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Summary
We discuss a Bayesian discovery procedure for multiple comparison problems. We show that
under a coherent decision theoretic framework, a loss function combining true positive and false
positive counts leads to a decision rule based on a threshold of the posterior probability of the
alternative. Under a semi-parametric model for the data, we show that the Bayes rule can be
approximated by the optimal discovery procedure (ODP), recently introduced by Storey (2007a).
Improving the approximation leads us to a Bayesian discovery procedure (BDP), which exploits
the multiple shrinkage in clusters implied by the assumed nonparametric model. We compare the
BDP and the ODP estimates in a simple simulation study and in an assessment of differential gene
expression based on microarray data from tumor samples. We extend the setting of the ODP by
discussing modifications of the loss function that lead to different single thresholding statistics.
Finally, we provide an application of the previous arguments to dependent (spatial) data.
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1. Introduction
A number of different approaches have been introduced in the recent literature to address the
multiple comparison problem. Most focus on controlling some error rate. For example, the
control of the familywise error rate (FWER) guarantees a bound on the probability of a false
rejection among all tests. Benjamini and Hochberg (1995) developed a simple procedure,
based on the ordered p-values that controls the false discovery rate (FDR), defined as the
expected proportion of rejected null hypotheses which are erroneously rejected. A decision-
theoretic approach to the multiple comparison problem requires the explicit statement of a
loss function, which weights the relative importance of the different outcomes according to
the preferences and inferential focus of the investigators. Cohen and Sackrowitz (2007)
prove the inadmissibility of the Benjamini and Hochberg procedure under any loss that is a
linear combination of false discoveries and false acceptances and under several sampling
models, including the general one-parameter exponential family. Müller et al. (2004, 2007)
undertake a decision theoretic approach to multiple testing and discuss several loss functions
that lead to the use of FDR-based rules. More recently, Bogdan et al. (2008) compared the
Benjamini-Hochberg procedure with several Bayesian rules for multiple testing. They show
that whenever the proportion of true nulls is small, the misclassification error of the
Benjamini-Hochberg procedure is close to optimal, in the sense of matching a Bayesian
oracle. This property is shown to be shared by some of the Bayesian procedures they
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consider. In addition, through simulations, they show that Bayes rules generally perform
better for large or moderate proportions.

The general multiple comparison problem is stated as follows. Assume we observe data sets
x1,…,xm, where xi = {x1i,…,xnii}, and for each xi we consider a test of a null hypothesis H0i.
Often the data is reduced to a statistic zi with zi ~ f (zi; μi), for some distribution f, indexed
by an unknown parameter μi, i = 1,…,m. Assume we wish to test H0i : μi ∈ A vs. H1i : μi ∉ A
for i = 1,…,m. We discuss the multiple comparison problem in a Bayesian decision theoretic
framework. A Bayesian decision problem is characterized by a sampling model, f (zi; μi) in
this case, a prior and a loss function which represents the utility preferences associated with
possible outcomes.

Specifically, we use a prior model that includes a random effects distribution G for the μi.
Instead of a parametric model for G, we consider G as an unknown random probability
measure (RPM). A prior probability model for an RPM is known as a nonparametric
Bayesian model. We assume a Dirichlet process (DP) prior, one of the most popular
nonparametric Bayesian models.

For sufficiently large m and a small total mass parameter of the DP prior, the posterior RPM
can be approximated by the empirical distribution of the maximum likelihood estimates μ̂i.
The result is an approximate Bayes rule that is closely related to Storey’s optimal discovery
procedure (ODP, Storey, 2007a).

The ODP is based on a thresholding statistic,

(1)

The null hypothesis H0i is rejected if SODP(zi) ≥ λ, for some 0 ≤ λ < ∞. Let di
ODP = I (SODP

(zi) ≥ λ). Storey proves that dODP maximizes the expected number of true positives (ETP)
among all procedures with equal or smaller expected number of false positives (EFP). For a
point null, A = {0}, the test reduces to thresholding SODP (zi) = ∑μj ∉ A f (zi; μj)/f (zi; 0). As
stated, the threshold function SODP involves the unknown parameters μj, j = 1,…,m. In
practice, SODP (·) has to be estimated. For a point null, i.e., A = {0}, the ODP is evaluated as

(2)

where μ̂j is a point estimate for μj (e.g., the maximum likelihood estimate). It is shown that
the performance of ŜODP is comparable to the theoretically optimal discovery procedure
based on SODP.

For general A the ODP proceeds with the thresholding function

(3)
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where wj are suitable weights, chosen to estimate the true status of each hypothesis. For
example, wj = 1 for all comparisons that are estimated (by some preliminary test) to be null,
and wj = 0 otherwise. Storey et al. (2007b) show that (3) outperforms many procedures
commonly used in testing a large number of genes for differential expression.

We show that the ODP statistic can be recognized as an approximate Bayes rule under the
proposed nonparametric prior model for μi. This result is in accordance with Ferguson’s
(1973) observation that nonparametric Bayesian inference often yields results that are
comparable to corresponding classical inference. The expectation in Storey’s optimality
statement for dODP is under the (frequentist) repeated sampling model. The expectation in
the Bayes rule is under the posterior distribution for a given outcome z. Maximization of the
conditional expectation for each z implies maximization of the marginal expectation across
repeated sampling. A similar argument can be made about the constraint on the expected
number of false positives. A bound on the conditional expectation, conditional on each
outcome z implies the same bound on the marginal expectation. We conclude that the Bayes
rule under the nonparametric prior approximately satisfies the optimality property of the
ODP procedure. By the same arguments we show that thresholding the marginal posterior
probability amounts to controlling the positive FDR (Storey, 2002; Storey and Tibshirani,
2003).

Once we have established the utility function and the probability model leading to the ODP
we can proceed with generalizations in two directions. First, we will consider variations of
the ODP to improve the approximation. We show that the resulting rules lead to small
improvement in inference. More importantly, once we recognize the ODP as a Bayes rule
we can modify the procedure to adapt to variations in the loss function. We provide specific
examples, including a study of exceedance regions of a spatial process and the detection of
neurodegenerative patterns in MRI scans.

DP priors in the context of multiple hypotheses testing have been considered before by
Gopalan and Berry (1993). More recently, Dahl and Newton (2007) have proposed a DP
mixture model (BEMMA) for testing correlated hypotheses and showed that the induced
clustering information leads to an improved testing power. Unrelated to a discussion of
Storey’s ODP, Bogdan et al. (2008) proposed the same semiparametric model we introduce
in section 3 and used it for the comparison of misclassification rates among several
competing models. The distinction between the previous approaches and ours is that here the
DP prior is part of a decision theoretic setup. Besides, both Gopalan and Berry (1993) and
Dahl and Newton (2007) restrict inference to hypotheses concerning the configuration of
ties among the parameters of interest. A Bayesian implementation of the ODP procedure has
been recently considered also by Cao et al. (2009). They develop a parametric Bayes
hierarchical mixture model that achieves shrinkage of the gene-specific sampling variances.
The resulting posterior means are then plugged in the ODP statistic and this is shown to
outperform the original ODP and many widely used competing procedures. The discussion
in Cao et al. (2009) is purely empirical, without reference to a decision theoretic setup.

The format of the paper is as follows. In section 2, we introduce the decision problem and
the resulting Bayes rule. In section 3 we introduce the nonparametric (NP) probability model
and we detail the algorithm for posterior inference. In section 4 we finally discuss the
interpretation of the ODP as an approximate Bayes rule and introduce the corresponding
BDP statistics. In section 5 we compare the behavior of the ODP and the BDP with
simulated data and a microarray dataset. We show that the BDP provides at least some
improvement over the frequentist optimal procedure. In section 6 we discuss some
extensions of the previous settings for multigroup experiments, different loss functions and
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different inferential purposes. In particular, we consider a spatially dependent NP model and
apply the Bayesian multicomparison decision rule to a simplified MRI dataset.

2. The Decision Problem
For a formal definition of the multiple comparison problem we need some notation and
minimal assumptions on the sampling model. Assume that the data are zi | μi ~ f (zi; μi),
independently across i, i = 1,…,m. The competing hypotheses are formalized as

using, for example, A = (−∊+ ∊) or A = {0}. Let G denote the distribution of μi, obtained by
marginalizing over the two competing hypotheses and let π0 denote the prior probability of
the null hypothesis, i.e., π0 ≡ G(A) = p(H0i). Let G(μ | A) ∝ G(μ) I(μ ∈ A) denote G
conditional on A. The model can be written as a mixture prior,

where Ac denote the complement set of A. Alternatively, the model can be defined as a
hierarchical model by means of a latent indicator parameter ri ∈ {0, 1}, which is interpreted
as the (unknown) truth of the i-th comparison.

(4)

We will use z = (z1,…,zm) and θ = (G, ri, μi, i = 1,…,m) to refer generically to the data and
parameters in model (4).

In addition to a probability model, a Bayesian decision theoretic approach is characterized
by a set of actions (decisions) and a loss function corresponding to all possible outcomes of
the experiment. Let di ∈ {0, 1} denote the decision for the i-th hypothesis, with di = 1
indicating a decision against H0i, and let d = (d1,…,dm). To define an optimal rule for di we
introduce a loss function L(d, θ, z). The optimal rule  is defined by minimizing L in
expectation with respect to the posterior model p(θ | z). Formally,

We use a loss function that combines the true positive count, TP = ∑ di ri, and false positive
count, FP = ∑ di(1 − ri),

(5)

The loss (5) can be interpreted as the Lagrangian for maximizing TP subject to a given
bound on FP. It is a multiple comparison equivalent of the loss function underlying the
Neyman-Pearson paradigm for a simple test.

Let vi = E(ri | z) denote the marginal posterior probability for the i-th alternative hypothesis.
It is straightforward to show that the optimal rule under (5) is a threshold on vi,
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(6)

Alternatively, the threshold on vi can be written as a threshold on the posterior odds vi/(1 −
vi). The statement is true for any probability model (subject only to the stated quantities
having meaningful interpretations). Moreover rules based on thresholding the marginal
posterior probability imply control of the frequentist positive FDR (Storey, 2002; Storey and
Tibshirani, 2003):

PROPOSITION 1
Consider m hypothesis tests H0i : μi ∈ A vs H1i : μi ∈ Ac, data z1,…,zm, where zi | μi ~ f (zi;
μi), independently across i, i = 1,…,m, and a prior probability model p(μi | G) = π0 G(μi | A)
+ (1 − π0) G(μi | Ac) for some distribution G and probabilty π0 = p(H0i) = p(ri = 0). Let the

rejection region be determined by (6), i.e. . Let . Then,

PROOF
See appendix.

The only substantial assumption in Proposition 1 is that  is a threshold on the gene-specific
posterior probabilities of differential expression. Bogdan et al. (2008) proved a similar result
for loss functions that are a linear combination of FN and FP counts.

Note that rule (6) is different from rules based on local FDR. Local FDR is defined as the
posterior probability of the null given that we have observed a certain value zi, and given
assumed known sampling models under the null and alternative hypotheses (Efron et al.,
2001). In contrast, vi is defined conditionally on the observed values of z across all tests.
Hence, the local FDR provides a measure of significance local to zi, while vi is a global
measure of significance.

3. A Nonparametric Bayes Decision Rule
3.1. A Semiparametric Bayesian Model

We complete the sampling model (4) with a prior model for G. Prior probability models for
unknown distributions, G in this case, are traditionally known as non-parametric (NP)
Bayesian models. One of the most commonly used NP Bayesian priors is the DP model. We
write G ~ DP (G*,α) to indicate a DP for a random probability measure G. See Ferguson
(1973,1974) for a definition and important properties of the DP model. The model requires
the specification of two parameters, the base measure G* and the total mass parameter α.
The base measure G* is the prior mean, E(G) = G*. The total mass parameter determines,
among other important properties, the variation of the random measure around the prior
mean. Small values of α imply high uncertainty. In the following discussion we exploit two
key properties of the DP. A random measure G with DP prior is a.s. discrete. This allows us
to write G as a mixture of point masses, G = ∑wh δmh. Another important property is the
conjugate nature of the DP prior under random sampling. Assume μi ~ G, i = 1,…,m, are an
i.i.d. sample from a random measure G with DP prior, p(G) = DP(G*, α). Then, the posterior
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probability model is . Here, Fm = 1/m ∑ δμi (·) is
the empirical distribution of the realized μi’s.

We use a DP prior on G to complete model (4)

(7)

Model (7) implies that the prior for the null hypothesis p0 = G(A) is Beta, p0 ~ Be (αG* (A),
α[1 − G* (A)]).

3.2. A semiparametric Bayes Rule for Multiple Testing
Many approaches have been proposed in the literature to implement posterior Monte Carlo
simulation for DP mixture models. See, for example, Neal (2000) for a review. We outline
how these methods can be adapted to compute the posterior probabilities vi.

Let zi, i = 1,⋯,m denote the observed data (or a summary statistic) for test i. We assume

(8)

For example, f (zi; μi) ≡ N (zi; μi, σ), a normal distribution with mean μi and and variance σ2.
We complete the model with a non-parametric prior

(9)

where hA(·) and hAc (·) are distributions with support, respectively, on A and Ac. Equations
(8) and (9) define a DP mixture model where G* itself is a mixture of two terms. Unrelated
to a discussion of the ODP, Bogdan et al. (2008) proposed the same model for multiple
comparison problems. They compare misclassification rates using inference based on pFDR
and FDR.

Algorithms for posterior Monte Carlo simulation in DP process mixture models can easily
be modified to adapt to the mixture in G*. We will focus on the case A = {0} and outline the
necessary changes for general A. We set hA(·) = δ0(·), i.e. a point mass at 0. Also, we choose
hAc(·) to be continuous, e.g. N(0, σ2) and will denote it simply by h(·). The a.s. discrete
nature of a DP random probability measure implies a positive probability for ties in a sample
from G. The ties naturally define a partition of observations into clusters with common
values μj. We introduce latent cluster membership indicators si to describe this partition by si
= sk if μi = μk. We reserve the label si = 1 for the null distribution, i.e. we set si = 1 if and
only if μi = 0. Let z−i and s−i denote the set of observations and the indicators excluding the
i-th one. Also, let L be the number of clusters defined by ties (an unmatched single
observation counts as a singleton cluster), ms be the size of cluster s, and m− i,s be the size of
cluster s without observation i. Finally, let Γs = {i : si = s} denote the s-th cluster, and let

 denote the common value of μi for cluster s. Then, the i-th observation falls in
one of the existing clusters or forms a new cluster according to the following modified Pólya
urn scheme,
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Here,  denotes the posterior distribution of  based on the prior h(·) and all
observations zh, h ∈ Γs/{i}. Note that the posterior of  given all the observations in cluster
1 is still a point mass δ0(·). We described the algorithm for a particular choice of A and G*.
But it can be easily extended to more general A and G*. In the general case, clusters are
formed either by samples from hA(·) or hAc (·). The algorithm is greatly simplified when A is
an interval, hA(μ) ∝ h(μ) IA(μ), hAc (μ) ∝ h(μ) IAc (μ), for some continuous distribution h(μ)
and π0 = G*(A). Then, equations (8) and (9) describe a traditional DP mixture of normals
model with Gaussian base measure G*. The usual Pólya urn scheme for DP mixtures may be
used.

Once we have a posterior Monte Carlo sample of the model parameters it is easy to evaluate
the decision rule. Assume we have B posterior Monte Carlo samples of random partitions,

, b = 1,…,B. We evaluate vi = E(ri | z) numerically as

 We evaluate  by substituting v̄i in (6)

(10)

In the next section we show that SNP can be approximated by a single threshold statistic
similar to (1).

4. The Bayesian Discovery Procedure (BDP)
4.1. The ODP as approximate Bayes Rule

We show that, under a DP prior model, d* ≈ dODP, that is the ODP is an approximate Bayes
Rule. We start by writing the marginal posterior probability as expectation of conditional
posterior probabilities,

and proceed with an approximation of the conditional posterior distribution p(G | z). The
conjugate nature of the DP prior under random sampling implies

. Recall that Fm ∝ ∑ δμ̂i is the empirical distribution of the
maximum likelihood estimates μ̂i. For large m, small α, and an informative sampling model
f(zi; μ), E(G | z) ≈ Fm. Further, for large m, the uncertainty of the posterior DP,

 is negligible, allowing us to approximate the posterior on the
random probability measure G with a degenerate distribution at

. Therefore,
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(11)

The connection with the ODP rule is apparent by computing the posterior odds,

. Finally, thresholding vi/(1− vi) is equivalent to
thresholding

This is (3) with wj = I(μ̂j ∈ A).

Recognizing the ODP as an approximate Bayes rule opens two important directions of
generalization. First, we can sharpen the approximation to define a slightly improved
procedure, at no cost beyond moderate computational effort. We will do this in sections 4.2
and 4.3. Second, we can improve the ODP by making it more relevant to the decision
problem at hand by modifying features of the underlying loss function; we will do this in
Section 6.

4.2. The BDP statistic
We can improve the approximation in (11) by conditioning on a cluster configuration s and
using cluster specific point estimates . Given model (8)–(9), we can approximate the
posterior probability vi by

(12)

The μ̂j are point estimates based on (9). For example, one could use the posterior means μ̂j =
E(μj | z). Short of posterior means, we propose to use a partition s(b) to evaluate cluster-
specific point estimates , using maximum likelihood estimation within each cluster.
The choice of the specific partition s(b) is not critical. Finally, we report test i significant if
SBDP(zi) > t, for some threshold t. Substituting  in (12) the SBDP can be interpreted as a
multiple shrinkage version of the SODP statistic. For later reference we note that thresholding
SBDP is equivalent to thresholding

(13)

By the earlier argument v̂i ≈ vi.
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The nature of the approximation (12) is further clarified and formalized by the following
result, which justifies the replacement of μi by the cluster specific mle’s . Proving
asymptotic results of this kind for the DP is generally not easy. One has to establish that the
posterior mass for the random G is concentrated on a set of RPM’s with a small number of
discontinuities relative to m. See, for example, Arratia et al. (2003) and Coram and Lalley
(2006) for recent discussions. In particular, Coram and Lalley (2006) address the problem
from the perspective of “overfitting” for NP Bayes procedures. They conjecture that in a
variety of problems, the critical determinant of the consistency of Bayes procedures are the
rate functions in associated large deviations problems. We avoid the technical difficulties by
proving the result for a finite dimensional Dirichlet prior, that is a random probability
measure Gk such that

(14)

with (p1,…,pk) ~ D(α/k,…,α/k), and  as in (9). Inference under the DP prior and (14)
is comparable, since any integrable functional of the Dirichlet Process can be approximated
by corresponding functionals of Gk for sufficiently large k (see Iswharan and Zarepour,
2002). Also Rodriguez et al. (2009) discuss the approximation of inference under a DP prior
by results under Gk.

THEOREM 2—Assume , i = 1,…,m and a random effects distribution p(μi |
Gk) = Gk as in (9), with Gk defined in (14). Assume f, hA(·), and hAc (·) satisfy the conditions
for the Laplace approximation for an open set A (see Schervish, 1995, chapter 7.4.3). Then

The expectation is with respect to the posterior distribution over all possible partitions of
{1,…,m} with at most k clusters and  is the cluster-specific m.l.e.

PROOF—See appendix.

4.3. Multigroup comparisons
The definition of the BDP can easily be extended to the general k samples comparison
problem. We assume that data for experimental units i, i = 1,…,m, are arranged by k distinct
groups, and we wish to test if the k groups share a common sampling model. Let xi = {xi1,
…,xin} be a vector of measurements across k experimental conditions, i = 1,…,m. We denote
the subset of data from each condition by . Alternatively, data in
each group may be reduced to statistics , and we can write z = {z1,…,zm},

, with similar notation for μ and μi. For notational simplicity, we proceed with
the case k = 2. But the arguments hold for general k. The competing hypothesis are

 against . Typically . Under the loss (5) and the NP
model
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we can proceed as in section 2.3 and approximate the posterior odds for the i-th comparison
by

(15)

where  and μ̂i are appropriate estimates of the relevant parameters within and across
conditions. Expression (15) is an estimated ODP statistics for the multicomparison problem,
as discussed in Storey et al. (2007b). As before, substituting cluster-specific estimates  for
a selected partition s defines the corresponding BDP rule.

5. Comparison of SODP versus SBDP

5.1. A Simulation Study
We conduct a simulation study to compare the ODP with the NP Bayesian approximation
outlined in the previous sections. We assume m = 2000 tests of H0 : μi = 0 versus H1 : μ ≠ 0
based on a single observation zi ~ N(μi, 1) for each test. The simulation truth is such that half
of the observations are drawn from the null, while the other half are sampled from the
following probability distribution:

μi −4 −3 −2 −1.5 1.2 2 3 4.5 5.8

pi 0.02 0.08 0.01 0.01 0.27 0.02 0.08 0.005 0.005

The distribution mimicks the observed distribution of the t-scores in the microarray data
example considered in section 5.2, as shown in Figure 1. We use A = {0}, and hAc (·) = N (0,
1). We simulated 1000 datasets. For each simulated data set we ran 2000 iterations of a
posterior MCMC sampler (with 1000 iterations burn in). The results confirm the obervation
in Storey et al. (2007b) that the SODP outperforms the UMP unbiased procedure in all cases
where the alternative means are not arranged in a perfectly symmetric fashion around zero.
The SBDP further improves on the SODP by borrowing strength across comparisons with the
multiple shrinkage induced by the DP clustering. Figure 2 shows that for any threshold of
expected FP, the expected TP is comparable and slightly better under the SBDP than under
the SODP. Expectations are over repeated simulations, i.e., the comparison is by the criterion
that is being optimized by the oracle version (1) of the ODP. The curves for the SBDP are
computed with a random (last) configuration; the true BDP curve refers to the BDP statistics
computed based on the (known) true configuration. The differences in Figure 2 are small.
However, for many applications with massive multiple comparisons the number of
comparisons is much larger, leading to correspondingly larger differences in true positives.
Most importantly, the improvements come at no additional experimental cost.
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We also considered a similar comparison using (12) with posterior means substituted for μ̂i,
and using A = (−ε, ε), for several (small) values of ε, instead of the point null. The plot (not
shown) of expected TP versus FP showed no substantial differences to Figure 2.

5.2. A Microarray Data Example
We first compare the ŜODP versus the SBDP test by analyzing a microarray dataset obtained
from breast cancer tumor tissues. The data have been analyzed, among others, in Hedenfalk
et al (2001), Storey and Tibshirani (2003) and Storey et al. (2007b) and can be downloaded
from http://research.nhgri.nih.gov/microarray/NEJM_Supplement/. The data consist of
3,226 gene expression measurements on n1 = 7 BRCA1 arrays and n2 = 8 BRCA2 arrays (a
third “sporadic” group was not used for this analysis). Following Storey and Tibshirani
(2003), genes with one or more measurement exceeding 20 were eliminated from the data
set, leaving m = 3, 169 genes.

Let xij be the log2 expression measurement for gene i on array j, i = 1,…,m, j = 1,…,n. For
illustration purposes, we test differential expression between BRCA1 and BRCA2 mutation

genes using the two samples t statistics , where x̄i,k and  are
respectively the sample mean and sample variance for gene i with respect to the arrays in
group k, k = 1, 2. We assume model (8) and (9) with f(zi; μi) = N(μi, σ) and test H0i : μi = 0.
For simplicity, we fix σ = 1. A model extension with a prior on unknown σ is
straightforward. The results remain almost unchanged (not shown).

We assess the relative performance of the estimated ŜODP versus approximation (12) of the
NP Bayes rule. For a fair comparison, we evaluate the SBDP as a frequentist rule with
rejection region {SBDP ≥ c}. The power of the test is evaluated in terms of the FDR and the
q-value. See Storey (2002) and Storey et al. (2007b) for more discussion of the q-value and
its evaluation.

The evaluation of SBDP is based on 2000 iterations of a posterior MCMC sampler (1000
burn in). The number of significant genes detected at each q-value is shown in Figure 3. We
report the SBDP as computed on the basis of the cluster configuration of a single iteration of
the MCMC sampling scheme. We use the partition from a random iteration and from MAP
(maximum a posteriori) partition. Other choices are possible. However, our experience does
not suggest significantly different conclusions using alternative choices. In Figure 3 we see
that in both cases the SBDP achieves larger numbers of significant genes at the same q-value
than the SODP. The result leads us to recommend the SBDP as a useful tool in
multicomparison problems where a natural clustering of the tests is expected. In Table 1, we
report the percentage of genes that are flagged by both tests for some choices of q-values.
For most q-values of practical interest the SBDP procedure identifies all genes that were
flagged by the SODP, plus additional discoveries. For example, at q = 0.05, the BDP reveals
98 significant genes, against 87 revealed by the ODP and 47 by the standard FDR procedure
devised by Benjamini and Hochberg (1995). Out of the 11 additional genes, 7 had been
previously reported in the literature as significant in distinguishing BRCA1 and BRCA2
mutations (see Hedenfalk et al. 2001). The additionally identified genes come at no extra
cost beyond moderate computational effort. No additional experimental effort is required,
and no trade off in error rates is involved.

For an alternative comparison we consider the “Golden Spike” data of Choe et al. (2005).
They describe an Affymetrix GeneChip experiment, where 1309 individual cRNAs have
been “spiked in” at known relative concentrations between the two samples (spike-in and
control). We implemented the BDP and ODP as described above. For comparison, we also
include alternative comparisons using the SAM procedure (Tusher et al., 2001; Storey,
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2002) and independent two-sample t-tests. We used the reduced Golden Spike dataset
provided in the R package st. The dataset reports 11,475 genes with 3 replicates per group,
including 1,331 genes with known differential expression. Figure 4 shows the results of a
comparison of BDP, ODP, SAM and independent t-tests. To compute the SAM statistic we
used the samr package in R and alternatively the SAM software from
http://www-stat.stanford.edu/~tibs/SAM/. Both implementations give practically identical
results.

Both comparisons, in Figures 3 and 5, are for the ODP and BDP test based on data with a
single gene-specific summary statistic zi per gene. The restriction to a single summary
statistic in the definition of ODP and BDP was purely for presentation, and can easily be
relaxed. Let xijk denote the expression measurement for gene i, sample j and condition k. For
simplicity, we still assume only two conditions. Group k = 0 is assumed to be a control/

reference group. Let  be the gene specific mean of the observations in group
0. We define zijk = xijk − μ ̂i0, k = 0, 1, and assume , with μi0 ≡ 0. The
hypothesis testing problem becomes:

Similar to before we define a random effects distribution G for  and assume a NP
Bayesian prior on G,

(16)

For the DP base measure we use a conjugate normal-inverse χ2 distribution

. We can then proceed as in section
4.3 to define the ODP and BDP statistic, respectively. Figure 6 summarizes the results.

6. Extensions of the ODP and BDP
6.1. Weighted Loss Functions

Once the optimality criterion and the probability model that lead to the ODP are identified, it
is easy to modify the procedure to better accomodate preferences and losses other than (5).
Often some discoveries might be considered more important than others. For example if A =
{μi = 0} one might be more interested in large deviations from 0. In this case the loss
function should include an explicit reward for detecting true signals as a function of some
(monotone) function of μi. Scott and Berger (2003) describe a decision theoretic approach
based on separate loss functions for false positives and false negatives. Similarly, we
consider the following loss function,

(17)

where t(μi) is a known function of the mean, e.g. t(μi) = ||μi||, ||·|| being some norm of μi. Let

. The posterior expected loss is . The
Bayes rule is easily shown to be
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(18)

for some threshold t. Although the nature of the rule has changed, we can still proceed as
before and define a modified SODP statistics that approximates the Bayes rule. Let

 be an empirical Bayes estimate of , justified
similarly to the approximation in (11). As before the point estimates μ̂i are cluster-specific
m.l.e.’s  for some partition s. By an argument similar to before we can justify the
following single thresholding statistic as an approximation of (18):

(19)

We use  as a single thresholding function for the multiple comparison test in lieu of
the SODP.

Any loss function that is written as a sum of comparison-specific terms leads to similar
approximations and modifications of the ODP. For example, consider a loss function that
involves a stylized description of a follow-up experiment. The loss function is motivated by
the following scenario. Many microarray group comparison experiments are carried out as a
screening experiment. Genes that are flagged in the microarray experiment are chosen for a
follow-up experiment to verify the possible discovery with an alternative experimental
platform. For example, Abruzzo et al. (2005) describe a setup where RT-PCR (reverse
transcription polymerase chain reaction) experiments are carried out to confirm discoveries
proposed by an initial microarray group comparison. Abruzzo et al. (2005) report specific
values for correlations across the platforms, error variances etc. On the basis of this setup
Müller et al. (2007) consider a loss function that formalizes the consequences of this follow-
up experiment. The loss function includes a sampling cost for the RT-PCR experiment and a
reward that is realized if the RT-PCR experiment concludes with a significant outcome. The
sample size is determined by a traditional power argument for a two-sample comparison,
assuming a simple z-test for the difference of two population means. The probability of a
significant outcome is the posterior predictive probability of the test statistic in the follow-up
experiment falling in the rejection region. Let (μ̄i, si) denote the posterior mean and standard
deviation of the difference in mean expression for gene i between the two experimental
groups. Let ρ̄, ρ*, pρ denote known parameters of the joint distribution of the microarray
gene expression and the outcome of the RT-PCR experiment for the same gene. Details of
the sampling model (see Müller et al., 2007) are not required for the following argument.
Finally, let qα define the (1 − α) quantile of a standard normal distribution. For a given
signficance level α and a desired power (1 − β) at the alternative , we find a
minimum sample size for the follow up experiment

Let Φ(z) denote the standard normal c.d.f. The posterior predictive probability for a
significant outcome of the follow-up experiment is approximately
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We formalize the goal of maximizing the probability of success for the follow-up
experiment while controlling the sampling cost by the loss function

Here c2 is a fixed cost per gene for setting up a follow-up experiment, c1 is the (large)
reward for a significant outcome in the follow-up experiment, and c3 ≡ 1 is the sampling
cost per gene and experiment. The Bayes rule is . As before we can use

 and
approximate the Bayes rule by a modified ODP style statistic. Let π̂i and n̂i denote πi and ni

evaluated with the approximations for μ̄i and . We consider the modified ODP threshold
statistic

Figure 6 compares the exact Bayes rules (18) and  with the tests based
on the approximate ODP statistic  and , respectively.

6.2. Spatial Dependence
The nature of the ODP as an approximate Bayes rule was based on the semi-parametric
model (7). However, the Bayes rules (6) or (18) remain meaningful under any probability
model, as long as vi and  have meaningful interpretations. For example, in geostatistical
applications, we may be interested in isolating the exceedance regions of a spatial process,
i.e. where the process has values above a given threshold (Zhang et al., 2008). Similarly, in
the analysis of fMRI data, we aim to detect region specific activations of the brain. See
Pacifico et al. (2004) and Flandin and Penny (2007) for two recent Bayesian solutions to the
problem. In particular, Friston and Penny (2003) propose an empirical Bayes approach to
build posterior probability maps of site specific signals. These approaches do not make use
of an explicitely defined optimality criterion to support the proposed decision rules.

We consider a variation of the ODP that is suitable for spatial inference problems, using a
specific spatial probability model as an example. We use the spatial model proposed by
Gelfand et al. (2005). Let {Y (s), s ∈ D} be a random field, where D ⊂ Rd, d ≥ 2. Let s(n) =
(s1,…,sn) be the specific distinct locations in D where observations are collected. Assume
that we have replicate observations at each location so that the full data set consists of the
collection of vectors Yi = {Yi(s1),…,Yi(sn)}T, i = 1,…,m. We assume

(20)
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where f is some multivariate distribution, μ is a (not necessarily constant across s) regressive
term and θi = {θi(s1),…,θi(sn)}T is a spatial random effect, such that

(21)

for some base measure G0. See Gelfand et al. (2005) for details. The assumption of the DP
prior in the model is unrelated to the DP that we used to justify the nature of the ODP as
approximate Bayes rule. In this setting, the inferential problem might be quite general, as it
may involve subsets of sites and replicates.

For simplicity, we consider a null hypothesis specific to each location s and replicate i: H0si:
θi ∈ Asi, Asi = {θi(s) > b}. For a fixed replicate i, let dj = d(sj) be the decision at site sj, j = 1,
…,n. Analogously, let rj = r(sj) denote the unknown truth at sj. We could now proceed as
before and consider the loss (5) and the rule, , where vj is the posterior probability
of the event A under the chosen probability model. For m sufficiently large and under model
(20)–(21), it is possible to use the asymptotic arguments detailed in section 4 and define a
BDP statistics for the spatial testing problem.

The loss function (5) is usually not an adequate representation of the investigator’s
preferences in a spatial setting. Posterior probability maps may show very irregular patterns
that could lead to, for example, flagging very irregular sets of pixels for exceedance θi(s) >
b. We may explicitly include into the loss function a penalty for such irregularities, i.e.

(22)

where PI is a penalization for irregularities. For example, PI could be the number of
connected regions. See the example below. The decision rule corresponding to (22) is

Finding d* requires numerical optimization.

We illustrate the approach with a dataset of 18 individuals who underwent an MRI scan to
detect signals of neurodegenerative patterns typical of the Alzheimer’s disease (Ashburner et
al., 2003). The data have been provided by the Laboratory of Epidemiology and
Neuroimaging, IRCSS, Centro San Giovanni di Dio, Brescia, Italy and have been previously
normalized with the freely available SPM5 sowftare (http://www.fil.ion.ucl.ac.uk/spm/, see
Friston et al. (1995) and Worsley and Friston (1995)). For simplicity, the dataset is restricted
to gray density matter intensity values collected on a regular two-dimensional grid of 14 ×
19 pixels encompassing the hippocampus and are treated as continuous. The data have been
analyzed in Petrone et al. (2009) before, although with a different inferential aim.

We assume the random effect model (20)–(21), where f is a multivariate gaussian, with
mean μ + θ and covariance matrix τ2In. The base measure G0 is a zero-mean stationary
Gaussian process with variance σ2 and correlation ρ(s, s′) = exp(−φ||s − s′||), for some range
parameter φ. Vague inverse gamma prior distributions on τ2 and σ2, and a vague gamma
prior for φ complete the model. Hence, (20)–(21) defines a DP mixture of spatial processes
(Gelfand et al., 2005). The model is sufficiently flexible to account for most of the spatial
dependence observed in each individual. However, it is known that one of the marks of the

Guindani et al. Page 15

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fil.ion.ucl.ac.uk/spm/


Alzheimer’s disease is local hippocampal atrophy. Low grey matter intensity observed in
normal neuroanatomical structures of the brain should not be reported as a signal. This
consideration may lead to introduce several kinds of penalties into (22) to penalize for
detections in non-interesting regions. Local atrophy is a condition that typically affects
clusters of sites at the same time. This leads us to consider a penalty PI for the number of
isolated signals on D. Specifically, PI is the number of interconnected regions and isolated
points for which di(s) = 1. We use a numerical procedures to explore the action space and
minimize (22). We find the optimal decision d* by a random search, initialized with the
optimal rule under γ = 0.

Figure 7 shows the resulting optimal rule for one individual in the MRI dataset. We are
interested in detecting regions of low gray matter intensity in the MRI scans. Hence we
consider A = {θ(s) < b}, where b is a fixed constant, corresponding to the first decile of the
dataset. The activation threshold for the posterior probability is t = 0.8. Figure 7 shows the
activation map for an individual with recognizable signs of hypoccampal atrophy for γ = 0

(panel (a)) and for  (panel (b)). The additional penalty term provided a principled and
coherent means of removing the singleton clusters that would otherwise be reported.

7. Conclusions and Summary
Starting from a decision theoretic framework, we provided an interpretation of the ODP as
an approximate Bayes rule and introduced two directions of generalizations. First we
improved the rule by sharpening the approximation. In a simulation example and a data
analysis example we showed improved performance of the resulting BDP rule, even by the
frequentist operating characteristics that are optimized by the oracle version of the ODP.
Second, we considered generalizations of the ODP by replacing the original generic loss
function by loss functions that better reflect the goals of the specific analysis. For loss
functions with similar additive structure as the original loss function the resulting rule can
still be approximated by a single thresholding statistic similar to the ODP.

The use of a decision theoretic framework provides a convenient assurance of coherent
inference for the proposed approach. However, it also inherits the limitations of any decision
theoretic procedure. The optimality is always with respect to an assumed probability model
and loss function. The stated loss function is usually a stylized version of the actual
inference goals. Often that is sufficient to obtain a reasonable rule. But we still caution to
critically validate and if necessary revise the inference in the light of evaluations such as
frequentist operating characteristics. Also, the proposed methods are more computation
intensive than the original ODP procedure. In the simplest case we require some additional
simulation to find a clustering of comparisons to compute cluster-specific m.l.e.’s.

The main strengths of the proposed approach are the generality and the assurance of
coherent inference. The approach is general in the sense that the proposed methods are
meaningful for any underlying probability model, and in principle for arbitrary loss
functions. The approach is coherent in the sense that it derives from minimizing expected
loss under a well defined probability model. From a data analysis perspective, an important
strength of the proposed approach is the need and the opportunity to explicitely think about
the inference goals and formalize them in the loss function. A practical strength is the
opportunity for improved inference at no additional experimental cost, and only moderate
additional computational cost.
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Appendix

Proof of Preposition 1
The proof follows closely the proof of Theorem 1 in Storey and Tibshirani (2003). First,
rewrite

(23)

The expectation is with respect to the distribution of (z1,…,zm), conditionally on the event
that some of the comparisons are significant. Hence,

Since di is a function of the sample z1,…,zm, the inner expectation is just

and since ,

Proof of Theorem 2
Because of the exchangeability of samples from a Pólya Urn, without loss of generality, we
may consider vm = p(rm = 1|z1,…,zm). First, note that

Both numerator and denominator take the form of
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for a Borel set B. Let so(m) be a vector of cluster indicators, that is , i = 1,…,m,
j = 1,…,k.

For any fixed m, let {so(m)} denote the set of all partitions of {1,…,m} into at most k
clusters. From the discussions in Ferguson (1983), Lo (1984), Ishwaran and James (2003), it
follows that

(24)

where  is the number of elements in cluster j. If
. Expression (24) highlights that any partition of {1,

…,m} can be obtained from a corresponding partition of {1,…,m−1} by adding the m-th
observation to any of the previous cluster or by forming a new one.

Now, note that for each j = 1,…,k, either . If

, we can use Laplace approximation arguments (see
Schervish, 1995, chapter 7.4.3 or Ghosh et al., 2006, pag. 115) to obtain

where  is the MLE estimate computed in cluster j, j = 1,…k, obtained by solving

 and Φ(·) denotes a standard gaussian probability
distribution.

Next we relabel the non-empty clusters by identifying the set  as the set of unique
values .

The proof is completed after noting that, since , and because of the asymptotic
consistency of posterior distributions, as m → ∞, Φ(μ̂j ∈ B) → IB(μ̂j).
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Fig. 1.
The scores zi for the simulation example in 5.1 (left panel) and the the data zi for the BRCA
mutation microarray data in section 5.2 (right panel).
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Fig. 2.
ETP = E(TP) versus EFP = E(TP) for ŜODP and SBDP. BDP(r) refers to SBDP computed for a
random configuration (we use the last configuration in the MCMC simulation). TrueBDP
refers to the BDP statistics computed on the basis of the simulation truth. The three curves
are almost undistinguishable. See 5.1 for details.
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Fig. 3.
A comparison of SBDP and SODP for identifying differentially expressed genes (see section
5.2). The BDP(h) curve is is based on the MAP configuration; BDP(r) refers to SBDP
computed under the (random) last configuration imputed in the MCMC simulation.
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Fig. 4.
Golden Spike data. A comparison of SBDP, SODP, SAM and independent two-sample t-tests.
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Fig. 5.
Hedenfalk data: Comparison of SBDP, SODP and SAM under model (16).
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Fig. 6.
Expected loss under the exact Bayes rules dm* (left panel) and dp* (right panel) plotted
against the cutoff t (solid lines). The dashed lines show the expected loss under the ODP
rules based on  (left panel) and  (right panel).
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Fig. 7.
The effect of a loss function disfavoring isolated signals on the decisions taken according to
loss (5). See 6.2 for details.
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Table 1

The intersection between the decisions with the ODP and the BDP procedures.

q-value ODP BDP BDP⋂ODP

0.05 87 98 100%

0.06 124 148 100%

0.07 163 176 100%

0.08 202 217 100%

0.09 234 241 99.5%

0.10 272 270 98.14%

0.11 293 298 98.63%

0.12 318 341 98.11%
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