing 60 s of
quiet standing AP CoP sway where P =12000. The data also included a matrix U ∈ RP × M
whose columns contained the platform samples for M = 4 sinusoidal trials, each of duration
120 s with each trial corresponded to a particular input frequency ωi and input amplitude Ai.
The corresponding AP CoP was recorded in Y ∈ RP × M.

The parameter identification methods for the PLL model were applied to each of the
subjects with the results summarized in Table I. The parameter Fq = ωq/(2π) is the quiet
standing frequency, or center frequency of the PLL, expressed in hertz. The loop filter
parameters, τf and Af, are determined by applying (17)–(19) using the range of platform
frequencies, ωi, and amplitudes, Ai. The latter serve to define the domain over which the
PLL model is defined. Similarly, the amplitude parameters, g ∈ R3, are determined using
(24)–(26).

To measure phase shift, first (7)–(9) were used to find the frequency ωi, phase angle φ;i, and
amplitude Ai of the platform for the ith trial. Similarly, (7)–(9) were used to determine the
frequency Ωi, phase angle ψi, and amplitude Bi of the CoP. The two signals were regarded as
phase locked when |ωi − Ωi| < ωs/(2P) and ρmax(Ωq) > 0.2. The threshold, Δω = ωs/(2P),
corresponds to the frequency precision available from a DFT of the data. Using this
criterion, the CoP sway was phase locked to the platform in 89% of the trials. It is not
surprising that two of the subjects achieved phase lock only 50% of time because a low
platform amplitude, corresponding to a psychophysical threshold, was used. Once the phase
lock was determined, (8) and (9) were applied with ω = ωi to determine the phase angle ψi
and amplitude of Bi of the CoP. This was done because the phase shift θi = ψi − φi only has
meaning when the frequencies match.

Let θpi = ψpi − φi denote the corresponding phase shift associated with the PLL model for 1
≤ i ≤ M. The following mean phase shift error can be used to measure the effectiveness of
the PLL model in characterizing the steady state postural sway during periodic motion of the
platform

(27)
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The mean of Eθ for the group of subjects was μ = 13.7° and the standard deviation was σ =
4.4°. The CoP and PLL phase shifts for one female subject and one male subject are shown
in Fig. 5. For these two cases from Table I, the mean phase shift errors were 14.0° and 15.3°,
respectively.

Next recall that Bi denotes the measured amplitude of the sinusoidal component of the sway
for the ith trial. If Bpi denotes the corresponding amplitude associated with the PLL model,
then the following mean amplitude error can be used to measure the effectiveness of the
PLL model in characterizing the steady state postural sway during periodic motion of the
platform:

(28)

The mean of Ea for the group of subjects was μ = 0.8 mm and the standard deviation was σ =
0.8 mm. The CoP and PLL amplitudes for the same pair of female and male subjects are
shown in Fig. 6. For these two cases, the mean amplitude errors were 0.1 mm and 0.4 mm,
respectively. At the lower frequencies, the PLL oscillator output can exhibit harmonic
distortion due to the ripple in ω(t). Consequently, the peak value of xq(t) was used to
compute the amplitude Bpi in (28).

B. Composite Model
Although the platform frequencies and amplitudes vary from subject to subject, all of the
experimental phase shift data can be plotted on a single graph if a normalized version of the
platform frequency is used. Recalling (15), the following normalized frequency variable
takes on values between and −1 over the hold in range of the PLL:

(29)

Using λ as the independent variable, plots of the total phase shift θ are shown in Fig. 7. To
facilitate a comparison between the CoP data and PLL model, straight line least-squares fits
are also shown. Although there is clearly variation in the phase shift data when all of the
subjects are included, it is apparent from the trend lines that there is good overall agreement
between the data and the PLL model.

The other characteristic of the sinusoidal component of the sway during phase lock is the
amplitude of the sway. For linear systems, the amplitude of the output is proportional to the
amplitude of the input with the gain, γ = B/A, being dependent on the input frequency. A plot
of amplitude gain is shown in Fig. 8. Again to facilitate a comparison between the CoP data
and the PLL model, straight line least squares fits are included. It is evident that there is very
good agreement which is not surprising since the amplitude gain function G was determined
by using three coefficients to fit M = 4 points in this case.

V. Discussion
A. PLL Observations

The proposed PLL model of the postural control system is based on the hypothesis that quiet
standing CoP sway can be characterized as a weak sinusoidal oscillation that is corrupted
with noise. Because the SNR of the QS oscillator is quite low (a mean of −17.4 dB), it is
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difficult to directly compute the characteristics of the oscillator from the QS sway itself.
Instead, the frequency and amplitude of the QS oscillator can be inferred by examining how
the oscillator responds to periodic motion of the platform. When the platform is driven by a
sinusoidal stimulus, the QS oscillator changes speed until its frequency matches that of the
platform, thus achieving phase lock. The observed phase lock behavior suggests an
underling PLL mechanism that uses multiplicative feedback. The phase shift between the
CoP sway and the moving platform can be used to determine the QS oscillator frequency,
Fq, which corresponds to the center frequency of the PLL. Once the frequency is
determined, the QS amplitude Aq can be computed using a least-squares fit. During phase
lock, the observed phase shift is assumed to contain two components, one from a
propagation delay τd in the neural, sensory, and motor systems, and the other from the PLL.
The phase shift Δθ = θ + ωτd remaining after the effects of the propagation delay have been
removed is referred to as the residual phase shift. For a PLL controller, the residual phase
shift should depend on both the platform frequency ω and the platform amplitude A as in
(15) as follows:

(30)

If the residual phase shift behavior is consistent with a PLL mechanism, a number of
qualitative observations can be made.

A. Phase lock is possible only over a finite capture range of platform frequencies, ω.

B. The size of the capture range decreases with decreasing platform amplitude, A.

C. The residual phase shift decreases with increasing platform frequency. It is positive
for ω < ωq, and becomes negative for ω > ωq.

D. The magnitude of the residual phase shift decreases with increasing platform
amplitude.

Although the results of the phase lock experiments are not definitive, they do support these
observations. Observations A and B postulate that there is a capture range, and that the
capture range shrinks as the platform amplitude decreases. Evidence for this can be found by
examining the cases in Table I where phase lock was not achieved. Subjects 3 and 5 failed to
achieve phase lock in 50% of the trials. In both cases the frequencies at which this phase
lock failed were at the low end, ω = ω1 and at the high end, ω = ωM. This is consistent with
(30) where one would expect phase lock to fail as the phase shift approaches the boundary
of the hold in range. The mean value of the platform amplitude for the failed phase lock
trials was A = 0.53 mm in comparison with an overall mean platform amplitude of A = 1.08
mm. Again, this is consistent with the observation that the size of the capture range
decreases as the platform amplitude decreases.

Observation C suggests that the sign of the residual phase shift depends on whether the
platform frequency is below or above the PLL center frequency Fq. Support for this
observation can be found in the plots of Δθ versus shown in Fig. 9. Most of the data and the
least-squares fit for the case F = 0.5 Hz are positive. This is consistent with F < Fq when the
mean value of Fq = 0.69 Hz is used. Similarly, most of the data points and the least-squares
fit for the case F = 0.75 Hz are negative. Observation D suggests that the magnitude of the
residual phase shift should decrease as the platform amplitude increases. The least-squares
trend lines in Fig. 9 are consistent with this observation as well, although it is acknowledged
that there is considerable variation in the data.
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The method used to identify the parameters of the PLL model assumed that the QS oscillator
is a weak sinusoidal oscillation whose characteristics are difficult to directly measure
because of the significant noise present in QS sway. The indirect approach to determining Fq
has the advantage that it allows one to set the quiet standing frequency such that the PLL has
zero phase shift when the measured residual phase shift is zero, as was done in (22). An
alternative approach is to apply cross correlation to the quiet standing data to find Fq using
(7), similar to what was done for the periodic stimulus case. This leads to a mean QS
frequency of Fq = 0.54 Hz. This approach yields the same qualitative results in terms of how
the predicted phase varies with frequency. However, the observed phase shift and the PLL
model will no longer be constrained to agree when the stimulus frequency equals Fq. The
indirect approach to finding Fq that has been proposed here has the additional advantage that
it does not rely on the quiet standing sway having a single distinct peak in its power density
spectrum. In some instances a distinct single peak in the quiet standing sway is observed, but
in other cases it is not.

Besides a QS oscillator, the other structural feature that separates the PLL model from linear
feedback models is multiplicative feedback followed by low pass filtering. Realization of a
multiplier type mechanism for phase detection might be achieved through modulated
transmission of information across synapses. For example, if a QS oscillation opens
different types of ion channels, alternating between excitatory and inhibitory post synaptic
potential, then this could have a multiplicative feedback effect on the neural pathway that
senses platform movement. Since the speed with which the overall system can respond is
limited, this limited bandwidth will contribute to a low pass filtering of the multiplier output.

B. Nonlinear Effects
Many of the models that have been proposed for the postural control system are linear.
However, time-varying and nonlinear effects have been reported. In [26] it was observed
that the gain decreased with increasing stimulus amplitude. This phenomenon was not
observed here, probably because the stimulus amplitudes were kept very small. They were
set using psychophysical threshold levels making it more likely that one would be operating
in the linear region. However, even when the periodic stimulus amplitude is kept small,
nonlinear and time varying effects can be observed. For example, Loughlin and Redfern [27]
have shown that both young and old healthy subjects adapt to constant frequency visual
perturbations. Latt et al. [18] reported experimental results that violate the principle of
superposition. The periodic stimulus used was galvanic vestibular stimulation (GVS) instead
of platform movement. The responses measured included lateral CoP motion and head
motion. The observed nonlinear behavior was in response to a dual frequency input
consisting of two sinusoidal components, one at F1 = 0.1 Hz and one at F2 = 0.45 Hz.
Although each of these periodic components, when applied separately, generated a distinct
peak in the power density spectrum at the input frequency, the dual frequency stimulus did
not produce a pair of peaks as would be expected with superposition, but instead only
contained a peak at F2. The proposed PLL model is nonlinear due to the presence of
multiplicative feedback. To demonstrate that similar qualitative behavior is possible, the
PLL model was driven with the inputs u1(k) = 2 cos(2πF1kT), u2(k) = 2 cos(2πF2kT)and
u3(k) = u1(k) + u2(k) with F1 = 0.5 Hz and F2 = 0.9 Hz. The power density spectra (PDS) of
the CoP for the three cases are shown in Fig. 10. The PDS were computed using Welch’s
modified average periodogram method with overlapping subsequences and a Hamming
window. Clearly, the principle of superposition is not satisfied in Fig. 10 with the peak at F2
= 0.9 Hz attenuated in the dual-frequency response. For the PLL model, this phenomenon
has a relatively simple explanation. The PLL locked onto the first of the two sinusoidal
components of the stimulus. Similar behavior can be observed with other pairs of
frequencies. The pair chosen in Fig. 10 was selected to lie on both sides of Fq and have a
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noninteger ratio. The dual frequencies F1 = 0.1 Hz and F2 = 0.45 Hz used in [18] also can be
used if appropriate parameter values are selected for the PLL model. The PLL parameter
values used in Fig. 10 were those of subject 7 in Table I.

C. Platform Movement Studies
A number of experimental studies have been reported that include platform perturbations.
Peterka [26] used pseudo random rotations of the support surface and the visual surround,
with and without sway referencing. The stimulus frequency range was [0.017, 2.23] Hz, and
the amplitude range was [0.5, 8]°. A multichannel model (visual, vestibular, proprioceptive
inputs) based on continuous feedback with PID control plus passive control of an inverted
pendulum was proposed. For a fixed stimulus amplitude, the postural control system
appeared to behave in a linear fashion, but nonlinear saturation effects were observed when
the stimulus amplitude increased. It was shown that the nonlinear effects could be accounted
for by changing the relative weighting of the three sensory input channels as a function of
the stimulus amplitude with vestibular cues showing increased importance for large stimuli.
Kooij and Vlugt [14] employed pseudo random periodic translations of a platform in the ML
direction with platform frequencies in the range [0.05, 4.5] Hz. Using spectral analysis, the
CoM and ankle torque responses were decomposed into periodic and remnant (stochastic)
components. The results supported the conclusion that balance control is based on a
continuous feedback mechanism where observed variations in the responses are due to noise
associated with state estimation errors. Jeka et al. [28] used a periodic ML movement of a
finger touch plate contact surface as a stimulus, and ML head position, CoM, and CoP as
responses. Frequencies in the range [0.1, 0.8] Hz and amplitudes in the range [2.25, 18] mm
were used. Based on observed phase lags, it was concluded that both position and velocity
feedback are used for postural control.

The experimental studies in [14], [26], [28] as well as simular studies involving vestibular
perturbation [29], [30] and visual perturbation [31] all measurement frequency response
characteristics using broadband stimuli. Because the PLL model is nonlinear and therefore
does not obey the principle of superposition, a broadband stimulus can not be used to
directly measure its frequency response. However, using sinusoidal inputs whose
frequencies and amplitudes lie within the capture range of the PLL, the frequency response
can be determined in a point-wise fashion by measuring the gain and phase shift of the
sinusoidal component of the steady state response. For the range of stimulus frequencies
used here, [0.3, 1.1] Hz, [26] reported a magnitude response that was approximately flat
with the gain beginning to fall off beyond 1 Hz. This is in contrast to the composite
magnitude response shown in Fig. 8 where the gain increases with frequency over the
measured range. The discrepancy is perhaps due to the different types and sizes of stimuli
used (large pseudo random tilting platform versus small sinusoidal translating platform)
which make a direct comparison difficult. In [14] a translating platform was used and in this
case the gain (normalized to gravitational stiffness) did increase with frequency similar to
that observed in Fig. 8. Likewise, the CoP gain increased with frequency in [28].

The phase information reported here agrees quite closely with that observed in [14], [26],
and [28]. In each case it was observed that for low frequencies there is a small phase lead,
and as the stimulus frequency increases this causes a large phase lag characteristic of a time
delay. The time delay, τd, reported in [26] varied with the stimulus amplitude and ranged
from a mean of 191 ms for a 0.5° stimulus to 105 ms for an 8° stimulus. For the PLL model
a mean time delay of τd =260 ms was found. Recalling that only low amplitude
(psychophysical threshold) stimuli were used, this appears to agree reasonably well. It is
important to note that the residual phase shift component generated by the PLL does
produce a phase lead at low frequencies as can be seen in Fig. 9. Consequently, a small low
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frequency phase lead accompanied by a large high frequency phase lag is consistent with the
proposed PLL model.

D. Conclusions
The PLL model presented here is a nonlinear model that does not obey the principle of
superposition. This is a limitation of the proposed model because broadband inputs can not
be used to directly measure the frequency response characteristic as they can with linear
models. Instead, the frequency response can only be measured in a pointwise fashion over
the capture range of the PLL. The absence of superposition is also a strength because the
PLL model successfully predicts nonlinear behavior observed in a dual frequency
experiment reported previously in [18] (albeit using a different type of stimulus). Another
useful feature of the proposed PLL control mechanism is that it suggests a number of
qualitative characteristics (items A–D) that can be tested directly in future experiments. The
PLL model reported here was identified and tested using experimental data obtained from
nine healthy young adults. The data from these subjects represents legacy data in that the
primary focus was the measurement of psychophysical threshold values for small sinusoidal
movements of the platform. It also included supplementary quiet standing and phase lock
experiments at four frequencies and four amplitudes, and these provided sufficient data to
identify and test a PLL model. The authors are in the process of designing additional
experiments using a larger range of frequencies and amplitudes applied to a wider group of
subjects including older subjects so that changes in the parameters of the PLL model with
age might be investigated. Preliminary indications suggest that older subjects who are less
steady may exhibit more phase shift and fall out of phase lock sooner than younger subjects
with superior balance. However, it remains to be determined if this is actually the case. If the
phase shift associated with a low amplitude sinusoidal stimulus can be measured quickly and
reliably, then this technique might potentially provide an alternative way to assess steadiness
[32].
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Fig. 1.
Extraction of the sinusoidal components of CoP and platform data for a 24-year-old healthy
female. The numbers in parentheses are the peak cross correlations.
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Fig. 2.
PLL model of the QS oscillator driven by periodic motion of the platform.
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Fig. 3.
The smoothed PLL frequency, F = xF/(2π), for nine subjects for platform frequencies of 0.5
Hz and 0.75 Hz.
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Fig. 4.
Overall PLL model of CoP during quiet standing and periodic motion of the platform.
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Fig. 5.
Phase shift of the sinusoidal component of AP CoP for (a) a healthy 28-year-old female
subject and (b) a healthy 24-year-old male subject.
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Fig. 6.
Amplitude of the sinusoidal component of AP CoP for (a) a healthy 28-year-old female
subject and (b) a healthy 24-year-old male subject.
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Fig. 7.
CoP and PLL phase shifts versus normalized frequency. The r2 value for the CoP linear
regression is 0.36 and for the PLL linear regression is 0.53.
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Fig. 8.
Amplitude gain, γ = B/A, for the CoP and the PLL model. The r2 value for the CoP linear
regression is 0.57 and for the PLL linear regression is 0.59.
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Fig. 9.
Residual phase shift versus the amplitude of the sinusoidal platform motion for two
frequencies.
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Fig. 10.
Power density spectra of the PLL output for single-frequency and dual-frequency sinusoidal
inputs of amplitude A = 2 mm.
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