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Abstract
Identification of the genetic basis of common traits may be hindered by underlying complex
genetic architectures that are inadequately captured by existing models, including both multiallelic
and multilocus modes of inheritance (MOI). One useful approach for localizing genes underlying
continuous complex traits is the joint oligogenic linkage and segregation analysis implemented in
the package Loki. The method uses reversible jump Markov chain Monte Carlo to eliminate the
need to prespecify the number of quantitative trait loci (QTLs) in the trait model, thus providing
posterior distributions for the number of QTLs in a Bayesian framework. The current
implementation assumes QTLs are diallelic, and therefore can overestimate the number of linked
QTLs in the presence of a multiallelic QTL. To address the possibility of multiple alleles, we
extended the QTL model to allow for a variable number of additive alleles at each locus.
Application to simulated data shows that, under a diallelic MOI, the multiallelic and diallelic
analysis models give similar results. Under a multiallelic MOI, the multiallelic analysis model
provides better mixing and improved convergence, and leads to a more accurate estimate of the
underlying trait MOI and model parameter values, than does the diallelic model. Application to
real data shows the multiallelic model results in fewer estimated linked QTLs and that the
predominant QTL model is similar to one of two predominant models estimated from the diallelic
analysis. Our results indicate that use of a multiallelic analysis model can lead to better
understanding of the genetic architecture underlying complex traits.
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Introduction
Linkage analysis is an invaluable tool used to identify trait loci. Parametric linkage analysis
incorporating a single highly penetrant diallelic trait model has long been used, leading to
successful localization of thousands of trait loci [Ott 1999;Glazier et al. 2002], including
examples such as cystic fibrosis [Wainwright et al. 1985;Tsui et al. 1985;Knowlton et al.
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1985;Kerem et al. 1989], monogenic forms of colorectal cancer [Bodmer et al. 1987], breast
cancer [Hall et al. 1990;Wooster et al. 1994] and Alzheimer's disease [Schellenberg et al.
1992;Goate et al. 1991;Levy-Lahad et al. 1995]. However, most common traits appear to be
caused by a complex web of genetic and environmental effects that are not sufficiently
modeled by a single diallelic locus [Lohmueller et al. 2003;Daw et al. 2000;Glazier et al.
2002;Bourhis et al. 2007]. Such complexities include genetic heterogeneity, multiallelic
inheritance, epistasis, incomplete penetrance and multiple environmental factors [Glazier et
al. 2002;Ott 1999].

In order to confront the challenges inherent in complex traits, researchers have explored
various study designs and have developed creative analysis and pedigree sampling methods.
Although case-control study designs can be used to localize genes with common causal
variants, recent investigations suggest that most of these variants have low penetrance and
are difficult to detect even with thousands of individuals [Weedon et al. 2007; Visscher
2008]. In contrast, linkage analysis methods with small numbers of large families
ascertained through extreme phenotypes may reduce the potential number of genes involved,
reduce genetic background noise, and enrich the sample for rare, highly penetrant alleles
[Wijsman and Amos 1997; Lander and Schork 1994]. In addition, quantitative trait
information, rather than dichotomous information, can increase power to detect trait loci
[Wijsman and Amos 1997; Knoblauch et al. 2000; Williams et al. 1997]. Within the linkage
analysis framework, methods that do not require trait model parameters to be specified a
priori, such as variance components linkage analysis, can have more power to detect a trait
locus than methods that require a prespecified model when that model is poorly defined
[Haines and Pericak-Vance 1998; Clerget-Darpoux et al. 1986; Amos 1994; Almasy and
Blangero 1998]. However, these trait-model free methods have poor location resolution
since they are based on pooled, rather than individual, meioses [Lynch and Walsh 1998;
Atwood and Heard-Costa 2003]. Alternatively, joint segregation and linkage analysis can be
more powerful and provide more accurate localization than the stepwise approach of
segregation analysis followed by linkage analysis [Wijsman and Amos 1997]. However, if
the trait model contains many parameters or includes a major gene component and a
polygenic component, the exact likelihood is difficult or impossible to calculate when using
parametric linkage analysis on large families [Guo and Thompson 1992; Thompson 2000].

One method that combines the strengths of a likelihood-based framework with a complex
model is the joint oligogenic segregation and linkage analysis approach implemented in the
package Loki [Heath 1997]. This oligogenic model assumes a linear relationship between a
continuous phenotype and an unknown number of underlying diallelic quantitative trait loci
(QTLs). The approach uses the Bayesian strategy of imposing a prior distribution on the
parameter space in order to provide structure to the model without specifying details. This
allows the number of QTLs to be treated as an unknown parameter, and for direct
comparisons among a large number of non-nested trait models. This contrasts with a
frequentist approach, which assumes a fixed number of QTLs, preferably with comparisons
based on nested models. In addition, since the method incorporates a trait model, it has
better location resolution than model free methods [Lynch and Walsh 1998; Atwood and
Heard-Costa 2003]. Markov chain Monte Carlo (MCMC) sampling [Hastings 1970; Brooks
1998] over the model space, consistent with the observed data, provides efficient estimation
of the potentially large number of parameters, avoiding the computational difficulty of
maximizing or integrating over a complex likelihood. Reversible jump MCMC (RJMCMC)
[Green 1995], a sampling technique that can handle multiple parameter spaces, provides
estimation of the posterior distribution of the number of underlying QTLs. In addition, the
implementation in Loki can incorporate a fixed number of linked markers and large families
through the use of a block-Gibbs hybrid MCMC sampler, and has been used successfully in
animal studies [Martinex et al. 2005] and for many human traits [Daw et al. 2000 2007;
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Yuan et al. 2000; Igo et al. 2006; Brkanac et al. 2008]. While this method addresses the
important issue of multiple underlying loci, it does not address the possibility of multiple
alleles at single trait loci.

Although diallelic QTL models have been used successfully to detect linkage for loci known
to have more than two alleles [Wijsman et al. 2004; Daw et al. 1999; Devlin et al. 1998;
Gagnon et al. 2003], this model assumption has some limitations. For example, use of a
diallelic model to analyze Alzheimer's disease age-at-onset resulted in a biased estimate of
the location of a QTL relative to the known triallelic APOE locus [Wijsman et al. 2004], and
suggested the existence of two QTLs at the Presenilin 1 (PSEN1) location on chromosome
14 for families segregating different PSEN1 mutations [Daw et al. 1999]. Similarly, linkage
analysis of HDL level, under a diallelic model, with a highly multiallelic marker in APOC3,
gave evidence for two QTLs at the apolipoprotein A1-C3-A4-A5 complex [Gagnon et al.
2003]. One interpretation of these results is that use of a diallelic analysis model in the
presence of a multiallelic underlying mode of inheritance (MOI) can lead to biased
localization and estimation of the number of linked QTLs.

We present an extension to the segregation analysis component of the model used in Loki in
order to allow for multiple alleles at QTLs. The approach incorporates the benefits of
allowing for large families, quantitative or censored trait data, multiple linked markers, and
few assumptions about the nature of the trait model complexity. We evaluate the multiallelic
implementation with simulated data and demonstrate applicability to real data by performing
a comparative analysis of a quantitative trait (HDL) using the current diallelic version of
Loki as well as an extended version that allows for multiallelic QTLs. The multiallelic
inheritance approach leads to more accurate trait model estimation and better mixing
properties than does the traditional diallelic analysis model.

Methods
Trait model

The analysis method uses a linear mixed model to relate phenotype, Y, to underlying QTLs
and other covariates. Although the model is explained elsewhere [Heath 1997], we include it
here to facilitate explanation of the proposed extension to the model:

(1)

The parameters include μ, the overall baseline against which other parameters are estimated,
X, the covariate matrix, β, a vector of covariate effects, Qiαi, which are the contributions for
the ith QTL, i = 1,…, k, explained below, and e, Normally distributed error, with variance

. In the current diallelic version of Loki, each QTL has two alleles and therefore only
three genotypes. The genotype effects for QTL i are given by αi1,αi2, and αi3, where αi1 = 0
for all i, i = 1, ⋯, k. Since there is no assumed relationship between αi2 and αi3, the QTL
model may exhibit dominance. The effects at each QTL i are incorporated in model (1)
using the QTL genotype indicator variable Qi. In addition to the QTL model, there are
several genetic parameters: the QTL genotypes, G, the marker genotypes, M, QTL allele
frequencies, p, linkage groups (e.g., chromosomes or linked set of markers), λ, and positions,
δ, relative to the marker map. To distinguish the concepts of the underlying, unknown truth
(e.g., a true map position) from the model parameters that vary across MCMC iterations, we
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use the term ‘visiting QTL’ to indicate that λi = c ≠ 0; QTL i is visiting a location δi within
linkage group c in an iteration in which the model includes a position on the map for QTL i.

The option introduced here allows the underlying QTLs to have more than two alleles. We
distinguish this multiallelic version with the label maLoki. In order to reduce the number of
parameters in the model, QTLs with three or more alleles have purely additive allelic
effects, while QTLs with two alleles may include dominance. Each QTL has a type, defined
by ℓ ∈ 1, …, 6, where, if ℓ = 1, the QTL has the structure found in the current version of
Loki and if ℓ > 1, the QTL is completely additive with ℓ alleles. For completely additive
QTLs, the genotype effects, α, are simply the sum of the constituent allele effects. If additive

QTL i has ℓ ≥ 2 alleles Bi1, Bi2,⋯, Bil with effects ai1, ai2, ⋯, ail, there are  possible
unordered genotypes and the effect for genotype Bij1 Bij2 is equal to aij1 + aij2, where ij1 and
ij2 identify the specific alleles.

Computation
Due to the complexity of model (1) and the large number of parameters to be estimated, an
MCMC process is used to estimate a joint posterior distribution for the parameters. Prior
distributions are chosen in order to have the least influence on the posterior distribution and

are as follows: p ∼ U (0,1), , and . The user
supplies prior distributions on the number of QTLs and the genetic effects. Typically, the
prior distribution for the number of QTLs is a truncated Poisson distribution as this leads to
quick convergence to the posterior distribution. The current prior distributions on αi2 and αi3
are independent N(0, τ2), where τ2 is chosen by the user in such a way that reasonable QTL
models can be proposed, and convergence is relatively quick. Two such methods are to use a
τ2 for which the average posterior number of QTLs fails to increase substantially relative to
smaller values of τ2 in segregation analysis [Yu 2003] or for which the total genetic variance
stabilizes as a function of increasing values of τ2 [Igo et al. 2006]. Throughout the MCMC
process, samples of possible QTL model states are collected. The resulting posterior
distribution obtained from the set of these states leads to inference regarding the underlying
trait model.

The MCMC process is an iterative sampling technique where models, consistent with the
observed data, are proposed and then accepted or rejected. One iteration involves updating
each parameter, and parameter values are correlated across iterations. In the current version
of Loki, Gibbs sampling steps are used to update μ, β, , α, and p [Lindley and Smith 1972;
Wang et al. 1993; Heath 1997]. The number of QTLs may change in a birth/death step
where the addition or removal of one QTL is proposed. Since the number of parameters in
the model may change with this step, a RJMCMC move is required and the acceptance ratio
incorporates the Jacobian of the transition between states [Green 1995]. In a birth, this
requires first, sampling of the additive and dominance variances of the QTL and then
second, a transition to the proposed genetic effects. The sampling distribution for both the

additive and dominance variances (  and ), as chosen by Heath, is . In a
death, the parameters of the QTL are dropped from the model. Similarly, when the linkage
status, λi, of QTL i changes, a RJMCMC move is required because δi is either sampled or
dropped from the model.

We expand the MCMC sampling scheme to allow for multiallelic QTLs by incorporating
three changes at each iteration. The birth/death of a QTL step now allows for a completely
additive QTL to be proposed. Allele frequencies for all QTLs are sampled using a Dirichlet
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distribution, which is a multivariate extension of the Beta distribution currently used by the
diallelic version of Loki. Finally, Gibbs sampling is used to update the allele effects at
completely additive QTLs, with the resulting genotype effects calculated from these values.
Details related to the MCMC sampling can be found in the appendix.

When the birth of QTL i is proposed, the type of QTL, ℓ, is sampled from the discrete

uniform (1,6) distribution. If ℓ > 1, random variables , l = 2, ⋯ ℓ are sampled from

, as in the current version, and the pi are sampled from the uniform Dirichlet
distribution. Assuming only two alleles (1 and l) exist at the QTL, the additive variance
equations

(2)

can be used to calculate the allele effects via their inverse:

(3)

The remaining procedures are the same as that for the current version of Loki. The proposal
is accepted or rejected based on the Metropolis-Hastings [Metropolis et al. 1953; Hastings
1970] acceptance ratio (appendix), and if accepted, genotypes for each individual at QTL i
are sampled. We verified that the changes to the MCMC sampling in maLoki are correct by
checking for convergence to the prior distribution when used to analyze uninformative data:
a single individual without marker or phenotype information (supplementary material).

Simulated Data
We used twenty replicates of simulated multiallelic trait data in order to evaluate properties
of the multiallelic implementation. We simulated highly informative phenotype data on a
large pedigree in order to reduce the run time for each simulation and to ensure that linkage
would be detectable. We used one 98-member, four-generation pedigree (figure 1), which is
sufficiently large to detect linkage and to estimate the large number of trait model
parameters. With 32 founders, multiple alleles may segregate at the trait gene within the
pedigree. We used Genedrop [Thompson et al. 2007] to simulate multiple replicates of a
chromosome with four markers, spaced 10 cM apart, and a 6 allele trait gene in the center of
the chromosome. We rejected any simulated data set for which the trait gene allele
frequencies differed markedly from uniformity, based on a Chi-squared goodness of fit test
with a conservative significance level of 0.5, ensuring that the resulting data sets truly
contain 6 alleles segregating at the trait gene. There was no missing marker data and we
incorporated complete marker inheritance vector information into the analysis in the form of
fully informative markers. This scheme leads to two benefits: fully informative markers
supply the same information as a dense set of SNPs [Wijsman et al. 2006] and the only
difference in the analysis across replicates should be due to the stochastic differences in the
trait genotype and phenotype simulations, and the positions and number of recombinant
events. We also note that the goal of the current study was to evaluate the multiallelic trait
model, and not that of choice of marker panel. Choice of marker panel, including use of
modern dense SNP panels, has been discussed elswhere. This includes demonstration of
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accuracy and efficacy of dense SNP panels in the context of both exact and MCMC-based
analysis, along with identification of strategies that yield accurate results without excessive
computation in the presence of inter-marker linkage disequilibrium [Wijsman et al.
2006;Wilcox et al. 2005;Daw et al. 2005;Wijsman et al. 2007]. We used R [R Development
Core Team 2007] to simulate error terms, ej, for each individual j from  where

. We calculated the trait data, Yj, assuming the 6 alleles have effects a = 0, 1, ⋯, 5
using Yj = αj + ej, where αj is the genotype effect at the trait gene for individual j. The
resulting trait distribution has a heritability of 0.9.

We analyzed each replicate with Loki and maLoki using the same run parameters. We used
, since past experience indicates that three times the true additive variance is a

sufficiently large value for τ2. We used a truncated Poisson prior distribution on the number
of QTLs, with mean 1 and maximum 15. The chromosome length was 60 cM and the entire
map length was 3000 cM. Each run lasted 50,000 iterations, with an initial burn in of 1000
iterations. We saved every 50th iteration, resulting in a sample size of 1000 iterations. In
order to evaluate convergence of the trait model under a diallelic analysis model, we ran
Loki twice more on two replicates using 30 times as many iterations (long runs), saving
every 300th iteration. We chose this run length so that the CPU run time using Loki would
be equivalent to the run time using maLoki with only 50,000 iterations.

For comparison, we evaluated convergence of both analysis models when the trait had lower
heritability or only two alleles at the gene. We transformed the phenotype data for one data
replicate in two ways. First, we reduced the heritability of the trait to 0.6 by increasing the

error term for each individual by a factor of 3/2 and calculating the phenotype, ,

where . In this case, we analyzed the data using τ2 = 10.35. Second, we created a

diallelic underlying gene with h2 = 0.82 by grouping allele effects, ( ,

) and calculating phenotypes, .

We evaluated both analysis models for their ability to detect linkage and their accuracy in
estimating trait model summaries such as the allele frequency and genotype effects. To
assess the linkage signal, we calculated the probability ratio (PR) for linkage: PR = q1/q0,
where q0 is the prior probability of linkage and q1 is the posterior probability of linkage
defined as:

(4)

with larger PR providing more evidence for linkage. We chose this statistic because it
depends only on the number of iterations where there exists at least one visiting QTL, but
not on the posterior distributions of the number of total and visiting QTLs, which differ
between the diallelic and multiallelic analysis models. This ensures that comparisons of the
evidence for linkage obtained from Loki and maLoki are as fair as possible.

In addition, we estimated the posterior distribution for the trait model. This includes the total
number of QTLs, k, the number of visiting QTLs, as well as their position δ, genotype
effects, α, and allele frequencies, p. We used the average position over all visiting QTLs to
estimate the linkage position δ̂ and defined the bias (B) in position as the difference between
the true position and δ̂, B = δ̂ − 30. To compare the contributions of individual QTLs to the
genetic variance, we calculated the size, Si, for each QTL i at each iteration:
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(5)

where n is the sample size of individuals with phenotype information, m is the overall
phenotypic mean, mig is the phenotypic mean for genotype ig, and nig is the number of
phenotyped individuals with genotype ig at that iteration.

Real Data
In order to compare the estimated posterior distribution of visiting QTLs from Loki and
maLoki on a real data set when the underlying model is unknown, we analyzed a data set
[Devlin et al. 1998] that was also analyzed previously with the standard diallelic model used
in Loki [Gagnon et al. 2003]. The data set includes 8 pedigrees consisting of 216
individuals, of whom 163 have complete HDL trait, age and genotype for one multiallelic
marker in the APOC3 gene. Since APOC3 is part of a tight cluster of apolipoprotein genes,
for which there is evidence of functional variation associated with lipid levels [Hayden et al.
1987; Dedoussis 2007], including HDL [Devlin et al. 1998; Gagnon et al. 2003], there may
be multiple alleles defined by haplotypes or multiple loci across the region, in addition to
locus heterogeneity. In this data set, APOC3 has a high heterozygosity of 0.94, so that the
information contained in the inheritance vectors should approximate that of a dense set of
SNPs at that region. The analysis performed previously [Gagnon et al. 2003], using an older
version of Loki, indicated the possibility of two linked QTLs at APOC3. Since the QTL
model only assumed diallelic QTLs, another interpretation of these results is that there is a
multiallelic QTL linked to APOC3 that effects HDL levels and is being modeled by
multiple, diallelic QTLs. We used the same analysis conditions used previously so that
comparisons can be made to the analysis with a previous version of Loki [Gagnon et al.
2003], in addition to the comparisons made here. We compared the posterior distributions of
the number of visiting QTLs, their positions and models from our analyses, assuming a
diallelic or multiallelic trait model.

Results
Simulated data

The analysis runs allowing for multiallelic QTLs show evidence for faster convergence to
the equilibrium distribution and better mixing than the runs allowing only diallelic QTLs
(figure 2). The number of visiting QTLs rarely changes in the long runs assuming diallelic
QTLs, indicating that the sampler moves slowly around the model space (figure 2 a,b,i,j).
This poor mixing results in insufficient information to estimate the posterior distribution,
even with long runs (1.5 × 106 iterations) and a run time of 2.2 hours (similar to that of the
maLoki runs). This lack of mixing is due to the high heritability of the trait. When h2 is
reduced to 0.6 for replicate 2, there is more evidence of mixing in the number of visiting
QTLs (figure 3 b). In contrast, the runs allowing for multiallelic QTLs (run time between 1.4
and 3.2 hours) appear to mix well, regardless of the heritability (figure 2 e,f,m,n and figure 3
f).

The trait models across runs and replicates estimated from maLoki are strikingly similar
whereas those estimated from Loki vary. For replicate 1, two of the QTLs have similar
estimated posterior distributions of size and location across runs when using Loki, but the
third QTL from both runs has different estimated size distributions (figure 2 c,d). For
replicate 2, the location and sizes of the visiting QTLs are inconsistent across runs when
assuming diallelic QTLs (figure 2 k,l). In contrast, the estimated posterior distribution of
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size and location of the visiting QTLs are similar when allowing multiallelic QTLs (figure 2
g,h,o,p).

Although each simulated data replicate provides evidence of linkage to the chromosome
with both versions of Loki, the results from the two analysis models have different
characteristics (figure 4). In all but one run assuming diallelic QTLs, each iteration contains
at least one visiting QTL, resulting in PR of linkage = 50, the maximum possible with this
data (figure 4 a). The one outlier has a PR of 45.6. In contrast, the PR ranges between 32.9
and 49.2 when multiallelic QTLs are allowed, indicating that there are iterations which lack
visiting QTLs for all replicates. The mean bias in location is similar for both analysis
models, but has a lower range for the diallelic model (figure 4 b). The smaller range in bias
of location obtained from Loki is due to the larger number of visiting QTLs per iteration for
Loki than maLoki, discussed below.

Similarly, the estimated posterior distribution of the number of visiting and total QTLs
differs between the two analysis models (figure 4 c and d). Although both analysis models
tend to overestimate the number of linked QTLs, there are fewer visiting QTLs in the
analysis allowing multiallelic QTLs than the analysis restricted to diallelic QTLs: The mean
number of visiting QTLs is 0.74 - 1.4 for maLoki but is always > 2 for Loki. This
overestimate results from the presence of multiple alleles at the underlying trait gene. When
the underlying true trait MOI is reduced to a diallelic MOI for replicate 2, the number of
visiting QTLs is virtually always 1 for both analysis models (figure 3 a,e). In contrast, each
iteration, on average, contains fewer total QTLs in analysis assuming diallelic QTLs than
analysis allowing for multiallelic QTLs. Furthermore, the full posterior distribution of the
total number of QTLs has a maximum ≤ 6 for Loki but always includes the upper bound of
15 for maLoki, across replicates.

Real Data
The estimated posterior distribution for the QTLs differs in analyses carried out with both
trait models on the real HDL data. Unlike for the simulated data, estimates from maLoki
include both fewer total and visiting QTLs than estimates from Loki: The total number of
QTLs has posterior mean, standard deviation and range of 3.8, 1.5, (1,14) for maLoki and
5.4, 1.7, (1,12) for Loki, and respective run times of 7 hours and 0.75 hours on the identical
computer. Although the posterior probability of at least one visiting QTL is similar (∼
0.999), the posterior probability of 2 or more visiting QTLs is much lower for maLoki (0.27)
than for Loki (0.61). Both analysis models appear to have good mixing for the total number
of QTLs and the number of visiting QTLs (data not shown).

Although the estimated posterior mean number of visiting QTLs differed between runs from
the diallelic versus multiallelic models, many of the visiting QTL models were similar. The
estimated posterior trait model distribution for the larger visiting QTL (size ≥ 8) in both
analyses is similar (figure 5 b,c). In the entire maLoki run, all but 5 of the visiting QTLs are
diallelic and 97% of these QTLs have dominance. The estimated posterior mean (pi, αi2, αi3)
for these diallelic QTLs was very similar across analysis models at (0.25, -17, 11) for
maLoki and (0.25, -16, 9.9) for Loki. The position of the visiting QTLs from Loki and
maLoki are also both centered near the location of APOC3 (figure 5 d and e).

Discussion
Here we developed a multiallelic trait model that is useful for linkage and segregation
analysis of complex continuous traits. We implemented this model as an extension to the
current diallelic trait model used in the Bayesian oligogenic approach available in the
package Loki. The method uses MCMC to efficiently sample from the posterior distribution
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of model parameters, and uses reversible jump MCMC to allow changes to the number of
contributing loci and number of alleles at each QTL. In the extension, in order to limit the
number of model parameters, each locus can be either diallelic with a dominance parameter,
or multiallelic with additive allele effects. Using simulated data and a real complex trait, we
compared results from analysis with the multiallelic and diallelic trait models. When the true
underlying MOI was diallelic, both analysis models gave similar results. When the true
underlying MOI was multiallelic, both analysis models provided evidence for linkage, but
the posterior distributions of QTL parameters differed. For both the multiallelic simulated
data and the real data, the estimated posterior mean number of visiting QTLs was smaller
under the multiallelic analysis model. For the simulated multiallelic data, the multiallelic
analysis model gave more consistent results across repeated analysis runs than did the
diallelic analysis model.

The multiallelic model appears to achieve better sampling of the model space (mixing) than
does the diallelic model. This is supported by the observation that similar estimated
posterior QTL model distributions are attained from repeated multiallelic analysis runs
within and across simulated data sets, whereas dissimilar posterior models are attained by
the diallelic analysis on those same data sets. Even with many more iterations, the diallelic
analysis model failed to converge, indicating that, under high heritability, the diallelic
analysis model may suffer from poor mixing and the required number of iterations needed to
ensure convergence may be prohibitively large. It is possible that the improved mixing
observed with the multiallelic analysis model is due to the presence of the many non-visiting
multiallelic QTLs accounting for phenotypic variation that the constrained diallelic model
can not explain.

Comparison of the estimated posterior distributions of the parameters of the visiting QTLs
from the diallelic and multiallelic analysis models clarifies the possible underlying MOI for
the real data set. Although the diallelic analysis model provided evidence for two QTLs for
HDL linked to APOC3, the multiallelic analysis model gave strong evidence for only one
such linked QTL. Furthermore, average posterior trait model parameters for the single
visiting QTL from the multiallelic model resembled those of one of the visiting QTLs from
the diallelic analysis model. Given this distinction between the results from the analysis
models and the expected linkage resolution of the HDL data set, the results from the
multiallelic analysis model probably more accurately reflect the underlying MOI in this data
set.

A disadvantage of the multiallelic analysis model is the increased computational cost. One
source of the increased cost is the current presence of programming inefficiencies; future
resolution of these may considerably improve the run time just as similar improvements
increased computational speed in earlier versions of Loki [Heath 1998; Thompson and
Heath 1999]. Another major contributor to the increased run time is the presence of
additional parameters in the multiallelic trait model. In addition, proposals of unlikely QTL
models waste time: Due to the constraints imposed by cosegregation at linked sites and the
model relating phenotype to QTL genotype, proposed visiting multiallelic QTLs have small
likelihoods and are therefore usually rejected. One way to limit the number of parameters,
and thereby increase computing speed, may include using a Poisson prior distribution on the
QTL type. Although incorporating a Poisson prior distribution on the total number of QTLs
was fairly easy, computationally fast and statistically beneficial over the Uniform prior
distribution [Heath 1998], there are difficulties in implementing a similar solution for QTL
type. Until this issue is resolved, one practical approach to limit computation time is to use
the multiallelic model selectively, such as when multiple linkage signals on a single
chromosome are detected with the diallelic model.
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As the search for trait loci continues, methods that more accurately capture the complexities
of common traits will need continuous development, refinement and evaluation. An
advantage of such methodological advancements is illustrated by the results obtained here,
in which a more complex segregation analysis model can actually lead to a simpler
estimated posterior distribution of the underlying trait MOI. A simpler trait model, in turn,
may improve the chances of eventual gene identification. Although both the diallelic and
multiallelic analysis models lead to incorrect model estimates, the models proposed by the
multiallelic analysis, due to the improved mixing, more accurately reflect the underlying
MOI in the simulated data. Therefore, the results obtained here illustrate conditions under
which the multiallelic model can be used to clarify, support or refute trait model estimates
from the diallelic model in the ongoing search for genes contributing to complex traits.

Appendix
Metropolis-Hastings

The iterative process of MCMC sampling can be carried out using the Metropolis-Hastings
(MH) algorithm [Metropolis et al. 1953; Hastings 1970]. A state, or values for the model
parameters, is proposed and then accepted or rejected, depending on the MH acceptance
ratio:

(6)

where θ is the current values of the parameters, θ′ is the proposed values of the parameters,
Y is the observed data, π is the target distribution of interest, which need be known only up
to a constant of proportionality, and q is the sampling distribution used to generate values of
θ′. If θ is multiparametric, the MH sampler can be used to make component-wise updates.

Reversible Jump MCMC
In the case when the number of parameters that make up the model θ can change between
iterations, RJMCMC, a generalization of the MH algorithm, can be used [Green 1995]. In
this case, a model state, z, consists of a model type, m, and parameter values, θ. If the
proposed model type, m′, includes more parameters than m, random variables, U, are
sampled and then transformed to create the proposed state, z′:

(7)

where the dimension of U equals that of the new parameters and g is a one-to-one
transformation. In this case, the proposed transition between parameter spaces is
incorporated into the acceptance ratio via the Jacobian, J, of g(θ, U):

(8)

where Pm is the prior density on the possible model types, pm,m′ is the transition probability
from model type m to model type m′, and qm,m′ is the sampling distribution for the random
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variable U. If the proposed model contains fewer parameters than the current model, the
additional parameters are dropped and the inverse of equation 8 is used for the acceptance
ratio.

Birth/Death of additive QTL
The acceptance ratio, , for the birth of a completely additive QTL is

(9)

where ℬ is unique to the case of proposing additive QTLs:

(10)

Equation 9, other than ℬ, is explained elsewhere [Heath 1997; Jannink and Wu 2003].
Briefly, P(birth) and P(death) are the probability of proposing a birth or a death, which is
equivalent to proposing a change in model parameter space, m. P(k + 1) and P(k) are the
prior probabilities of k + 1 or k QTLs. The k in the denominator of the prior distribution on
the number of QTLs is for the random choice of QTL to choose for a death [Jannink and Wu

2003].  and  are the current and proposed environmental variances. L and L′ are the
likelihoods of the current and proposed trait models. Equation 10 contains the prior
distribution on the allele effects, N(0, τ2/2), and the sampling distribution for , .

The term  is the random probability that an allele is positive or negative from equation
3. The Jacobian, J, for the transformation in equation 3 is:

(11)

Sampling of allele frequencies at additive QTLs
The posterior distribution for the allele frequencies is a multivariate generalization of the
Beta distribution [Lange 1997]. If QTL i is additive with ℓ alleles, the posterior distribution
on the allele frequencies is Dirichlet(ci1, ci2, …, ciℓ) where cil is one more than the count of
allele il in the founders, l = 1, …,ℓ. The purpose of adding 1 is to ensure that cil > 0 for l = 1,
…,ℓ.

Gibbs sampling of allele effects at additive QTLs
The trait model parameters (μ, β, α, a) are sampled simultaneously using Gibbs sampling at
the end of each iteration. The prior distribution for the genotype effects is N(0,τ2), as used in
the current version of Loki. The prior distribution for the allele effects of additive QTLs is
N(0,τ2/2) in order that the genotype effects resulting from the sum of independent allele
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effects should be distributed as N(0,τ2). The prior distribution for the other parameters is
given elsewhere [Heath 1997]. Since the trait model assumes that phenotypes are normally
distributed, and the parameters have independent Normal prior distributions, the posterior
distribution P(θ ∣ Y) is also Normal [Lindley and Smith 1972]. The posterior distribution is:

(12)

where ψ is the design matrix consisting of a unit vector for the baseline, vectors for the
covariates, indicator vectors for genotypes Bi1Bi2 and Bi2Bi2 at QTLs with dominance or

count of alleles Bi2, ⋯, Biℓ at additive QTLs.  is the variance-covariance matrix, Y is
the vector of phenotype data and ϒ is the variance matrix for the QTLs. The off-diagonal of
ϒ is zero, and the diagonal is τ2 for QTLs with dominance and τ2/2 for the additive QTLs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Pedigree used for simulated data.
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Figure 2.
Comparison of visiting QTL parameters for paired Loki and maLoki runs on two
representative simulated data replicates. Panels in left two columns show no. of visiting
QTLs vs iteration/3000 for Loki and no. of visiting QTLs vs iteration/1000 for maLoki.
Panels in right two columns show the size vs location (cM) of visiting QTLs
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Figure 3.
Comparison of visiting QTL parameters between Loki and maLoki on the transformed trait
data for replicate 2. See Methods for description of data transformation.
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Figure 4.
Distributional comparisons of key parameters from the Loki and maLoki runs on the
simulated data. The columns are for (a) Probability ratio for the chromosome (b) Mean bias
in position (c) Mean number of QTLs and (d) Mean number of visiting QTLs. The dotted
line at 1 in (d) indicates the true number of linked QTLs. For all boxplots, the whiskers
extend to the data point that is closest to and less than 1.5 times the interquartile range.
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Figure 5.
Results from analysis of HDL levels and APOC3. (a) Histogram of number of visiting QTLs
when using Loki (top) and maLoki (bottom). Genotype effects of diallelic QTLs from Loki
(b) and maLoki (c). These models are adjusted so that α3 ≥ 0. The line of points in (c)
correspond to the additive QTLs: α3 = 2α2. Surface plots of size versus location of visiting
QTLs when using Loki (d) and maLoki (e).
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