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Abstract
Many recent applications of nonparametric Bayesian inference use random partition models, i.e.
probability models for clustering a set of experimental units. We review the popular basic
constructions. We then focus on an interesting extension of such models. In many applications
covariates are available that could be used to a priori inform the clustering. This leads to random
clustering models indexed by covariates, i.e., regression models with the outcome being a partition
of the experimental units. We discuss some alternative approaches that have been used in the
recent literature to implement such models, with an emphasis on a recently proposed extension of
product partition models. Several of the reviewed approaches were not originally intended as
covariate-based random partition models, but can be used for such inference.
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1 Introduction
We review probability models for random partitions. In particular we are interested in
random partition models in the presence of covariates. In other words, we discuss regression
models where the outcome is an arrangement of experimental units in clusters.

Let S = {1, …, n} denote a set of experimental units. A partition is a family of subsets S1,
…, Sk with S = S1 ⋃ … ⋃ Sk, Sj ⋂ Sj′ = Ø. We write ρn = {S1, …, Sk}. The random number
of clusters, k, is part of ρn. When the sample size n is understood from the context we drop
the subindex and write ρ. Sometimes it is technically more convenient to describe a partition
by a set of cluster membership indicators si with si = j if i ∈ Sj, i = 1, …, n. Let sn = (s1, …,
sn). Finally, let kn denote the number of clusters. Again, we drop the index n if the sample
size is understood. The number of clusters k is implicitly coded in sn and ρn. We write nnj = |
Sj| for the size of the j-th cluster. Again, we drop the subscript n if the underlying sample
size is understood from the context.

A random partition model is a probability model p(ρn). Two basic properties are desirable
for random partition models. The model should be exchangeable with respect to
permutations of the indices of the experimental units. Let π = (π1, …, πn) denote a
permutation of S, and let sπ = (sπ1, …, sπn) describe the clusters implied by re-labeling
experimental unit i by , i.e., πh = i. We require
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for all partitions π. A second important property is that the model should scale across sample
sizes. We want

We refer to these two properties as symmetry and scalability. A probability model on ρn that
satisfies the two conditions is called an exchangeable product partition function (EPPF)
(Pitman, 1996). Exploiting the invariance with respect to relabeling the EPPF can be written
as p(nn1, …, nnk).

Several probability models p(ρn) are used in the recent literature, including product partition
models (PPM), species sampling models (SSM) and model based clustering (MBC). The
SSM and MBC satisfy the requirements of symmetry and scalability by definition, but not
all PPMs do. See, for example, Quintana (2006) for a recent review.

Usually the model is completed with a sampling model for observed data y = (y1, …, yn)
given ρn. A typical sampling model defines independent sampling across clusters and
exchangeability within clusters. In the following discussion we assume that this is the case.
We do so for the benefit of a more specific discussion, but without loss of generality. We
represent exchangeability within clusters as independent sampling given cluster specific
parameters ξj:

(1)

For example,  could be a normal model , and the prior  could be a
conjugate normal prior. In the following discussion we focus on the prior model p(ρn), and
assume (1) when a specific sampling model is required. Little changes in the discussion if
the sampling model is of a different form.

The most popular choice for p(ρn) in the recent Bayesian literature is the special case of the
random partition implied by the Dirichlet process (DP) prior (Ferguson, 1973; Antoniak,
1974). DP priors are probability models for unknown distributions G, i.e., the DP is a
probability model on probability models. We write G ~ DP(α, G*). The base measure
parameter G* defines the prior mean, E(G) = G*. The total mass parameter α is a precision
parameter. One of the important properties is the a.s. discrete nature of G. This property can
be exploited to define a random partition by considering a sequence of i.i.d. draws, ξi ~ G, i
= 1, …, n. The discrete nature of G implies positive probabilities for ties among the ξi. Let

 denote the unique values among the ξi and define . The implied
probability model on ρn = (S1, …, Sk) is known as the Polya urn scheme. Let [x]m = x · (x +
1) · … · (x + m − 1) denote the Pochhammer symbol. The Polya urn defines

(2)
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Model (2) can be written as , with c(Sj) = α(nj − 1)! Models of the form
p(ρn) ∝ ∏ c(Sj) general c(Sj) are known as PPMs (Hartigan, 1990;Barry and Hartigan,
1993).

Equivalently the Polya urn can be characterized by the predictive probability function (PPF),
that is

(3)

It is easily verified that the Polya urn defines indeed an EPPF. Models that are characterized
by a sequence of PPFs {pj(ρn), j = 1, …, k and n = 1, 2, …} and that satisfy the symmetry
and scalability requirements are known as SSMs (Pitman, 1996).

Probability models for random partitions are now routinely used in Bayesian data analysis.
In this article we discuss an extension to probability models for random partitions indexed
with covariates. An interesting example is reported in Dahl (2008). Proteins are clustered on
the basis of 3-dimensional structure. Structure is recorded as a sequence of 7 characteristic
angles of the backbone. Let RMSD denote the (root) minimum Euclidean distance between
any two proteins, after optimally aligning the two molecules. Dahl (2008) argues that
proteins with small RMSD should be a priori more likely to co-cluster than others. In other
words the prior probability model on clustering should be indexed with covariates.

Let xi denote the covariates that are specific to experimental unit i and write xn = (x1, …, xn).
We consider models of the form p(ρn | xn). But more generally, the covariates need not be
indexed by experimental units. Several of the following models only require that covariates
can be grouped by cluster. For example, in Dahl (2008) the covariates are RMSD and are
specific to any pair of proteins. Partition models with covariates are useful in many
applications, but for a relative lack of standard methods are not currently used extensively.

The rest of this article is organized as follows. In sections 2 through 5 we discuss models for
random partitions with covariates based on several alternative approaches, including
augmented response vectors, dependent DP models, and hierarchical mixture of experts
models. In section 6 we review in more detail an approach based on extending the product
partition model.

2 Clustering with Augmented Response Vectors
Probability models p(ρn) can systematically be generalized to p(ρn | x) by the following
device. Assume for a moment that covariates are random, even when they are fixed by

design, using a sampling model as in (1), . The implied
conditional distribution p(ρn | x) defines a probability model for ρn, indexed by covariates,
as desired. The approach is particularly convenient when the model is combined with the
sampling model (1) for observed data y. This is implemented in combination with the DP
model among others, in Müller et al. (1996) or more recently in Shahbaba and Neal (2007)
and in Dunson and Park (2008). The combined model becomes
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(4)

The sampling model p(y | ρn) could include additional regression on x, i.e., replace the first
factor by p(y | ρn, x), without changing anything in the following discussion. If p(ρn) is the
Polya urn (2) implied by the DP prior, then the model can be rewritten as independent
sampling of (yi, xi) given latent variables (ξi, ηi) that in turn are i.i.d. samples from a random
probability measure with DP prior. Let ξ = (ξ1, …, ξn) and similar for η. Conditional on a
random measure G consider:

The model is completed with a DP prior, G ~ DP (G*, α) with base measure

.

The latent variables (ξi, ηi) implicitly code the partition ρn by ξi1 = ξi2 if and only if si1 = si2.
Marginalizing with respect to G is (4) with the Polya urn prior p(ρn).

There are two important limitations to this approach. First, the approach requires the
specification of a probability model for the covariates xi, even if these are not random
quantities. For long lists of covariates with a mix of different data formats it can be a
challenging task to define suitable p(xi | ηi). Such situations are quite common for many
biomedical applications where xi could be a long list of subject-specific characteristics,
including treatment history, age, ethnicity, insurance coverage, health literacy, location, and
many more.

Second, the approach includes a trap. It is usually defined for the special case with xi ∈ Rp

and yi ∈ Rq as vectors of continous variables. Assume multivariate normal kernels p(xi | ηi) =

N(ηi, T) and sampling model p(yi | ξi) = N(ξi, S) and conjugate normal priors  and

. Here S and T are (possibly fixed) hyperparameters. It is tempting to combine factors
and write the model as one joint model with augmented response vector

, where Σ is a (p + q) × (p + q) covariance matrix. However, care
needs to be taken to enforce a block diagonal structure with Σi1,i2 = 0 for any two indices i1
≤ p and i2 > p. Otherwise the equivalence with (4) is lost and it becomes difficult to
understand the implied model. Assume Σ with non-zero off-diagonal elements. Then the

cluster-specific sampling model  can be factored as

. In words, the prior for the cluster membership depends on the

outcome yi, or equivalently, the sampling model  includes an unintended
regression on xi. The same comment is true for the base measure G* and possible
hyperpriors. And most importantly, the prior p(ρn | x) in (4) includes a normalization

constant. Let . The marginal p(x) is the
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proportionality constant in (4). When  and  include a common
hyperparameter ϕ, such as the covariance matrix Σ in the normal model, then p(x | ϕ)
changes the model in unintended ways. The change is less innocent than what it might seem.
See the example in Figure 2 and the corresponding discussion.

3 DDP and Related Models
Dependent Dirichlet process (DDP) models are another class of probability models that can
generate covariate-dependent random partitions. DDP models were introduced in
MacEachern (1999). Although not usually presented as probability models for covariate
dependent random partitions, the special case of DDP models with varying weights can be
used to achieve this purpose. Recall the DP model. Let δ(m) denote a point mass at m. A
random probability measure (RPM) G has a DP prior, G ~ DP(α, G*) if it can be written as

(5)

with mh ~ G*, i.i.d., and πh = Vh∏f<h(1 − Vh) where Vh ~ Be(1, α), i.i.d. (Sethuraman, 1994).

The DDP model was introduced to generalize the DP prior to a probability model for a
family of dependent RPMs {Gx, x ∈ X} indexed by x. The marginal model remains a DP
prior, Gx ~ DP(·) marginally. Implementations of the DDP vary in the way how the
dependence of Gx across x is defined. One variation is to replace the weights πh in the DP
model by covariate-dependent weights πh(x). This is implemented, for example, in Griffin
and Steel (2006).

An alternative implementation of DDP models introduces the desired dependence across x
by replacing mh in (5) with mxh, and defining a dependent prior p(mxh, x ∈ X). For example,
a Gaussian process prior model. The weights remain unchanged across x. Although this
fixed weight implementation is the more popular one, it is not of interest in the current
discussion. It does not naturally lead to covariate dependent random partitions.

The varying weights DDP model can be used to define a random partition model p(ρn | x)
indexed by covariates. This is assuming constant locations mh, unchanged across the level of
x. The approach is simple. Similar to the definition of the Polya urn we consider independent
samples ξi ~ Gxi with a DDP prior on {Gx, x ∈ X}. The discrete nature of the underlying DP
priors implies a positive probability of ties among the ξi. We use this to define clusters. Let

 denote the k ≤ n unique values of ξi. We define i ∈ Sj if . The simple form
of (3) is lost. But the model still allows straightforward posterior simulation.

A related process is the weighted mixture of DPs (WMDP) proposed in Dunson et al. (2007).
The WMDP defines a probability distribution for a family {Gx, x ∈ X} of discrete RPMs.
Like the varying weight DDP the construction is such that the random measures Gx share
common locations mh for the point masses, but the weights πhx vary across locations. The
varying weights are defined by multiplying with a kernel that is a function of the covariates.

The construction starts with a grid of covariate values  and associated RPMs
. The RPM  characterizes an RPM Gx with covariate . For covariate values

between the grid points the RPM Gx is defined as a weighted mixture of the  measures.

Let f(x, x′) denote a (fixed) kernel. The WMDP assumes
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As usual the construction can be exploited to define a covariate-dependent random partition

model. Consider ξi ~ Gxi, i = 1, …, n, and let  denote the k ≤ n unique values

of ξi. The indicators si = j if  define a random partition. The implied model p(ρn | x) is a
random partition model indexed by covariates, as desired.

A similar construction is the probit stick-breaking process (PSBP) that was recently
introduced in Chung and Dunson (2008). They construct a probability model for related
RPMs {Fx, x ∈ X} by replacing the weights ρh in the DP prior by a probit model.

(6)

Here ηh(x) = αh−ψh|x−Γh| is a linear predictor for the probit model and Φ(·) is the standard
normal cdf. Chung and Dunson (2008) define the model for a multivariate covariate vector
x. They complete the model with independent normal priors for the probit parameters.

4 Hierarchical Mixture of Experts
A widely used method for flexible regression is the hierarchical mixture of experts (HME)
model (Jordan and Jacobs, 1994). It is extended to the Bayesian HME in Bishop and
Svensén (2003). An implementation for binary outcomes is developed in Wood et al. (2008).

The HME is a flexible regression model for an outcome yi and covariate xi. It can be written
as

(7)

where η parametrizes the weight for the j-th component. Bishop and Svensén (2003) use
products of logistic regressions to specify the weights πj. The parameters ξ parametrize the
sampling model for the j-th component, for example a normal linear regression for a
continuous outcome, or a probit binary regression for a binary outcome as in Wood et al.
(2008). The component models are also known as the experts. Thus the name of the model.

Mixture sampling models like (7) can be used to define random partition models. Partition
or clustering schemes induced by such models are known as model based clustering
(Dasgupta and Raftery, 1998). The approach is based on writing the mixture model (7) as a
hierarchical model with latent indicators si:

The indicators si define the partition and p(ρn | xn) is a multinomial distribution.
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The approach is based on the finite parametric model (7). It inherits all advantages and
limitations of a parametric approach. An important advantage is parsimony of the
parametrization and interpretability of the parameters. An important limitation is the
restriction to the specific parametric form of πj. For example, if the logistic regression for πj
does not include interaction terms, then no amount of data and evidence will be able to
introduce such terms in the posterior predictive inference. Another limitation is the fixed
number of clusters k. This limitation can easily be addressed by adding a hyperprior p(k).
But in either case the number of clusters would not be adaptive to the sample size, as is the
case in other random partition models. The same comments apply to any other model with
explicitly parameterized weight function, such as the PSBP in (6).

5 Other Approaches
In the previous sections we have reviewed approaches and models that can be used to define
covariate-dependent random partitions. A common theme of these approaches is that they
were introduced in the literature for different purposes, and just happen to imply covariate-
dependent random partition models. The reason for including these approaches in the review
is simply the relative lack of literature concerned with covariate-dependent random partition
models.

One exception is Dahl (2008). We mentioned the motivating application in the introduction.
The desired covariate-based random clustering model is constructed by a smart modification
of the Polya urn scheme (3). Let di1i2 denote the RMSD between any two proteins i1 and i2.
Dahl (2008) defines a random partition on the set of proteins. The prior co-clustering
probabilities are modified based on di1i2. Let d* denote the maximum recorded distance. For
each cluster Sj ⊂ {1, …, n} and protein i, Dahl (2008) defines a propensity score

. Without loss of generality assume i = n + 1. The scores hn+1(Sj)

are standardized such that . Dahl (2008) then modifies (3) to

(8)

The standardization of hi to Σhn+1 = n serves an important purpose. It leaves the conditional
probability of opening a new cluster unchanged. Dahl (2008) recognizes that the modified
Polya urn (8) is not necessarily a legitimate PPF anymore, i.e., a predictive probability
function that defines a species sampling model (Pitman, 1996). But (8) does define transition
probabilities for an ergodic Markov chain. Thus it implicitly defines a joint probability
distribution on s that is informed by the relative distances di1i2, as desired.

Another interesting recent discussion is Monni and Tadesse (2008). Although they do not
define a covariate-based random partition model, we still include the approach in this review
since we consider it closely related. The approach can be characterized as a joint probability
model for ρn and a latent feature corresponding to each cluster. Monni and Tadesse (2008)
consider the problem of defining regression models for many response variables yi, i = 1, …,
n on a large set of possible covariates {xj, j = 1, …, p}. The application is to a regression of
comparative genomic hybridization (CGH) on mRNA expression levels, with n = 261 and p
= 3291. Their approach is based on a partition ρn of S = {1, …, n}. For each partitioning
subset Sj ⊂ S they define a subset Rj ⊂ {1, …, p} of regressors. For i ∈ Sj the model
includes then a normal linear regression of yi on {xf, f ∈ Rj}. The model is completed with a
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prior p(ρn, R1, …, Rk). The prior is constructed to favor small partitioning subsets. Let nj = |
Sj| and mj = |Rj. Monni and Tadesse (2008) define

for some 0 < r < 1 parameter that controls the clustering, with smaller values favoring small
clusters and a few active covariates. The model demonstrates the restrictive nature of the
Polya urn scheme (2) and the endless possibilities in defining alternative random partition
models – in this case jointly with the associated sets Rj. Of course the flexibility comes at a
cost. We lose scalability. But this might not be a concern when there is no notion of
predictive inference.

6 The PPMx Model
6.1 A Covariate-Dependent Random Partition Model

In Müller et al. (2008) we develop a model for random partitions with covariates that is
based on the product partition model (PPM). The PPM is a model for random partitions
defined by

where c(·) is known as the cohesion function. The Polya urn (2) defines a model that falls
within this class by using c(Sj) = α(|Sj − 1)! Compare with the discussion following (2).

In words, the proposed model is an extension of the PPM, defined by augmenting the
cohesion function c(Sj) by a factor that favors clusters with similar covariates and
discourages clusters with highly dissimilar covariates. Similarity is formalized by a
similarity function. The argument of the similarity function are the covariate values recorded

in a given cluster. The value is a non-negative number. Specifically, let 
denote the set of covariate values for experimental units grouped in the j-th cluster. We

define a similarity function  with g(·) ≥ 0 such that large values of g indicate high
similarity of the xi, i ∈ Sj. We define an extension of the PPM model to a covariate-
dependent random partition model:

(9)

The main component of the proposed model is the similarity function. As a default we
propose to define

(10)

for an auxiliary probability model q(x | η) and a conjugate prior q(η). We refer to model (9)
and (10) as PPMx model. A related model for continuous covariates is discussed in Park and
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Dunson (2009). Their idea is to use a PPM for covariates and then use the posterior random
partition as prior for the data model.

Let N(x; m, s2) denote a normal distribution with location m and scale s. For example, for a
continuous covariate one could use a normal kernel q(xi | ηj) = N(xi; ηj, s2) and q(η) = N(0,
τ). The similarity function would then be the marginal nj-dimensional normal distribution of

the set , with larger values for more tightly grouped xi values. We propose similar default
models for categorical and count covariates using a multinomial/Dirichlet and a Poisson/
gamma model. We argue that under some reasonable assumptions on g(·) the default model
(10) is not only a convenient default similarity function. It is the only possible form for a
similarity function. The two assumptions are symmetry of g(·) with respect to permutations

of the indices of xi, and .

For a covariate vector with a mix of different data formats we propose to define a joint
similarity function as a product of similarity functions for each covariate or subvector of
covariates with common data format.

The proposed model can be considered a special case of (4), with the submodel for xi
defined by the kernel q(xi | ηj) that appears in (10). But in contrast to approaches that work
with an augmented response vector (xi, yi) the sampling and prior models are already
separated by construction. See the discussion following (4).

The interpretation of the model as a special case of (4) is important for posterior simulation.
Exploiting the representation as a special case of a DP mixture one can use any of the many
posterior Markov chain Monte Carlo (MCMC) schemes that have been proposed for these
models.

6.2 Example: Semiparametric Mixed Effects Model
Wang et al. (2005) describe a clinical trial of carboplatinum, a chemotherapy agent, with
additional immunotherapy using γ-interferon and GM-CSF (colony stimulating factor). One
of the desired effects of the immunotherapy is to boost monocyte counts. Monocytes are a
subpopulation of white blood cells. All patients are administered the same level of γ-
interferon and GM-CSF. Carboplatinum dose varies across patients. The data reports
monocyte counts for n = 47 patients. For each patient we use 6 repeat measurements over
the first cycle of chemotherapy, using the measurements closest to days 1, 6, 9, 15, 21 and
28. Day 1 is the day of the actual chemotherapy. Day 28 is the day just before the second
dose of chemotherapy. Let yij denote the j-th observation for patient i, and let xi denote the
dose of carboplatinum.

Figure 1a plots the data for the 47 patients. The initial decline is in response to the
chemotherapy treatment on day 1. The first immunotherapy leads to the peak around day 9.
The second increase reflects the next set of immunotherapy given just before the next
chemotherapy dose xi. We implemented the proposed model for covariate-dependent
clustering to define a random partition model with a regression on the chemotherapy dose.
Let N(x; m, s) indicate a normal kernel for the random variable x, with moments (m, s), let W
(V; ν, S) denote Wishart prior for the random matrix V with scalar parameter ν and matrix
variate parameter S, and let Ga(s−1; ν, νso) denote a gamma distribution (parametrized to
have mean  and variance ). Let θj = (μj, Vj). We used a multivariate normal model
p(yi | θj) = N(μj, Vj), with a conditionally conjugate prior for θj, i.e.,

. The model is completed with conjugate hyperpriors for
m, B and S. The similarity function is a normal kernel. We use
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The hyperparameters a0, A0, S0 are fixed.

Posterior inference in the model provides the desired prediction for a future patient, i = n +
1. Figure 1b shows the prediction arranged by dose level (with increasing doses labeled 1
through 5). For comparison, the right panel of the same figure shows posterior predictive
inference in a model using a PPM prior on clustering, without the use of covariates.

For comparison, we also considered an implementation based on (4). For a fair comparison
all hyperparameters were left unchanged. In particular, the prior means of the Wishart priors
on all precision matrices are block diagonal with zeroes in the elements corresponding to
elements of the x and y subvectors. The resulting inference is shown in Figure 2. Under the
augmented probability model the number of clusters is sharply reduced. Almost all
probability mass is concentrated on only one cluster (not shown). The resulting inference is
thus a simple normal linear regression of the mean outcomes on the covariate and misses the
complicated structure suggested by the data.

An implementation of the model is provided in an R package that is available at
http://odin.mdacc.tmc.edu/~pm/prog.html.

Finally, a few comments about practical implementation issues. The issues are equally
relevant for other methods discussed in earlier sections, and for the corresponding random
partition models without regression on covariates. We therefore only briefly mention the
issues. A full discussion of solution strategies would be beyond the scope of this paper. For
any random partition model inference about the actual clusters and cluster-specific
parameters is subject to the label switching problem. The posterior distribution remains
unchanged under any permutation of the cluster indices, j = 1, …, k. This symmetry makes it
meaningless to report posterior summaries for cluster j. Also, apart from the label switching
problem posterior distributions in mixture models are notoriously multimodal. This
multimodality can lead to very slowly mixing Markov chains in the MCMC implementation.
Finally, one needs to be careful with the choice of hyperparameters. In the R package
implementation we use default choices based on the empirical moments of the data and
covariates. Details can be seen in the default choices for unassigned parameters for the R
function ppmx(), which is part of the R package.

7 Conclusion
We have discussed probability models for random clustering. We focused on the problem of
defining models that can use covariate information to change a priori clustering
probabilities. Such models are suitable for any application where similar experimental units
are more likely to co-cluster. Similarity is defined in terms of available baseline covariates.
We argued that several recently proposed methods for dependent RPMs and flexible
regression can be exploited to define such models. Each of the discussed methods has some
merits. The choice of the appropriate method depends on the problem at hand. Clustering
with augmented response vector is convenient for continuous covariates xi and responses yi,
and when simplicity of the implementation is desired. DDP models can accommodate any
kind of data format for the covariates xi. The computational effort is not much beyond the
basic DP mixture model, but might require some problem-specific additional programming.
HME models are very reasonable when the main focus is prediction and when there is little
interest in inference about the random partition.
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The main purpose of the review was to establish the context to introduce a new method
developed in Müller et al. (2008). The proposed model is discussed in section 6. It is based

on an extension of the PPM model by adding an additional factor  to the cohesion
function. The strengths of the proposal are the conceptually clear way of introducing the
desired covariate-dependence, the possibility to include long lists of covariates with a mix of
different data formats, and finally the still easy implementation.

The main limitations are (i) the fact that the similarity function can implicitly add a penalty
for the cluster size, (ii) the need to elicit parameters for the similarity function, and (iii) the
close resemblance to simpler augmented response models.

From a data analysis point of view it is desirable that a cluster size penalty should only be
introduced through the cohesion function c(Sj). While mathematically possible, it is
undesirable to include an additional cluster size penalty in the similarity function. The same
statement in different words, for all equal covariates xi ≡ x, the model should reduce to the
underlying PPM. But this is not the case. It is only approximately true. See Müller et al.
(2008) for more discussion.

The elicitation of parameters for the similarity function is a problem and a feature at the
same time. On one hand one always wants to limit the amount of required prior elicitation.
On the other hand such prior elicitation can prompt the investigator to clearly articulate
available prior information. As an opt out it is always possible to use default choices.
Alternatively one could extend the model with hyperpriors on these parameters. We
recommend against the latter.

In conclusion, we feel that there are important gaps in the literature for random partition
models. The current practice is almost entirely dominated by the Polya urn model that is
implied by the DP prior. The reason is usually purely technical convenience. The present
discussion of covariate-based random partition models identifies one important direction of
generalization. Another important research direction is the consideration of alternative
underlying models.
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Figure 1.
Panel (a) shows the data. The figure plots monocyte count versus day of the first cycle
chemotherapy for n = 47 patients. Panel (b) shows prediction for  arranged by  from
lowest (“1”) to highest (“5”) level of carboplatinum. Panel (c) shows for comparison
prediction without covariate-dependent clustering. By construction prediction in (c) is
identical for all patients.
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Figure 2.
Augmented response vector. Panel (a) shows inference like in Figure 1b, but under a
corresponding augmented response vector approach. Panels (b) and (c) show the posterior
distribution on the number of clusters k.
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