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Objectives: Occupational exposure assessment for population-based case–control studies is
challenging due to the wide variety of industries and occupations encountered by study partic-
ipants. We developed and evaluated statistical models to estimate the intensity of exposure to
three chlorinated solvents—methylene chloride, 1,1,1-trichloroethane, and trichloroethylene—
using a database of air measurement data and associated exposure determinants.

Methods: A measurement database was developed after an extensive review of the pub-
lished industrial hygiene literature. The database of nearly 3000 measurements or summary
measurements included sample size, measurement characteristics (year, duration, and type),
and several potential exposure determinants associated with the measurements: mechanism of
release (e.g. evaporation), process condition, temperature, usage rate, type of ventilation, lo-
cation, presence of a confined space, and proximity to the source. The natural log-transformed
measurement levels in the exposure database were modeled as a function of the measurement
characteristics and exposure determinants using maximum likelihood methods. Assuming
a single lognormal distribution of the measurements, an arithmetic mean exposure intensity
level was estimated for each unique combination of exposure determinants and decade.

Results: The proportions of variability in the measurement data explained by the modeled
measurement characteristics and exposure determinants were 36, 38, and 54% for methylene
chloride, 1,1,1-trichloroethane, and trichloroethylene, respectively. Model parameter estimates
for the exposure determinants were in the anticipated direction. Exposure intensity estimates
were plausible and exhibited internal consistency, but the ability to evaluate validity was limited.

Conclusions: These prediction models can be used to estimate chlorinated solvent exposure
intensity for jobs reported by population-based case–control study participants that have suf-
ficiently detailed information regarding the exposure determinants.
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INTRODUCTION

Occupational exposure assessment for population-
based case–control studies is challenging because
exposure information is largely from questionnaire
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responses from study participants. Historically,
information from study participants typically in-
cluded job title, industry, and dates (and sometimes,
tasks, chemicals, and equipments) obtained using
open-ended questions. To overcome the limitations
of this design, job or exposure-specific question-
naires have been developed that collect more de-
tailed information. Regardless of the questionnaire
design, little information has been available on
how to convert questionnaire information into expo-
sure estimates.

Two population- and one hospital-based case–
control studies were conducted in the USA by
the National Institute for Occupational Safety
and Health (NIOSH) of the Centers for Disease
Control and Prevention (CDC), the National Can-
cer Institute (NCI), and the National Center on
Birth Defects and Developmental Disabilities of
the CDC to examine associations between health
outcomes and occupational exposures (Yoon
et al., 2001; Ruder et al., 2006; Samanic et al.,
2008). A primary occupational hypothesis in these
studies involves chlorinated solvents. Two of the
studies (Ruder et al., 2006; Samanic et al., 2008)
used questionnaires that collected detailed job or
exposure information; therefore, an optimization
approach was developed to base the estimation
process on job characteristics, called exposure de-
terminants, that could be obtained from the ques-
tionnaire responses. A goal of the approach was
to provide a rigorous transparent estimation pro-
cess that could characterize exposure in widely
varying job situations.

The purpose of these analyses is to develop
an approach for estimating exposure levels for
three chlorinated solvents: methylene chloride
[Chemical Abstract Service (CAS) 75-09-2],
1,1,1-trichloroethane (CAS 71-55-6), and trichlo-
roethylene (CAS 79-01-6) in the three studies.
The approach developed here could be used in
other studies involving these solvents, evaluated
for the same exposure determinants. A similar
determinant-based approach was used to estimate
occupational exposures to three aromatic solvents
(Hein et al., 2008).

MATERIALS AND METHODS

The assessment approach, based on exposure de-
terminants, involved several steps. First, all jobs
identified as possibly exposed were characterized
by a single set of exposure determinants based on
the questionnaire responses. Second, this same set
of determinants was used to characterize the avail-

able published measurement data for the three sol-
vents of interest based on descriptions in the
published reports. Third, a regression analysis of
the measurement data and associated determinants
was used to predict an exposure level for each unique
set of determinant values. Finally, predicted levels
were assigned to the reported jobs in the studies us-
ing each job’s set of determinant values.

Measurement database

Air measurement results and associated sampling
characteristics and exposure determinant information
for the three solvents were compiled from published
literature; NIOSH Health Hazard Evaluations (HHEs),
detailed industrial hygiene reports of a single or several
facilities; and NIOSH Industry-wide Studies (IWS)
reports investigating typical exposure levels within
specific industries (Table 1). Literature was identified
from MEDLINE, TOXLINE, NIOSHTIC, and NIOSH
HHE database searches, other reviews (e.g. Bakke
et al., 2007; Gold et al., 2008), and personal archives.
The compiled literature included primarily US journal
articles and trade association reports (1940–2001),
NIOSH HHEs (1976–1996), and NIOSH IWS reports
(1951–1985) [IWS reports prior to 1971 (the year
NIOSH began) include reports from the US HEW/
HHS Bureau of Occupational Safety and Health.].
See Supplementary data (available at Annals of
Occupational Hygiene online) for citations of the
articles and reports included in the database.

Exposure metrics and sample size

Most publications reported individual measure-
ments, but some provided only summary exposure
measures, usually arithmetic means (AMs), but oc-
casionally the geometric mean (GM) and geometric
standard deviation (GSD), the median, or the range.
When summary AMs were absent, reported informa-
tion was used to estimate the AMs. First, when both
the GM and GSD were available, the AM was esti-
mated assuming a lognormal distribution as given
below:

AM5GM � exp
h
1
.

2 � ðlnðGSDÞÞ2
i
: ð1Þ

If only the GM was provided, the GSD was esti-
mated to be 3.5 and a similar conversion was made.
This value, although higher than often observed
(Kromhout et al., 1993), was selected because many
of the measurement data were across different jobs
and worksites that likely would lead to greater vari-
ability than that reported by Kromhout. Finally, if
only the range was provided, the AM was estimated
by assuming a lognormal distribution according to
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the following algorithm: first, the midpoint of the
log-transformed minimum and maximum levels pro-
vided an estimate of the mean of the log-transformed
levels (l̂L); second, the range of the log-transformed
levels divided by Wmedian, the theoretical median
standardized range, provided an estimate of the
standard deviation of the log-transformed levels
(r̂L) (Pearson and Hartley, 1942; Lavoué et al.,
2007); and finally, the AM was estimated as given
below:

AM5 exp
�
l̂L þ 1

�
2 � r̂2

L

�
: ð2Þ

Publications reporting summary measures usually
reported sample size. If not, sample size magnitude

(e.g. 1, 2, or 10) was estimated based on information
in the report including the purpose of sample collec-
tion, the number of measurements for other measured
agents, the time span over which measurements
were collected, and non-quantitative comments sug-
gestive of the scale of the measurement collection
effort. In the following, the term ‘reported levels’
refers to both individual measurements and reported
or estimated AMs.

Reported levels presented in milligram per cubic
metre were converted to p.p.m. (by volume) using
the conventional formula for gases and vapors at nor-
mal temperature and pressure (25�C, 760 mmHg).
The distributions of the reported levels were strongly

Table 1. Summary of the chlorinated solvents measurement database compiled from the published literature and NIOSH reports

Characteristic Methylene chloride 1,1,1-trichloroethane Trichloroethylene

Total reported levels 1641 1441 641

Excluded in data cleaning efforta �89 �88 �84

Excluded for missing valuesb �198 �263 �52

Excluded for ‘high judgment’c �82 �143 �21

Retained for modeling 1272 (78%) 947 (66%) 484 (76%)

Sourced

Percent published literature 15 2 30

Percent NIOSH HHE report 63 89 65

Percent NIOSH IWS report 22 9 6

Sample sized

Range (mean) 1–110 (3.4) 1–141 (1.3) 1–212 (3.2)

Percent individual measurements 92 99 91

Percent sample size estimated 5.0 0 0.8

Reported levelsd

Percent censored at the LOD 12 23 12

Percent �x estimated 2.3 0.7 1.4

Measurement duration and typed

Percent long-term personal 61 56 37

Percent short-term personal 11 8 10

Percent long-term area 25 31 25

Percent short-term area 4 5 27

Measurement yeard

Range (median) 1956–2001 (1983) 1970–1996 (1983) 1940–1998 (1982)

Percent prior to 1970 1 0 19

Percent in 1970–1979 22 8 7

Percent in 1980–1989 60 72 64

Percent in 1990 or later 16 20 10

aThe data cleaning effort included identifying and excluding duplicate measurements and measurements collected under unusual
conditions (e.g. accident investigations).
bMeasurements with missing values for one or more exposure determinant or measurement characteristic were excluded from the
modeling process.
cMeasurements with approximately half or more of the exposure determinants based on ‘judgment’ were excluded from the
modeling process.
dFor reported levels that were retained for modeling.
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skewed to the right and somewhat consistent
with a lognormal distribution based on graphical
methods, although log-normality was rejected by
the Shapiro–Wilk test for all three solvents (P-value
, 0.0001), likely due to the large sample sizes
(D’Agostino and Stephens, 1986).

Measurement characteristics

The database included reported levels from long-
term (�60 min) and short-term (,60 min) and per-
sonal and area measurements. For estimating 8-h
time-weighted average exposure intensities, data
from long-term personal measurements were pre-
ferred; when these were unavailable, to increase
the number of reported levels available for modeling,
available short-term personal and long- and short-
term area measurements were included. Data were
available for 1940–2001, but were generally sparse
prior to 1970.

Exposure determinants

Each report was reviewed to identify characteristics
of the work site and the job’s interaction with the work
site associated with each measurement. The character-
istics evaluated, called exposure determinants, were
mechanisms of release of the solvent into the breath-
ing zone of the monitored worker (described below);
the process condition (closed, open, or both); the
process temperature (room temperature, elevated, or
both); the solvent usage rate at the location where
the measurement took place (,380 l month�1, 380–
3800 l month�1, or .3800 l month�1); the types of
ventilation available (described below); the process
location (outdoor, indoor, or both); and the worker’s
location, i.e. in a confined space (no, yes, or both)
and proximity to the exposure source (�0.9 m,
,0.9 m, or both).

Mechanism of release included evaporation and
five active mechanisms: spreading, manual agitation,
rolling, mechanical agitation, and aerosolization.
Basic industrial hygiene principles suggest that com-
pared to evaporation, active mechanisms of release
should be associated with higher emission levels,
due to the external energy imparted to the solvent
and the increased solvent–air interface. Each job
was assigned a primary mechanism of release and
where more than one mechanism of release was
likely, a secondary mechanism of release (e.g. spray-
ing a degreasing agent with a wand and then allow-
ing the solvent to evaporate). Due to the small
numbers of observations for some mechanisms, all
active mechanisms, other than aerosolization, were
combined.

Two ventilation descriptions were assigned: local
exhaust ventilation (LEV) at the point of generation
of the solvent and general industrial mechanical di-
lution ventilation (IMD; e.g. room air mixing using
fans or recirculation). Ventilation was classified as:
both LEV and IMD; LEV only; LEV and no LEV
(where more than one source existed); IMD only;
IMD and none (when some areas had no ventilation);
or no ventilation present or specified. For modeling
purposes, we considered effects for LEV separately
from IMD. LEV was evaluated as absent, present
but ineffective, or present and effective. IMD was
evaluated as present or absent.

Each determinant value was assigned a value to in-
dicate the associated level of certainty: L, literature
(information in the report was used to assign the de-
terminant value); F, probably factual; or J, judgment.
Factual was assigned when the fact was inherent in
the process. For example, assigning room tempera-
ture to trichloroethylene measurements taken when
trichloroethylene was being used as an anesthetic
in an operating room because it is unlikely that tri-
chloroethylene would be heated in such a situation.
Judgment was assigned when the determinant could
vary from workplace to workplace. For example, the
use of ventilation in a particular year was considered
a judgment.

Statistical modeling

The goal of the statistical modeling was to relate
the measurement levels abstracted from the literature
to their associated exposure determinants to develop
models for estimating exposure intensity for jobs re-
ported by the case–control study participants. Some
reported levels were presented as below the limit of
detection (LOD), non-detectable, or zero; conse-
quently, censored regression techniques based on
maximum likelihood estimation methods (Lubin
et al., 2004), which perform well for censoring
,30% (Uh et al., 2008), were used. When no LOD
was reported, a solvent- and year-specific LOD
was assigned (Supplementary data are available at
Annals of Occupational Hygiene online).

The LIFEREG procedure in SAS (version 9.2,
SAS Institute Inc., Cary, NC, USA) was used to es-
timate model parameters. The outcome variable was
the natural log-transformed reported level. Each ob-
servation was weighted by its sample size, which had
the effect of multiplying the contribution of each
reported level to the log likelihood. A regression
model relating the reported levels to the assigned de-
terminants and measurement characteristics was
given by
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lnðyiÞ5 b0 þ
b1ðprimary release mechanism

involves aerosolizationÞþ
b2ðprimary release mechanism

involves other active mechanismsÞ þ
b3ðsecondary release mechanism

involves aerosolizationÞ þ
b4ðsecondary release mechanism

involves other active mechanismsÞ þ
b5ðLEV 5 effectiveÞ þ
b6ðLEV 5 ineffectiveÞ þ
b7ðIMD 5 presentÞ þ
b8ðusage rate 5 lowÞ þ
b9ðusage rate 5 highÞ þ
b10ðprocess condition 5 closedÞ þ
b11ðprocess temperature

5 elevated=bothÞ þ
b12ðlocation 5 outdoors=bothÞ þ
b13ðconfined space 5 yes=bothÞ þ
b14ðproximity 5 near=bothÞþ
b15ðduration=type 5 short=personalÞ þ
b16ðduration=type 5 long=areaÞ þ
b17ðduration=type 5 short=areaÞþ
b18ðyear � 1970Þ þ rm � ei:

ð3Þ
where yi was the ith reported level, b0 was the inter-
cept, b1–b14 were parameters for the exposure deter-
minants, b15–b18 were parameters for the
measurement characteristics (i.e. duration, type,
and year of the measurement, if available, otherwise
publication year), rm was the model scale parameter
(i.e. the standard deviation of the model residuals),
and ei, the error (assumed to be independent and
identically distributed as normal with a mean of zero
and a variance of one). Terms for measurement dura-
tion (long term, short term) and type (personal, area)
were included in all models to account for the varia-
tion associated with these sampling characteristics.
Measurement year, treated as a continuous variable,
was centered at 1970. In this model, the intercept
(b0) has the interpretation as the log intensity level
for primary and secondary mechanisms of release
of evaporation, no LEV, no IMD, medium usage rate,
open process condition, room temperature, indoor
location, not confined space, far proximity, long-
term personal, and year 1970.

Only determinants for which a high percentage
(�50%) of values were reported in the literature
(rather than probably factual or judgment) were fur-
ther considered because initial modeling resulted in
some parameter estimates that were difficult to inter-
pret. Furthermore, reported levels with missing val-
ues for one or more exposure determinant were
excluded, as were reported levels for which more
than half of the exposure determinant values were
based on judgment. These decisions resulted in mod-
els with greater interpretability. Finally, determi-
nants with parameter estimates that were not
significantly different from zero at a 5% level of sig-
nificance were removed from the model using a back-
wards elimination procedure.

Model goodness-of-fit was estimated using
a ‘pseudo’ R-squared computed from the scale pa-
rameter from the model (rm) and the scale parameter
from a model fit with no independent variables
(rnull) as

R-squared ffi 100% �
h
1 � ðrm=rnullÞ2

i
: ð4Þ

The pseudo R-squared is similar to the R2 derived
from least squares regression and has the interpreta-
tion as the percentage of the residual variation that is
explained by the terms in the model. Standardized
model residuals were examined for normality and
homogeneity.

Validation

To evaluate the model-predicted estimates, a long-
term personal predicted intensity was computed for
each unique combination of inputs to the prediction
models. Unique combinations of inputs considered
each exposure determinant and year and are hence-
forth denoted as ‘scenarios’. For example, one
scenario was primary mechanism of release evapora-
tion, secondary mechanism of release evaporation,
LEV absent, IMD present, low usage rate, closed
condition, elevated temperature, indoor location,
not confined space, and far proximity. To avoid ex-
trapolation errors due to limited data, no evaluations
were done for years prior to 1970 for methylene
chloride and 1,1,1-trichloroethane and years prior
to 1950 for trichloroethylene. A prediction was made
for each unique combination of inputs during each
decade by using the midpoint of the decade as the
measurement year, rather than evaluating yearly
estimates.

Since the exposure measurements were log-
transformed and a majority of the reported levels
were based on individual observations, these pre-
dictions were geometric, rather than arithmetic,
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means. Assuming a lognormal distribution, the
standard conversion from a GM to an AM was used
(i.e. equation (1); Aitchison and Brown, 1963). The
estimated scale parameter (rm) from the model can
be used to estimate the GSD [GSD 5 exp(rm)];
however, this resulted in estimated GSDs higher
(i.e. 6.8, 9.1, and 4.0) than would be expected
based on a single lognormal distribution. Instead,
to convert estimated GM intensities to AM intensi-
ties, we used a GSD of 2.5 for each solvent because
a previous analysis of a large number of measure-
ments for a variety of chemical agents found GSDs
ranging from 2.2 to 2.7 (Kromhout et al., 1993).

Plausibility of the model-predicted exposure in-
tensity levels was evaluated by comparing the pre-
dicted AM intensities for the exposure scenarios to
the current American Conference of Governmental
Industrial Hygienists (ACGIH) threshold limit val-
ues (TLVs) (ACGIH, 2001, 2007) and to solvent sat-
uration vapor pressures (SVPs), at 25�C. Practicing
industrial hygienists use a rule of thumb that 1% of
the SVP represents an air concentration likely to oc-
cur under the worst conditions (e.g. confined space
with no ventilation) (Stenzel, 2006). Exposure inten-
sities considerably higher than 1% of the SVP are not
expected to occur in the workplace, at least, not with
great frequency or not for lengthy periods of the
workday.

Internal consistency of the predicted estimates
was evaluated by ranking and grouping model-
predicted AM intensities for the exposure scenarios
into five categories; matching corresponding mea-
surement data to these exposure categories; and cal-
culating the mean and median of the reported levels,
weighted by sample size, within each category. Be-
cause of the small number of scenarios with mea-
surement data, solvent-specific cutpoints defining
exposure categories were selected a priori based
on SVP using the Rule-of-Ten (2, 20, 200, and
2000 p.p.m. for methylene chloride; 0.5, 5, 50, and
500 p.p.m. for 1,1,1-trichloroethane; and 0.3, 3, 30,
and 300 p.p.m. for trichloroethylene) (Stenzel,
2006).

Although 100% of the data were used for modeling
purposes, cross-validation of the modeling process
used a combination of data splitting and Monte Carlo
techniques. For each solvent, measurement data were
split: 80% for modeling and 20% for validation. A
model fit to the 80% modeling set was then applied
to the exposure scenarios measured in the 20% vali-
dation set. Observed levels and predicted exposure
levels were compared using the Spearman correla-
tion coefficient. The process of data splitting, model
fitting, and comparing observed and predicted values

was repeated 1000 times, and the mean of the 1000
correlation coefficients was used as a measure of
the validity of the modeling process. The Spearman
correlation was used because of the need to appropri-
ately rank the jobs reported in the epidemiologic
studies by exposure level. A 95% confidence interval
(CI) was estimated using the 2.5 and 97.5 percentiles
of the observed correlation coefficients.

RESULTS

NIOSH HHEs supplied a majority of the measure-
ments (Table 1). More than 90% of the reported lev-
els were individual measurements and ,30% were
censored at the LOD. A majority of reported levels
for methylene chloride and 1,1,1-trichloroethane
were from long-term personal measurements, but tri-
chloroethylene reported levels were split between
personal (47%) and area (53%) measurements. The
median measurement year for all three solvents
was the early 1980s.

Evaporation was the most frequent primary mech-
anism of release for 1,1,1-trichloroethane and tri-
chloroethylene and the most frequent secondary
mechanism of release for methylene chloride
(Table 2). Evaporation was specified as one of the
two mechanisms of release for 87% of the database.
Most reported levels were associated with open/both
process conditions, indoor locations, and not con-
fined spaces. Distributions for the other exposure de-
terminants varied by solvent.

Most determinants were abstracted from the liter-
ature (Table 3). Process temperature (for methylene
chloride and 1,1,1-trichloroethane) and usage rate
and confined space (for all three solvents) had
�50% or more of determinant values derived from
judgment and so were excluded from the modeling
process.

In the regression models, parameter estimates for
measurement year were negative and highly statisti-
cally significant, resulting in estimates of declines of
2.7, 3.5, and 6.7% per year for methylene chloride,
1,1,1-trichloroethane, and trichloroethylene, respec-
tively (Table 4). Estimates for measurement duration
and type were not consistent. For example, com-
pared to long-term personal measurements, short-
term personal measurements were significantly
lower for methylene chloride but significantly higher
for 1,1,1-trichloroethane. Measurement duration,
type, and year explained a fair amount of the vari-
ability with R-squared values of 22, 13, and 42%
for methylene chloride, 1,1,1-trichloroethane, and
trichloroethylene, respectively.
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Table 2. Exposure determinant distributions

Determinant Methylene chloride
(n 5 1272)

1,1,1-trichloroethane
(n 5 947)

Trichloroethylene
(n 5 484)

Primary mechanism of release, %

Evaporation 33 76 77

Spreading 30 5 10

Manual agitation 16 3 1

Rolling 3 1 0

Mechanical agitation 7 ,1 ,1

Aerosolized 11 15 11

Secondary mechanism of release, %a

Evaporation 58 35 39

Spreading 14 32 9

Manual agitation 21 27 49

Rolling 2 ,1 0

Mechanical agitation 4 ,1 0

Aerosolized 2 6 3

Local exhaust ventilation, %

Absent 42 67 38

Present, but ineffective 38 25 57

Present and effective 21 8 5

Industrial mechanical dilution, %

Absent 63 42 68

Present 37 58 32

Process condition, %

Open, both 99 99 93

Closed 1 1 7

Process temperature, %b

Room 78 72 33

Elevated, both 22 28 67

Usage rate, %b,c

,380 l month�1 19 48 18

380–3800 l month�1 53 47 73

.3800 l month�1 28 4 9

Location, %

Indoor 94 99 94

Outdoor, both 6 1 6

Confined space, %b

No 96 95 95

Yes, both 4 5 5

Proximity to source, %

�0.9 m 40 54 49

,0.9 m, both 60 46 51

aPrimary mechanism of release used if a secondary mechanism of release was not specified.
bProcess temperature (for methylene chloride and 1,1,1-trichloroethane) and usage rate and confined space (for all three solvents)
were excluded from the modeling process because approximately half or more of the determinants that were assigned were based
on judgment.
cThe specific gravities of methylene chloride, 1,1,1-trichloroethane, and trichloroethylene (1.326, 1.338, 4.464, respectively, at
20�C/4�C) can be used to convert liquid volume to mass.
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Modeled parameter estimates for the three sol-
vents were generally as expected. Because of small
numbers and to increase interpretability, the cate-
gory of active mechanism of release was combined
with aerosolization for methylene chloride and
with evaporation for trichloroethylene. For methy-
lene chloride, compared to active/aerosolized,
primary evaporation was associated with a 50%
decrease and secondary evaporation with a 70%
decrease. For 1,1,1-trichloroethane, compared to
evaporation, active primary mechanism was associ-
ated with a 7-fold increase and aerosolized primary
mechanism with a 30-fold increase; active and
aerosolized secondary mechanisms were associated
with 4-fold and 5-fold increases, respectively.
For trichloroethylene, primary aerosolized was
associated with a 2-fold increase and secondary
aerosolized with a 10-fold increase compared to
evaporation/active. Effective LEV was associated
with 60–70% lower levels, and for trichloroethy-
lene, ineffective LEV was associated with 30%
lower levels, compared to no LEV. IMD was asso-
ciated with 50% lower levels for methylene chlo-
ride and 1,1,1-trichloroethane, but only 20%
lower levels for trichloroethylene. Elevated process
temperature was associated with a 4-fold increase
for trichloroethylene. Compared to working in-
doors, working at an outdoor location was associ-
ated with 90–95% lower levels for methylene
chloride and 1,1,1-trichloroethane. Working in
close proximity to the source was associated with
an �3-fold increase. The proportion of variation
in the reported levels explained by these models
was 36, 38, and 54 for methylene chloride, 1,1,1-
trichloroethane, and trichloroethylene, respectively.

Standardized residuals for the reduced models
were approximately normally distributed; how-
ever, formal statistical tests (Shapiro–Wilk) rejected
the null hypothesis of normality for methylene
chloride (P-value 5 0.0026) and trichloroethylene
(P-value 5 0.034) (data not shown). A visual inspec-
tion (box plots) of the standardized residuals indi-
cated no major problems with heteroscedasticity.

Models described in Table 4 were used to predict
AM exposure intensity levels for the exposure sce-
narios (described above). Predicted AM exposure
intensity levels for the evaluated exposure sce-
narios ranged from 0.051 to 160 p.p.m. (median
2.8 p.p.m.) for methylene chloride, from 0.0013 to
200 p.p.m. (median 0.67 p.p.m.) for 1,1,1-
trichloroethane, and from 0.21 to 3700 p.p.m. (me-
dian 30 p.p.m.) for trichloroethylene (Table 5). The
percent of predicted exposure levels exceeding cur-
rent ACGIH TLVs was comparable to the percent-
age of reported levels exceeding the TLVs for
1,1,1-trichloroethane (0 and 2.1%, respectively),
but lower for methylene chloride (4.7 and 23%, re-
spectively) and higher for trichloroethylene (71 and
45%, respectively). No predicted exposure in-
tensities for the 192 evaluated methylene chloride
exposure scenarios or the 432 evaluated 1,1,1-
trichloroethane scenarios exceeded the 1% SVP
threshold. For trichloroethylene, the large differ-
ence in percentage of reported versus predicted lev-
els exceeding the current ACGIH TLV and the
higher percentage of predictions above the 1%
SVP threshold were due predominantly to estimates
derived from the earlier decades (i.e. 1950s–1970s).

Predicted exposure intensity levels were gener-
ally consistent with the measurement data, with

Table 3. Distribution of decision values for each determinant

Determinant Methylene chloride
(n 5 1354)a

1,1,1-trichloroethane
(n 5 1090)

Trichloroethylene
(n 5 505)

L (%)b F (%) J (%) L (%) F (%) J (%) L (%) F (%) J (%)

Primary mechanism of release 66 3 31 72 0 28 87 6 7

Secondary mechanism of releasec 62 6 32 60 0 40 71 11 19

Ventilation 75 ,1 25 72 ,1 28 73 0 27

Process condition 85 0 15 72 0 28 95 ,1 5

Process temperature 45 6 50 53 ,1 47 84 3 13

Usage rate 36 2 63 34 0 66 41 2 57

Location 90 4 6 94 ,1 6 85 12 3

Confined space 50 2 48 47 ,1 52 39 3 58

Proximity to source 67 1 31 57 0 43 64 0 36

aNumber of reported levels prior to excluding reported levels with more than half of the determinants assigned based on
judgment (see Table 1).
bL, literature; F, probably factual; J, judgment (see text for interpretation). Distributions may not sum to 100% due to rounding.
cDecision value for primary mechanism of release used if a secondary mechanism of release was not specified.
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the median and mean reported levels from the mea-
surement database increasing with the predicted in-
tensity scores (Table 6). For example, estimated
methylene chloride exposure intensities for 85
(44%) of 192 exposure determinant scenarios were
assigned to the lowest score (,2 p.p.m.). Air meas-

urements in the database were available for six sce-
narios, representing 20 reported levels. The median
and mean of these measurements were 1.8 and
6.5 p.p.m., respectively.

Mean Spearman correlation coefficients between
the reported levels and the predicted intensities in

Table 4. Parameter estimates and standard errors (SE) for models of natural log-transformed chlorinated solvent levels (p.p.m.)

Terma Methylene chloride 1,1,1-trichloroethane Trichloroethylene

Estimate SE Estimate SE Estimate SE

Intercept 3.453* 0.108 �1.101* 0.273 1.246* 0.168

Primary mechanism of release

Evaporation �0.737* 0.094 Reference Reference

‘Active’b Referencec 1.964* 0.295 Reference

Aerosolized Reference 3.415* 0.213 0.749* 0.112

Secondary mechanism of release

Evaporation �1.134* 0.082 Reference Reference

Active Reference 1.281* 0.187 Reference

Aerosolized Reference 1.519* 0.272 2.283* 0.394

Local exhaust ventilation

Absent Reference Reference Reference

Present, but ineffective Reference Reference �0.428* 0.098

Present and effective �0.931* 0.128 �1.334* 0.309 �1.286* 0.327

Industrial mechanical dilution

Absent Reference Reference Reference

Present �0.654* 0.067 �0.730* 0.144 �0.222 0.103

Process temperature

Room Reference

Elevated/both 1.436* 0.120

Location

Indoor Reference Reference

Outdoor/both �2.717* 0.215 �3.026* 0.973

Proximity to source

Far Reference Reference Reference

Near/both 1.321* 0.074 1.206* 0.157 1.032* 0.121

Duration/type

Long-term/personal Reference Reference Reference

Short-term/personal �3.091* 0.090 2.253* 0.286 0.061 0.123

Long-term/area �1.429* 0.116 0.020 0.176 �2.074* 0.159

Short-term/area 0.773* 0.204 0.605 0.380 �0.398* 0.160

Measurement year

Year-1970 �0.027* 0.003 �0.036* 0.013 �0.069* 0.005

Scale parameter 1.910 2.214 1.398

Model R-squared 36.2% 38.0% 54.5%

aTerms for process condition and usage rate were excluded from all models, and process temperature from methylene chloride
and 1,1,1-trichloroethane models, because approximately half or more of the determinant values that were assigned were based
on judgment; the term for location was excluded from the trichloroethylene model because it was not statistically significant.
bActive includes spreading, manual agitation, rolling, and mechanical agitation, but not aerosolization.
cDenotes the reference category or categories.
*P-value , 0.01.
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the 20% validation samples were 0.21 (95% CI:
0.09–0.32), 0.47 (95% CI: 0.36–0.57), and 0.61
(95% CI: 0.49–0.72) for methylene chloride, 1,1,1-
trichloroethane, and trichloroethylene, respectively.

DISCUSSION AND CONCLUSIONS

Statistical modeling frequently has been used to
identify exposure determinants in a single industry
or occupation [e.g. wood dust and particulates in
lumber mills (Teschke et al., 1999a; Friesen et al.,
2005); bitumen and polycyclic aromatic hydrocar-
bons among paving workers (Burstyn et al., 2000);
and herbicide exposure among custom applicators
(Hines et al., 2001)]. Some exposure estimates from
these models have been used in occupational epide-
miologic studies (Burstyn et al., 2007; Friesen et al.,
2007). Modeling exposure determinants across mul-
tiple industries are somewhat less common, possibly
due to a lack of available data or difficulty compiling
data. Databases of measurement levels across multi-
ple industries have been constructed for some agents
by abstracting data from the published industrial hy-
giene literature [e.g. solvents (van Wijngaarden and
Stewart, 2003; Bakke et al., 2007; Gold et al., 2008)]
or by utilizing existing databanks of exposure in-
formation [e.g. the Integrated Management and In-

formation System (IMIS) database of air sampling
data from US Occupational Safety and Health
Administration inspections beginning in 1972].
Teschke et al. (1999b) used IMIS data and a multiple
regression model including terms for measurement
year, state, industry group, and job group to estimate
wood dust exposure levels for a population-based
case–control study without having detailed question-
naire information about wood dust exposure. Lavoué
et al. (2008) used IMIS data to model formaldehyde
concentrations as a function of inspection type,
sample type, season, industry, year, number of work-
ers, state, and mean outside temperature. However,
databases such as these (i.e. IMIS and, in our case,
the published literature) suffer from several limita-
tions including lack of representativeness of the
available measurement data and lack of available
data for many jobs and industries. The inclusion of
exposure determinants based on environmental con-
ditions during the measurement in such databases
has additional limitations including limited informa-
tion for accurate assessment of determinants. For ex-
ample, the IMIS database does not include exposure
determinant information considered here, such as
mechanism of release and ventilation. Finally, given
the retrospective nature of the exposure measure-
ments comprising the database, there are limited

Table 5. Percent of measurement data and predicted intensities (for the evaluated exposure determinant scenarios) exceeding
various thresholdsa

Solvent No.b Median
(p.p.m.)

Range
(p.p.m.)

Percent exceeding thresholdc

ACGIH
TLV

0.01%
SVP

0.1%
SVP

1%
SVP

Methylene chloride

Measurement data 1272 7.0 0.0004–2200 23 22 1.0 0

Predicted intensity 192 2.8 0.051–160 4.7 4.2 0 0

1,1,1-trichloroethane

Measurement data 947 0.95 0.0004–1500 2.1 18 3.8 0

Predicted intensity 432 0.67 0.0013–200 0 9.7 0.2 0

Trichloroethylene

Measurement data 484 7.0 0.0002–1100 45 46 10 0.2

Predicted intensity 480 30 0.21–3700 71 65 28 3.1d

aTo evaluate the models, a long-term personal predicted intensity was computed for each unique combination of inputs (exposure
determinants and year) to the Table 4 prediction models. To avoid extrapolation errors due to limited data, years prior to 1970
were not evaluated for methylene chloride and 1,1,1-trichloroethane and years prior to 1950 were not evaluated for
trichloroethylene. The midpoint of the decade was used as the year in these predictions. For example, for the methylene chloride
model, there were 2 � 2 � 2 � 2 � 2 � 2 5 64 unique combinations of the exposure determinants and three decades (1970s,
1980s, and 1990s); consequently, 64 � 3 5 192 unique scenarios were evaluated.
bNumber of reported levels for measurement data and number of exposure determinant scenarios evaluated for predicted
intensities.
cThresholds include the current ACGIH TLVs [50 p.p.m. (established in 1988), 350 p.p.m. (established in 1963), and 10 p.p.m.
(established in 2006) for methylene chloride, 1,1,1-trichloroethane, and trichloroethylene, respectively] and 0.01, 0.1 and 1% of
the SVP (at 25�C, is 572 386, 161 370, and 90 789 p.p.m. for methylene chloride, 1,1,1-trichloroethane, and trichloroethylene,
respectively).
dAll scenarios exceeding 1% of the SVP for trichloroethylene were from the 1950s–1970s.
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avenues for model validation (Hein et al., 2008).
Models derived from our database of chlorinated sol-
vent air measurements and associated determinants
share these same limitations.

Several modeling decisions may have impacted
our results. The decision to include air measurement
results from short-term personal and area samples
was not without consideration of the limitations of
doing so. The fundamental, but unverifiable, as-
sumption was that information regarding exposure
determinants would be similar across different sam-
ple types and that any differences could be captured
by including terms in the regression model for mea-
surement duration and type. For example, we
assumed that the estimate for effective LEV was
similar for all sample types, which results in the
modification factor for effective LEV being the same
for long-term personal, long-term area, and short-
term measurements. In addition, the decision to not
include a random effect in the model for ‘publica-
tion’ required an assumption that measurements
from the same publication were independent. Our
previous work identified a problem with confound-
ing between random effects and some exposure de-

terminants, so we elected to use models with no
random effects (Hein et al., 2008). Finally, although
a majority of the air measurement results were indi-
vidual measurements, some publications reported
only summary measurements. Therefore, since indi-
vidual and summary measurements were combined
in the regression models, the modeled estimates
could not be strictly interpreted as GMs (Hein
et al., 2008) and the variance estimates could not
be strictly interpreted as variability in individual
measurements. In contrast, Lavoué et al. (2007)
developed a database of individual and summary
formaldehyde measurements from the reconstituted
wood panels industry for use in a regression model;
however, prior to modeling, Monte Carlo simulation
was used to re-create datasets from sources that did
not report original data, enabling the authors to avoid
problems with interpretation introduced by combin-
ing individual and summary measurements.

The AM is considered the measure of central ten-
dency of choice in the calculation of cumulative
exposure for use in epidemiologic studies and risk
assessments (Seixas et al., 1988; Crump, 1998).
Consequently, we converted predicted GM exposure

Table 6. Internal consistency of predicted intensities

Solvent scorea No. scenarios (%)b Measurement data

No. scenarios
with data

No. reported
levels

Median
(p.p.m.)

Mean
(p.p.m.)

Methylene chloride

1: ,2 p.p.m. 85 (44) 6 20 1.8 6.5

2: 2 to ,20 p.p.m. 77 (40) 37 726 16 21

3: 20 to ,200 p.p.m. 30 (16) 22 526 47 66

4: 200 to ,2000 p.p.m. 0 (0) 0 0 — —

5: �2000 p.p.m. 0 (0) 0 0 — —

Overall 192

1,1,1-trichloroethane

1: ,0.5 p.p.m. 197 (46) 22 191 0.43 5.0

2: 0.5 to ,5 p.p.m. 142 (33) 29 622 6.7 22

3: 5 to ,50 p.p.m. 81 (19) 15 116 52 51

4: 50 to ,500 p.p.m. 12 (3) 4 18 110 96

5: �500 p.p.m. 0 (0) 0 0 — —

Overall 432

Trichloroethylene

1: ,0.3 p.p.m. 2 (,1) 0 0 — —

2: 0.3 to ,3 p.p.m. 55 (11) 18 118 1.7 2.8

3: 3 to ,30 p.p.m. 184 (38) 24 239 16 23

4: 30 to ,300 p.p.m. 184 (38) 15 127 51 58

5: �300 p.p.m. 55 (11) 0 0 — —

Overall 480

aCutpoints determining exposure intensity scores were based on solvent SVPs (see text for additional details).
bThe number of scenario–decades was solvent specific and dependent on the variables in the final models.
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intensities from the models to AM exposure intensi-
ties. Estimated GSDs based on the regression models
(6.8, 9.1, and 4.0 for methylene chloride, 1,1,1-
trichloroethane, and trichloroethylene, respectively)
were higher than those observed based on exposure
determinants modeling of measurement data from
a single industry [e.g. GSDs of 2.8–3.7 for bitumen
fume, bitumen vapor, and benzo(a)pyrene in the as-
phalt paving industry (Burstyn et al., 2000)] or even
in a single industry with exposure data spanning sev-
eral years [e.g. GSDs of 2.4 for non-specific dust and
wood dust from British Columbia sawmills 1981–
1997 (Friesen et al., 2005)]. The high GSDs we
observed may be a result of selective sampling
(e.g. some reports included measurements on low-
exposed jobs, some did not) or the variety of purpo-
ses of sampling (e.g. NIOSH studies may have been
initiated because of reported exposure to another
chemical, which could have resulted in lower levels
than had the solvents been the agent of interest), as
well as including data from multiple industries and
decades. Because of the high GSDs, we converted
GM exposure intensity estimates (obtained by expo-
nentiation of the model-predicted log intensities) to
AM exposure intensity estimates using an assumed
GSD of 2.5.

The cross-validation using correlation tests indi-
cated somewhat limited model validity, particu-
larly for methylene chloride. Implications of low
model validity include poor predictability. An ex-
planation could be that the exposure determinants
for methylene chloride did not reflect the same dif-
ference in exposures as the determinants for the
other solvents. In spite of the low validity, the in-
ternal consistency showed good results. Based on
the internal consistency, using the ranked scores
rather than the predicted levels in p.p.m. should re-
duce misclassification, however, due to the limited
internal validity, model bias remains likely. An ad-
ditional limitation resulted from the constraints
imposed by the measurement data and measure-
ment characteristics and exposure descriptions
provided in the literature. In many cases, important
information was missing, so we assigned values for
the missing determinants based on judgment, expe-
rience, and knowledge. The lack of information is
likely to have resulted in some reported levels having
been assigned to the incorrect exposure scenario. We
attempted to reduce the impact of this limitation by
dropping three exposure determinants (usage rate,
confined space, and, for methylene chloride and
1,1,1-trichloroethane, temperature) that had a large
number of values assigned from judgment. In addi-
tion, limited measurements in the literature meant that

for many exposure scenarios, few or no reported
levels were available. It also meant that some
determinant values were only associated with a single
combination of other determinant values, such that
the variability of the determinants was limited. All
these constraints could have affected the goodness-
of-fit of the models.

For each solvent, jobs reported by study partici-
pants in the NIOSH and NCI studies rated as ex-
posed to the solvent were assigned values for each
of the exposure determinants (data not shown). The
models described in Table 4 were then applied to
these jobs to predict exposure intensities (Supple-
mentary data are available at Annals of Occupational
Hygiene online for a sample calculation). However,
additional limitations result from the application of
these models to specific studies. First, although the
exposure measurements in the literature database
spanned several decades, the jobs in the NIOSH
and NCI studies covered a wider range of years.
Consequently, estimated exposure intensities for
early years are subject to era or time-period extrap-
olation error, particularly for methylene chloride
and 1,1,1-trichloroethane, for which there were few
data prior to 1970. If exposures were higher in the
earlier decades (as expected), predicted estimates
for the earliest decades may be too low. Since there
is some evidence that occupational exposure levels
tend to correlate with concurrent TLVs (Roach and
Rappaport, 1990), including a modification factor,
such as the ratio of the TLVs, might improve such
estimates.

The models have several strengths. Exposure
determinants explained a moderate amount of the
variability in the data, particularly for trichloroethy-
lene, in spite of the sparse data in many cases.
Parameter estimates for the exposure determinants
were interpretable. The quality of the exposure de-
terminant information was considered by excluding
determinants and observations based on judgment,
which had the effect (data not shown) of increasing
interpretability of the model. The resulting estimated
exposure intensities are quantitative, internally con-
sistent, and plausible when compared to the ACGIH
TLVs and likely air concentrations based on the SVP.
Because the models are based on the whole range of
exposure literature rather than the range of exposures
likely to have been encountered within a single or
a few industries, they are probably more generaliz-
able than cohort-based models.

This work was done to develop rigorous and trans-
parent methods for estimating intensity levels for
three case–control studies. Raters estimating exposure
levels for such studies generally have been found to
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be in low to moderate agreement (Benke et al., 1997;
Teschke et al., 2002; Correa et al., 2006). Here, rather
than estimating intensity directly, determinants were
used to characterize measurements and develop a pre-
diction model. Separately, jobs reported by study par-
ticipants were characterized for these same
determinants to estimate the predicted intensity from
the models. This reliance on determinants may be
more straightforward, and more reproducible, than es-
timating intensity levels (Teschke et al., 1989). In par-
ticular, detailed job information (i.e. exposure
determinants) elicited from study participants using
job or exposure modules rather than typical work his-
tories may lead to more accurate exposure estimates
(Stewart et al., 1998). We believe that this approach
should be considered when estimating intensity for
epidemiologic studies. Further work will have to be
done to determine whether the goal of increasing re-
liability was achieved.

In summary, we developed statistical models to es-
timate exposure intensity from exposure determi-
nants for three chlorinated solvents for use in
studies that included jobs from a wide variety of in-
dustries and occupations spanning a wide range of
years. The models explained a moderate amount of
the measurement variability and were internally con-
sistent. These models can also be used in future
case–control studies that have sufficiently detailed
participant job histories.
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