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Neural Specificity Predicts Fluid Processing Ability in

Older Adults
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We investigated whether individual differences in neural specificity—the distinctiveness of different neural representations— could
explain individual differences in cognitive performance in older adults. Neural specificity was estimated based on how accurately
multivariate pattern analysis identified neural activation patterns associated with specific experimental conditions. Neural specificity
calculated from a same/different task on two categories of visual stimuli (faces and houses) significantly predicted performance on a
range of fluid processing behavioral tasks (dot-comparison, digit-symbol, Trails-A, Trails-B, verbal-fluency) in older adults, whereas it
did not correlate with a measure of crystallized knowledge (Shipley-vocabulary). In addition, the neural specificity measure accounted for
30% of the variance in a composite measure of fluid processing ability. These results are consistent with the hypothesis that loss of neural
specificity, or dedifferentiation, contributes to reduced fluid processing ability in old age.

Introduction

Measures of fluid processing abilities, such as speed of processing
and executive function, tend to decline with age compared with
measures of crystallized knowledge (e.g., vocabulary, world
knowledge) (Salthouse, 1996; Park et al., 2002). Nevertheless,
there is substantial variability in the cognitive performance of
healthy older adults on fluid processing tasks. Some (even other-
wise healthy) older adults exhibit significant declines in cognitive
function, while others show comparable performance to young
adults (Christensen et al., 1999; Hultsch et al., 2002). What dis-
tinguishes older adults who continue to perform well from older
adults who do not?

One possibility is neural specificity—the extent to which the
neural representations for two or more stimuli can be distin-
guished. Evidence suggests that neural representations that are
very distinct in young adults are less distinct (more dedifferenti-
ated) in older adults (Grady et al., 1994; Park et al., 2004). Con-
verging evidence has found such age-related differences in neural
specificity across a variety of tasks including visual object process-
ing (Chee et al., 2006; Goh et al., 2010), working memory for
pictures (Payer et al., 2006), and working memory for letters
(Zarahn et al., 2007). Li et al. (2001) postulated that age-related
decline in the distinctiveness of neural representations mediated
behavioral deficits in fluid intelligence. Based on this framework,
we hypothesized that individual differences in neural specificity
in older adults would predict performance on a range of cognitive
tasks that measured fluid processing ability.

Received Feb. 5, 2010; revised April 21, 2010; accepted May 25, 2010.

This work was supported by Grant 5R37AG006265-25 from the National Institute on Aging (to D.C.P.). We thank
Patti Reuter-Lorenz for her helpful comments on an earlier version of this manuscript.

Correspondence should be addressed to Joonkoo Park, Department of Psychology, University of Michigan, 530
Church Street, Ann Arbor, MI 48109. E-mail: joonkoo@umich.edu.

DOI:10.1523/JNEUR0SCI.0853-10.2010
Copyright © 2010 the authors ~ 0270-6474/10/309253-07$15.00/0

Elderly participants first completed a battery of behavioral
tasks designed to measure their fluid processing and crystallized
knowledge. They then performed a simple visual task while neu-
ral activity was estimated using functional magnetic resonance
imaging (fMRI). Neural specificity for the task was estimated
based on how accurately a trained classifier could predict the
stimulus category from the multivariate patterns of neural
activation (Haynes and Rees, 2006; Norman et al., 2006). The
relationship between neural specificity and various behavioral
measures in older adults was examined using correlation and
regression analyses. Because our hypotheses were about the
impact of age on both cognitive behavior and neural specific-
ity, we did not expect to see the same relationships in young
adults, but we also tested a group of young for comparison
purposes.

Materials and Methods

Subjects. Twenty-four healthy community-dwelling elderly from the
Champaign-Urbana area participated in the study. Data from five of
these participants were discarded because of excess motion, distortion
due to improper head coil placement, vision problems, and/or failure to
follow instructions, and the remaining 19 older adults (ages 61-69; 10
female; 15.89 mean years of education) were included in the analyses.
Subjects had a minimum score of 26 on the Mini Mental State Examina-
tion (Folstein et al., 1975). Twenty-three younger adults were also re-
cruited from the University of Illinois, matched by gender and years of
education. Four younger subjects were discarded because of excessive
motion during functional imaging, and data from the remaining 19
younger (ages 19-30; 10 female; 15.05 mean years of education) were
included in the analyses. All participants were screened to ensure they
were right-handed, native English speakers, psychologically and physi-
cally healthy, not taking medications with psychotropic or vascular ef-
fects, and free of any other MRI safety contraindications. All study
procedures were reviewed and approved by the University of Illinois
Institutional Review Board, and all participants provided detailed writ-
ten consent before their involvement in this study.
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Behavioral measures. Before scanning, participants completed a cogni-
tive battery consisting of the WAIS Digit Symbol task (“digit-symbol”)
(Wechsler, 1981), Dot Comparison task (“dot-comparison”) (Salthouse
and Babcock, 1991), Trail-making tasks A and B (“Trails-A” and “Trails-
B”) (Reitan and Wolfson, 1993), and the Controlled Oral Association
Task (“verbal-fluency”) (Benton and Hamsher, 1976). The dependent
measures were the number of symbols correctly copied in 90 s for digit-
symbol, number of correct same/different comparisons in 45 s for three
sections of dot-comparison, the time to complete the Trails for Trails-A
(letters only) and Trails-B (alternating letters and numbers), and the
number of unique F, A, and S words said in 60 s for each section of
verbal-fluency. In addition, crystallized knowledge was measured us-
ing the Shipley Institute of Daily Living Scale (“Shipley-vocabulary”)
(Zachary, 1986). The dependent measure was the number of correct
word-definition matches in a multiple choice test.

Experimental design and task. Each participant performed a simple
visual task in the fMRI scanner. The visual task consisted of two six-min
runs, each of which was organized into three 30 s “face” blocks and three
30 s “house” blocks in alternating order interleaved by 30 s “phase-
scrambled” blocks. Each face block consisted of 15 trials (2 s each) in
which participants viewed two grayscale images of faces presented side-
by-side and were asked to make a same/different judgment. Likewise,
each house block consisted of 15 trials in which participants viewed two
grayscale images of houses presented side-by-side and were asked to
make a same/different judgment. The task was the same in phase-
scrambled blocks except that phase-scrambled images (preserving lumi-
nance and spatial frequencies but rendering the images visually
meaningless) were used instead of faces or houses. For each trial, partic-
ipants indicated “same” with their right index finger and “different” with
their right middle finger. In the instructions, no emphasis was placed on
either the speed or the accuracy of the judgment.

All visual stimuli were presented via E-prime (Psychology Software
Tools) and displayed by a back-projection system. Responses were re-
corded using a Lumina response pad (Cedrus).

MRI data acquisition and preprocessing. Brain images were acquired
with a 3T Siemens Allegra head-only system. A conventional echo-planar
MR sequence was used for functional runs, with complete volumes ac-
quired every 2 s [repetition time (TR) = 2000 ms, echo time (TE) = 25
ms, flip angle (FA) = 80°, field of view (FOV) = 220 mm]. Slices were
64 X 64 matrices acquired parallel to the AC-PC (anterior commissure-
posterior commissure) line. Each volume consisted of 36 slices spanning
158 mm on the z-axis (encompassing all of the cerebrum and most of the
cerebellum for most participants). A high-resolution (1 mm isotropic
voxels) T1-weighted MPRAGE (magnetization-prepared rapid-
acquisition gradient echo) was also acquired to facilitate warping indi-
vidual volumes to atlas space.

Data were preprocessed using SPM5 (Wellcome Department of Cog-
nitive Neurology, London, UK, www.fil.ion.ucl.ac.uk). Functional im-
ages underwent slice-timing correction and realignment to the mean
volume. No normalization or spatial smoothing was applied.

We then estimated the neural response to each category relative to
phase-scrambled control images using the general linear model (GLM).
The model included separate regressors for each of the experimental
blocks convolved with a canonical hemodynamic response function, as
well as six nuisance covariates modeling head translation and rotation.
This procedure yielded six estimates of face-evoked activation and six
estimates of house-evoked activation.

Multivariate pattern analysis using support vector machine. We applied
multivariate voxel selection and pattern analysis to identify brain regions
that contribute to discriminating the experimental conditions in the
whole brain and, at the same time, to assess the distinctiveness of the
neural patterns. Machine learning algorithms, particularly linear-SVM
(support vector machine), have been a popular tool in decoding neural
activity (Kamitani and Tong, 2005; Li et al., 2007; Eger et al., 2008). They
provide a measure of the distinctiveness of different patterns of neural
activation, and they are also capable of selecting voxels that contribute to
distinguishing the patterns (De Martino et al., 2008; Hanson and Hal-
chenko, 2008). We used linear-SVM [using LIBSVM, C. C. Chang and
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C.J.Lin (2001) LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm] with recursive
feature elimination (Guyon and Elisseeff, 2003; De Martino et al., 2008)
to assess neural specificity associated with the task. All procedures were
done on an individual subject basis.

Linear SVM finds a hyperplane that maximally separates trained neu-
ral patterns (x;) into two different labels ( y;, either 1 or —1). Mathemat-
ically, this is equivalent to minimizing (1/2) X w’w + C 3¢, subject to
yiwx; +b)=1—-¢§,(i=1,2,...,N;£=0), where wis the weight vector,
bis a bias value, §;is a slack variable representing degree of misclassifica-
tion, and C is a regularization parameter which was set to 1 for this
analysis. Then, unknown neural patterns are classified according to the
sign of the decision function D(x) = wx + b, and the classification
accuracy is computed as a measure of neural specificity. The magnitude
of the weight w; is related to the change in the objective function when
voxel j is removed, and it effectively represents the contribution of voxel
j to the classification performance (Guyon and Elisseeff, 2003).

Six whole-brain maps of face- and house-evoked activity were used in
this classification procedure. A leave-one-out cross-validation approach
with recursive feature elimination was used to assess the distinctiveness
between face and house representations. In particular, one of the 12
patterns was left out while an SVM model was trained to fit the remaining
11 patterns. Next, a classifier was fit recursively while dropping uninfor-
mative voxels [i.e., voxels with weights (wj) close to zero] until the num-
ber of final voxels reached 10%, 9.5%, 8% ... 0.5% (decrementing by
0.5%) of the entire brain volume. Then, the left-out pattern was tested
using only the selected voxels. This procedure was done iteratively with
all 12 patterns. When the number of selected voxels was high (e.g., 10%;
including many voxels that may not contribute well to the classification),
many subjects’ classification accuracies remained near chance level (0.5).
When the number of selected voxels was low (e.g., 0.5%; including only a
few critical voxels), many subjects’ classification accuracies approached
ceiling (1.0). We chose 6% of the entire brain volume so that every
subject showed classification accuracy greater than chance while preserv-
ing maximum variability across subjects.

We verified the validity of the procedure by examining the null distri-
bution of the classification accuracy for each subject. Specifically, we
repeated the above procedure 200 times while permuting the category
assignment for each pattern. There was no difference between the age
groups in the mean classification accuracy of this null distribution
(t36) = 1.081, p = 0.144, two-tailed) (supplemental Fig. S1, available
at www.jneurosci.org as supplemental material).

Visualization of category-selective regions. The SVM classification with
recursive feature elimination was performed on all 12 patterns without
cross-validation to visually identify category-selective regions. A binary
category-selective region of interest (ROI) (i.e., 1 if category-selective
and 0 otherwise) was created for each individual in his or her native space
based on the voxel selection criterion (6% of the entire brain volume).
Each participant’s binary map was then normalized using SPM5. Each
participant’s T1 anatomical image was coregistered with the functional
images and then segmented into gray matter, white matter, and CSF. The
gray matter was normalized into the default gray matter probability tem-
plate in standard MNI (Montreal Neurological Institute) space, and the
acquired normalization parameters were used to normalize the category-
selective ROI maps for each individual.

To assess the statistical significance of each voxel, the normalized bi-
nary category-selective maps for each subject were spatially smoothed
with a 3 voxel isotropic Gaussian kernel, and these maps were summed
across all subjects. The probability distribution of the summed map
under the null hypothesis was estimated using a permutation test
(category- selective voxels were redistributed in random locations in each
participant 2000 times). This distribution was then used to calculate a
z-statistic at each voxel, based on the observed aggregated category-
selective maps across all subjects (see Fig. 2).

Multivariate pattern analysis using correlation analysis. The SVM clas-
sification analysis is relatively coarse, with only 12 activation patterns to
be predicted. This results in a total of only 13 possible values for the
dependent measure (0/12, 1/12, 2/12...12/12), and only five unique
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accuracy values were observed in our data with older adults (see Fig. 1),
providing a coarse index of neural specificity. To compute a more fine-
grained dependent measure as well as to evaluate the replicability of the
findings, we obtained an additional measure of neural specificity using
correlation analysis. This measure was first used by Haxby et al. (2001)
and was recently used by Carp et al. (2010) to measure age differences in
neural specificity. First, we used coefficient estimates of the GLM from
two blocks for each category (second block of the first run and the second
block of the second run for each category) and found regions in the whole
brain that were significantly activated either by face compared with house
or house compared with face ( p < 0.001, uncorrected). These regions
then served as a mask for each participant. We then extracted the patterns
for facesin runl and run2 and for houses in run1 and run2 (excluding the
blocks that were used to create the mask) within this mask. Neural spec-
ificity was then defined as the difference between the Pearson correlation
within-categories (i.e., the average of the correlation of face patterns
between runl and run2 and the correlation of house patterns between
runl and run2) and between-categories (i.e., the average of the correla-
tion between the face pattern from runl and the house pattern from run2
and the correlation between the face pattern from run2 and the house
pattern from runl).

Results

Cognitive performance measures

Replicating previous work (Park et al., 2002), older adults’ per-
formance on all the fluid processing tasks was worse than that of
younger adults (digit-symbol, t;5 = 6.97, p < 0.001; dot-
comparison, t;, = 5.52, p < 0.001; verbal-fluency, t ;5 = 1.95,
P < 0.029; Trails-A, t35) = —0.584, p = 0.281; Trails-B, t.55, =
—1.78, p = 0.042; but no age differences were observed on the
crystallized knowledge test (Shipley-vocabulary, £, = —0.716,
p =0.761) (Table 1).

Neural specificity measures
Neural specificity was defined as the accuracy of the trained classifier
in predicting the category of the visual stimulus (face or house) based
on the pattern of neural activation in the selected ROL

Older adults showed decreased neural specificity (fq =
3.268, p = 0.001) compared with the younger adults (Fig. 1).
These results replicate previous studies of ventral visual dediffer-
entiation (Park et al., 2004; Payer et al., 2006) but extend them to
measures of whole-brain function. The neural specificity mea-
sure was then used in subsequent regression analyses to examine
the relationship between neural specificity and behavioral perfor-
mance measures in the older adults.

Voxel selection and category-selective ROIs

Before examining the relationship between neural specificity and
behavior, we visually inspected the anatomical locations of each
subject’s category-selective ROI determined by the multivariate
voxel selection procedure. Category-selective ROIs were visual-
ized by aggregating individual participants’ ROIs in normalized
space separately for each age group (see Materials and Methods).
Figure 2 illustrates category-selective regions in the visual task of
matching faces and houses (p < 10 ~°, uncorrected). In both age
groups, areas traditionally known as face-selective and house-

Table 1. Summary of demographic and behavioral measures
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Figure 1. A dot plot of neural specificity of the visual activity measured as classification
accuracy of a linear-SVM classifier. Neural specificity was significantly higher in the younger
adults than in the older adults (¢ 55, = 3.268, p = 0.001). Chance performanceis 0.5, indicated
with a gray dashed line.

selective such as the mid-fusiform and the parahippocampal gyri,
as well as some extrastriate areas, were identified as category-
selective regions.

Neural specificity and its behavioral correlates

Next, we tested our primary hypothesis that neural specificity pre-
dicts fluid processing in the older adults. Using correlation and re-
gression analyses, we first examined the relationship between neural
specificity and each of the individual behavioral measures. Control-
ling for age, neural specificity of visual activity significantly predicted
performance on dot-comparison (8 = 36.803, t,4) = 1.987, p =
0.032), digit-symbol (B = 53.296, t;5, = 2.930, p = 0.005), and
verbal-fluency (B = 28.926, t,s = 2.533, p = 0.011), while
Trails-A (B = —59.184, t,4) = —1.712, p = 0.053) and Trails-B
(B= —104.073, 5y = —1.144, p = 0.135) missed the 0.05 cutoff
(Fig. 3A, one-tailed for all directional analyses unless otherwise
noted).

With only 12 activation patterns the granularity of this mea-
sure of classification accuracy was low, and only five unique ac-
curacy values were observed in our data with older adults (Fig. 1).
To compute a more fine-grained dependent measure as well as to
evaluate the replicability of the findings, we ran a second analysis
using Pearson correlation measures (see Materials and Methods).
This analysis revealed a trend toward greater specificity in
younger adults compared with older adults, although this effect
did not reach statistical significance (¢4 = 1.474, p = 0.075)
(supplemental Fig. S2, available at www.jneurosci.org as supple-
mental material). Nevertheless, the relationship between neural
specificity measured using this correlation analysis and each of the

Age*** Digit-symbol*** Dot-comparison*** Verbal fluency* Trails A Trails B* Shipley vocabulary
Young (N = 19) 22.21(0.55) 74.21(2.45) 49.84 (2.14) 27.11(1.79) 33.89 (2.60) 60.63 (5.22) 33.58(0.71)
0Old (N=19) 64.79 (0.65) 52.47 (1.93) 34.47 (1.79) 22.95(1.16) 36.32 (3.22) 71.79 (8.12) 34.42 (0.94)

The mean and SEM (in parentheses) are shown for each measure. Significant age differences are indicated by asterisks next to the name of each measure (*p << 0.05; ***p << 0.001; one-tailed for all directional analyses unless otherwise

noted).
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individual behavioral measures in older
adults (Fig. 4A) showed striking similar-
ity to the analysis that was based on the
SVM. Controlling for age, neural speci-
ficity measured using this correlation
analysis predicted performance on digit-
symbol (B = 21.449, 1,5, = 2.624, p =
0.009), verbal-fluency (8 = 9.971, t,4, =
1.880, p = 0.039), Trails-A (8 = —26.748,
tasy = —1.799, p = 0.045) and Trails-B
(B = —68.484, 1, = —1.836, p = 0.043),
while the relationship with dot-comparison
did not reach significance at the 0.05 level (3 =
11.020, 1) = 1.292, p = 0.108) (Fig. 4A).

The five fluid processing measures
(i.e., all the behavioral tasks except
Shipley-vocabulary) were highly corre-
lated with each other (Table 2), suggesting
they depend on a shared construct. We used
principal component analysis to reduce the
dimension of these behavioral measures,
and it yielded a single principal component.
We termed this composite score fluid pro-
cessing ability, and we assessed the relation-
ship between neural specificity and this
composite behavioral measure.

Figure 3B illustrates the relationship
between this composite measure of fluid
processing ability and the neural specific-
ity measure in the older adults. Neural specificity significantly pre-
dicted fluid processing ability while controlling for age (8 = 10.806,
tie) = 2.667, p = 0.008). We obtained the same result when the
neural specificity measure from the correlation-based analysis
was used to predict the behavioral measure as shown in Figure 4 B
(B = 4.368, t(14) = 2.417, p = 0.014) (see supplemental Figs. S3
and S4, available at www.jneurosci.org as supplemental material,
for the results of the younger adults).

Because the blood oxygenation level-dependent (BOLD) sig-
nal is an indirect measure of neural activity, it is possible that our
measure of neural specificity may be influenced by individual
differences in vascular noise (D’Esposito et al., 2003). We there-
fore tested whether neural specificity could predict fluid process-
ing after controlling for a measure of BOLD variability. We
extracted the estimate of the error variance of the GLM model
(residual mean squared from the SPM5 results) within the pos-
terior cingulate cortex (a region we assumed was not strongly
involved in distinguishing the face and place conditions) for each
subject. A mask of the posterior cingulate cortex was created in stan-
dard MNI space using the PickAtlas toolbox (http://www.fmri.
wfubmc.edu/cms/software), and this mask was inverse transformed
to each participant’s native space. Neural specificity still significantly
predicted fluid processing ability when the median of the estimate of

Figure 2.

Table 2. Correlation matrix for the five fluid processing tasks in the old
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Visualization of category-selective ROIs determined by the multivariate voxel selection method. Category-selective
ROIs from individual subjects were aggregated in the standard normalized MNI space to visualize the category-selective regions for
the visual categories at the group level. Note that these are not activation maps. Colored areas indicate voxels that reliably
contributed to distinguishing patterns of activity elicited by face versus house conditions (for the visual task) (p < 10 ¢,
uncorrected). The left hemisphere appears on the left. Coordinates for these axial slices are given in MNI space.

the error variance was included as a covariate in the model (8 =
11.233, t(,5) = 2.695, p = 0.008, neural specificity measured from
SVM approach; 8 = 4.414, t,5, = 2.374, p = 0.016, neural specificity
measured from correlation approach). These results suggest that the
association between neural specificity and behavior is not attribut-
able to individual differences in BOLD variability unrelated to task,
which may be associated with vascular noise.

In contrast to the fluid measures, neural specificity showed no
relationship with Shipley vocabulary score (8 = 1.1945, ¢, =
0.110, p = 0.457, neural specificity measured using SVM, Fig. 3C;
B = 1.240, t;5, = 0.264, p = 0.398, neural specificity measured
using correlation analysis, Figure 4C), our measure of crystallized
knowledge. In addition, using hierarchical linear regression,
we found that the crystallized knowledge measure did not
explain additional variance in neural specificity, above the
variance explained by fluid processing ability in older adults
(R? increment = 0.042, F(, o) = 1.269, p = 0.278, neural
specificity measured from the SVM approach; R? increment =
0.026, F(; 15, = 0.633, p = 0.439, neural specificity measured
from the correlation approach).

Finally, we addressed the total variance explained in the two
abilities by age alone and then added neural specificity in a
hierarchical regression in older adults (Table 3). Age alone

Digit-symbol Dot-comparison Verbal fluency Trails A Trails B
Digit-symbol 1.000
Dot-comparison 0.675** 1.000
Verbal fluency 0.651** 0.734** 1.000
Trails A —0.532%* —0.511% —0.642%* 1.000
Trails B —0.480* —0.338 —0.489*% 0.690** 1.000
Shipley-vocabulary 0.213 0.265 0.486* —0.396% —0.348

*p < 0.05; **p < 0.01 (see supplemental Table 51, available at www.jneurosci.org as supplemental material, for the correlation matrix in the young).
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Figure 3.  Scatter plots showing the relationship between the measure of neural specificity from the SYM approach and five fluid processing tasks (4), the composite measure of the fluid
processing tasks (B), and a crystallized knowledge task (€) in older adults. Zero-order correlations (r) illustrate simple linear relationships between each behavioral measure and neural specificity;
semipartial correlations (sr) illustrate the unique contribution of neural specificity in predicting a behavioral measure controlling for age (*p << 0.05; **p << 0.01; ***p << 0.001). In all plots, each
data point represents a single older adult, and the gray dashed line indicates an ordinary least square linear fit.
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Figure4. Scatter plots showing the relationship between the measure of neural specificity from the correlation approach and five fluid processing tasks (4), the composite measure of the fluid
processing tasks (B), and a crystallized knowledge task (€) in older adults. Notational conventions are the same as in Figure 3.

explained <1% of the variance in fluid processing ability and ~2%
of the variance in crystallized knowledge when entered in the first
step. This is not surprising because the older subjects had a tight age
range between 61 and 69. Importantly, in a second step after age,

neural specificity from the SVM approach explained an additional
30.8% of the variance in fluid processing ability (F, ,,y = 7.114,p =
0.017), but only produced a nonsignificant increment of <1% in the
crystallized knowledge measure.
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Table 3. Hierarchical regressions of fluid processing ability (composite measure) and crystallized knowledge in older adults

Model Response Step Predictor(s) R? df F p
A Fluid processing ability 1 Age 0.0003 1,17 0.005 0.946
2 + Visual (SVM) 0.308 2,16 3.560 0.052
R?increment =0.308 117 7114 0.017
B Crystallized knowledge 1 Age 0.020 1,17 0.339 0.568
2 + Visual (SVM) 0.020 2,16 0.166 0.849
R?increment =0.0007 1,17 0.012 0914
C Fluid processing ability 1 Age 0.0003 1,17 0.005 0.946
2 + Visual (Corr) 0.268 2,16 2,924 0.083
R?increment =0.267 117 5.843 0.028
D Crystallized knowledge 1 Age 0.020 1,17 0.339 0.568
2 + Visual (Corr) 0.024 2,16 0.195 0.825
R?increment =0.004 117 0.070 0.796

In model A, fluid processing ability was explained by age (first step) and the neural specificity measure from the SVM approach (second step). In model B, crystallized knowledge was explained by age (first step) and the neural specificity
measure from the SVM approach (second step). R % increment represents the variance explained by the neural specificity measures beyond age. Models C and D are identical to A and B, respectively, except that the neural specificity measure

from the correlation approach was used instead.

Discussion

In this study, we investigated whether individual differences in
neural specificity could explain individual differences in cogni-
tive performance in older adults. Although we were primarily
interested in how levels of neural specificity predicted individual
differences in older adults, we also collected data from younger
adults to replicate previous findings of age-group differences in
behavioral performance and neural specificity. As expected, older
adults showed decreased performance in fluid processing tasks
compared with younger adults while their performance in a crys-
tallized knowledge task was comparable to that of younger adults
(Table 1). Likewise, there was a group difference in the measure
of neural specificity (Fig. 1; supplemental Fig. S2, available at
www.jneurosci.org as supplemental material).

To test our primary hypothesis, we examined the relationship
between neural specificity and various behavioral measures in
older adults using correlation and regression analyses. We found
that neural specificity in the older adults, measured using two
different approaches, was significantly associated with measures
of fluid processing ability, but not with crystallized knowledge.
The failure to explain crystallized knowledge is of particular in-
terest given that there was a moderate correlation between the
Shipley-vocabulary score and fluid processing ability (r = 0.421,
tay = 1.916, p = 0.073, two-tailed), suggesting that the behav-
ioral effect of neural specificity is unique to fluid processing abil-
ity. Furthermore, nearly 30% of the variance of fluid processing
ability was explained by neural specificity in response to simple
visual stimuli that have no obvious similarity to the psychometric
measures collected outside of the scanner. These results suggest
that neural specificity may be a fundamental neural measure as-
sociated with performance on complex cognitive tasks.

This interpretation is consistent with the hypothesis that age-
related decline in the efficacy of neurotransmitter function and
neuromodulation leads to less distinctive neural representations,
which in turn underlie deficits in behavioral performance (Bick-
man et al., 2000; Li et al., 2001; Li and Sikstrom, 2002). Our
results demonstrate that variability in neural specificity within a
group of older adults, possibly due to individual differences in
neural noise during the processing of visual categories, is strongly
related to individual differences in behavioral performance.

Of course, declines in neural specificity are just one type of
age-related neural change. There are a number of others, includ-
ing bilateral recruitment (Cabeza, 2002; Reuter-Lorenz, 2002)
and suppression deficits in sensory cortex and default networks
(Gazzaley et al., 2005; Park et al., 2010). These changes may be

quite different from the sensorimotor specificity investigated in
this study. Future work should study the relationship between
these different types of neural change and their association with
behavioral measures.

In conclusion, neural specificity predicts fluid processing abil-
ity in older adults. These findings demonstrate that declining
neural specificity may play an important role in cognitive decline
and that preserved neural specificity may even be an indicator of
healthy cognitive aging.

References

Bickman L, Ginovart N, Dixon RA, Wahlin TB, Wahlin A, Halldin C, Farde L
(2000) Age-related cognitive deficits mediated by changes in the striatal
dopamine system. Am J Psychiatry 157:635-637.

Benton A, Hamsher K (1976) Multilingual Aphasia Examination. Iowa
City: University of Iowa.

Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the
HAROLD model. Psychol Aging 17:85-100.

Carp J, Park J, Polk TA, Park DC (2010) Age differences in neural distinctive-
ness revealed by multi-voxel pattern analysis. Neuroimage. Advance online
publication. Retrieved April 21, 2010. doi:10.1016/jneuroimage.2010.04.267.

Chee MW, Goh JO, Venkatraman V, Tan JC, Gutchess A, Sutton B, Hebrank
A, Leshikar E, Park D (2006) Age-related changes in object processing
and contextual binding revealed using fMR adaptation. ] Cogn Neurosci
18:495-507.

Christensen H, Mackinnon AJ, Korten AE, Jorm AF, Henderson AS, Jacomb
P, Rodgers B (1999) An analysis of diversity in the cognitive perfor-
mance of elderly community dwellers: individual differences in change
scores as a function of age. Psychol Aging 14:365-379.

De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E
(2008) Combining multivariate voxel selection and support vector ma-
chines for mapping and classification of fMRI spatial patterns. Neuroim-
age 43:44-58.

D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD
fMRI signal with ageing and disease: a challenge for neuroimaging. Nat
Rev Neurosci 4:863—872.

Eger E, Ashburner J, Haynes JD, Dolan RJ, Rees G (2008) fMRI activity
patterns in human LOC carry information about object exemplars within
category. ] Cogn Neurosci 20:356—370.

Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state—practical
method for grading cognitive state of patients for clinician. J Psychiatric
Res 12:189-198.

Gazzaley A, Cooney JW, Rissman J, D’Esposito M (2005) Top-down sup-
pression deficit underlies working memory impairment in normal aging.
Nat Neurosci 8:1298-1300.

Goh JO, Suzuki A, Park DC (2010) Reduced neural selectivity increases fMRI
adaptation with age during face discrimination. Neuroimage 51:336 -344.

Grady CL, Maisog JM, Horwitz B, Ungerleider LG, Mentis M]J, Salerno JA,
Pietrini P, Wagner E, Haxby JV (1994) Age-related changes in cortical
blood flow activation during visual processing of faces and location.
] Neurosci 14:1450-1462.



Park et al. e Neural Specificity and Fluid Processing Ability

Guyon I, Elisseeff A (2003) An introduction to variable and feature selec-
tion. ] Machine Learn Res 3:1157-1182.

Hanson SJ, Halchenko YO (2008) Brain reading using full brain support
vector machines for object recognition: there is no “face” identification
area. Neural Comput 20:486—-503.

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001)
Distributed and overlapping representations of faces and objects in ven-
tral temporal cortex. Science 293:2425-2430.

Haynes JD, Rees G (2006) Decoding mental states from brain activity in
humans. Nat Rev Neurosci 7:523-534.

Hultsch DF, MacDonald SW, Dixon RA (2002) Variability in reaction time
performance of younger and older adults. ] Gerontol B Psychol Sci Soc Sci
57:P101-P115.

Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of
the human brain. Nat Neurosci 8:679—-685.

Li SC, Sikstrom S (2002) Integrative neurocomputational perspectives on
cognitive aging, neuromodulation, and representation. Neurosci Biobe-
hav Rev 26:795-808.

Li SC, Lindenberger U, Sikstrom S (2001) Aging cognition: from neuro-
modulation to representation. Trends Cogn Sci 5:479—-486.

Li S, Ostwald D, Giese M, Kourtzi Z (2007) Flexible coding for categorical
decisions in the human brain. J Neurosci 27:12321-12330.

Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10:424—430.

Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK

J. Neurosci., July 7, 2010 - 30(27):9253-9259 + 9259

(2002) Models of visuospatial and verbal memory across the adult life
span. Psychol Aging 17:299-320.

Park DC, Polk TA, Park R, Minear M, Savage A, Smith MR (2004) Aging
reduces neural specialization in ventral visual cortex. Proc Natl Acad Sci
U S A101:13091-13095.

Park DC, Polk TA, Hebrank AC, Jenkins L] (2010) Age differences in default
mode activity on easy and difficult spatial judgment tasks. Front Hum
Neurosci 3:75.

Payer D, Marshuetz C, Sutton B, Hebrank A, Welsh RC, Park DC (2006)
Decreased neural specialization in old adults on a working memory task.
Neuroreport 17:487—-491.

Reitan R, Wolfson D (1993) The Halstead-Reitan neuropsychological test bat-
tery: theory and clinical interpretation, Ed 2. Tucson, AZ: Neuropsychology.

Reuter-Lorenz P (2002) New visions of the aging mind and brain. Trends
Cogn Sci 6:394.

Salthouse TA (1996) The processing-speed theory of adult age differences in
cognition. Psychol Rev 103:403—428.

Salthouse TA, Babcock RL (1991) Decomposing adult age differences in
working memory. Dev Psychol 27:763-776.

Wechsler D (1981) Wechsler Adult Intelligence Scale-revised. Cleveland:
The Psychological Corporation.

Zachary RA (1986) Shipley Institute of Living Scale, revised manual. Los
Angeles: Western Psychological Services.

Zarahn E, Rakitin B, Abela D, Flynn ], Stern Y (2007) Age-related changes in
brain activation during a delayed item recognition task. Neurobiol Aging
28:784-798.



