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ability to increase their megakaryocyte mass in response to 
consumptive thrombocytopenia, compared to adult mice. 
These observations provide further evidence for the exis-
tence of biological differences between fetal/neonatal and 
adult megakaryocytopoiesis.  Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Thrombocytopenia is a common hematological prob-
lem among sick neonates, affecting 22–30% of all infants 
admitted to neonatal intensive care units  [1, 2] . Despite 
the high prevalence of neonatal thrombocytopenia, our 
understanding of the mechanisms underlying most cases 
has been significantly hampered by a number of factors, 
including the limited availability of bone marrow speci-
mens from living preterm and term neonates, the relative 
rarity and fragility of megakaryocytes in the fetal mar-
row, and the lack of animal models. 

  Several studies, most of them evaluating cultured 
megakaryocytes in vitro, have reported significant dif-
ferences between neonatal and adult megakaryocytopoi-
esis. It has recently been suggested that these differences 
may predispose sick neonates to develop severe and pro-
longed thrombocytopenia. Specifically, megakaryocytes 
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 Abstract 
  Background:  Sick neonates frequently develop severe 
thrombocytopenia.  Objective and Methods:  In order to
test the ability of fetal mice to increase their megakaryocyte 
size and ploidy in response to thrombocytopenia, we inject-
ed an antiplatelet antibody (MWReg30) into pregnant mice 
daily for 7 days, and into nonpregnant adult mice to serve as 
controls. After that time, platelet counts were obtained and 
megakaryocytes in the bone marrow, liver, and spleen were 
stained with anti-von Willebrand factor antibody, individu-
ally measured, and quantified.  Results:  Our study demon-
strated that megakaryocytopoiesis in newborn mice shares 
many features of human fetal/neonatal megakaryocytopoi-
esis, including the small size of megakaryocytes. In response 
to thrombocytopenia, adult mice increased megakaryocyte 
volume and concentration, primarily in the spleen. Newborn 
mice, in contrast, increased the megakaryocyte concentra-
tion in the spleen, but exhibited no increase in megakaryo-
cyte volume in any of the organs studied. In fact, the mega-
karyocyte mass was significantly lower in the bone marrow 
of thrombocytopenic neonates than in age-matched con-
trols.  Conclusions:  We concluded that fetuses have a limited 
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isolated from fetal liver, fetal bone marrow, or cord blood 
are significantly smaller and have lower ploidy levels than 
those found in adult bone marrow  [3–6] . Since larger 
megakaryocytes generate more platelets than smaller 
megakaryocytes  [7] , it has been assumed that neonatal 
megakaryocytes produce fewer platelets than adult mega-
karyocytes. Furthermore, it has been suggested that the 
normal platelet counts found in healthy fetuses and neo-
nates are maintained by the increased proliferative rate of 
fetal megakaryocyte progenitors  [8, 9] . 

  In adults, increased platelet consumption triggers a 
compensatory response in megakaryocytopoiesis, char-
acterized by an increase in megakaryocyte size and ploi-
dy, followed by an increase in megakaryocyte number. 
These changes, thought to be mostly mediated by elevat-
ed concentrations of thrombopoietin (Tpo), ultimately 
result in a 2- to 8-fold increase in total megakaryocyte 
mass and a corresponding increase in platelet production 
 [10, 11] . It is unknown, however, whether neonates are 
capable of similarly increasing their megakaryocyte mass 
in response to platelet consumption, or whether the small 
size and low ploidy of their megakaryocytes represent a 
developmental limitation in their ability to adequately in-
crease platelet production. To answer this question, we 
recently evaluated megakaryocyte size in bone marrow 
specimens from human neonates with and without 
thrombocytopenia, and found no differences between 
thrombocytopenic and nonthrombocytopenic neonates. 
In contrast, a group of adult patients with immune throm-
bocytopenic purpura exhibited a significant increase in 
megakaryocyte size compared to their nonthrombocyto-
penic counterparts  [12] . However, the causes of thrombo-
cytopenia were highly diverse among the neonatal sub-
jects, and it remained unclear whether the differences be-
tween neonates and adults reflected a true developmental 
limitation, or whether they were rather explained by the 
different disease processes underlying neonatal and adult 
thrombocytopenia. 

  To answer this question, we developed a mouse model 
of fetal/neonatal immune thrombocytopenic purpura. 
Among the several methods that have been used to gener-
ate immune thrombocytopenic purpura in adult mice 
 [13–15] , one of the most widely used induces thrombocy-
topenia by injecting a platelet-specific anti-CD41a anti-
body (MWReg30). Since MWReg30 is an IgG1 antibody, 
and IgG1 immunoglobulins are known to be particularly 
effective in crossing the placenta, we induced fetal im-
mune thrombocytopenia by injecting this antibody into 
pregnant mice. We then evaluated platelet counts, mega-
karyocyte size, and megakaryocyte number in the affect-

ed newborn pups, as well as in adult mice with similar 
degrees of thrombocytopenia induced by the same anti-
body. Concordant with our observations in humans, 
these studies demonstrated that fetal mice do not increase 
their megakaryocyte volume in response to increased 
platelet demand.

  Materials and Methods 

 Animals 
 C57BL/6 mice weighing 20–25 g were purchased from Harlan 

(Indianapolis, Ind., USA), and timed matings were performed as 
needed. These studies were approved by the University of Florida 
Institutional Animal Care and Use Committee.

  Antibodies 
 Rat anti-mouse platelet monoclonal antibody (MWReg30, 

IgG1) was obtained from BD Biosciences (San Diego, Calif., USA). 
Polyclonal rabbit anti-human von Willebrand Factor (vWF; Code 
No. A 0082) was purchased from DakoCytomation (Denmark). 
For immunohistochemistry, we used the VECTASTAIN Elite 
ABC Kit (Vector, Burlingame, Calif., USA).

  Induction of Thrombocytopenia 
 Fetal thrombocytopenia was induced by injecting MWReg30 

antibody (BD Biosciences) into pregnant mice daily, starting on 
gestation day E12.5 until the time of delivery (E19.5 for most lit-
ters). After anesthesia with isofluorane, pregnant mice under-
went tail vein injections of MWReg30 (0.5  � g/g body weight, to 
account for the high volume of distribution of pregnant mice) di-
luted in 100  � l PBS plus 1.5 mg/ml albumin. To generate adult 
thrombocytopenic mice, 2-month-old mice were subcutaneously 
injected with MWReg30 (0.18  � g/g) daily for 7 days. Controls 
were generated by injecting pregnant and nonpregnant mice with 
100  � l PBS + 1.5 mg/ml albumin (carrier).

  Analysis of Platelet Counts 
 Following 7 days of treatment with MWReg30, 50  � l of blood 

were obtained from thrombocytopenic and control adult mice by 
retroorbital bleeding, using heparinized Natelson blood-collect-
ing tubes (Fisher Scientific, Pittsburgh, Pa., USA). Anesthetized 
newborn pups underwent intracardiac puncture the day after de-
livery. Approximately 20  � l of blood were drawn from each pup 
using Monoject 29G  !  0.5-ml syringes (Tyco Healthcare Group 
LP, Mansfield, Mass., USA) coated with 20  � l of anticoagulant 
citrate dextrose solution (Baxter Healthcorp, Deerfield, Ill., USA). 
Complete blood counts were obtained on an automated cell coun-
ter (Becton-Dickinson AcT10-Diff with veterinary card). 

  Histology and Immunohistochemistry 
 Bones, spleens and livers from thrombocytopenic and control 

adult and newborn pups were fixed overnight in 4% paraformal-
dehyde. The tissues were then embedded in paraffin, cut into 5-
 � m sections, and attached to Bond-rite slides. Slides were treated 
with 3% hydrogen peroxide for 10 min to quench endogenous per-
oxidase activity, and incubated with 10% normal horse serum to 
block nonspecific antibody binding. Endogenous biotin binding 
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was blocked using an avidin/biotin blocking kit. A rabbit anti-hu-
man vWF antibody known to crossreact with murine vWF (Code 
No. A 0082, DakoCytomation, Denmark) was used as the pri-
mary antibody to immunohistochemically stain megakaryo-
cytes. A biotinylated horse anti-rabbit antibody was used as the 
secondary antibody, and color development was achieved with 
diaminobenzidinesubstrate following the Vector Elite ABC kit 
protocols (Vector). 

  Evaluation of Megakaryocytopoiesis 
 Megakaryocytes, identified by immunohistochemical stain-

ing with vWF in conjunction with morphological features, were 
quantified in all organs using an eyepiece reticle (250  � m 2  per 9 
small squares at 400 ! ; Klarmann Rulings Inc., Litchfield, N.H., 
USA), as we have previously described  [12] . The megakaryocyte 
concentration was then expressed as megakaryocytes per 250 
 � m 2  of liver, spleen, or bone marrow. To evaluate megakaryocyte 
size, the X and Y axis diameters of either 50 or all megakaryocytes 
in each slide (whichever came first) were measured using an eye-
piece microruler (100- � m ruler at 400 ! , Klarmann Rulings Inc.). 
The mean diameter of each megakaryocyte was derived from its 
X and Y axis measurements. Assuming a spheroidal shape of 
megakaryocytes, we then calculated the mean megakaryocyte 
volume from the diameter measurements, using the following 
formula: volume =  �  (diameter)3/6. The product of the mega-
karyocyte concentration and mean megakaryocyte volume of 
each slide was calculated to determine a mathematical estimate of 
the organ-specific megakaryocyte mass, as previously described 
 [10, 11] . 

  Megakaryocyte Colony Assays 
 To assess megakaryocyte progenitor numbers in this model of 

immune thrombocytopenia, murine megakaryocyte colony as-
says were performed using MegaCult-C culture media (StemCell 
Technologies, Vancouver, B.C., Canada). Briefly, adult bone mar-
row cells were flushed from tibiae and femora, and newborn liver 
cells were disaggregated and brought to a single cell suspension 
by passing the tissue through serially smaller needles. Nucleated 
cells were then separated by Ficoll-Paque centrifugation and cul-
tured at a concentration of 1  !  10 5  nucleated cells per chamber 
slide in Iscove’s Modified Dulbecco’s Medium supplemented with 
1% BSA, 10  � g/ml recombinant human insulin, 200  � g/ml hu-
man transferrin, 2 m M   L -glutamine, 10 –4   M  2-mercaptoethanol, 
50 ng/ml recombinant human thrombopoietin, and 10 ng/ml re-
combinant murine IL-3. After 8 days of culture, the slides were 
dehydrated, fixed with acetone, and evaluated using acetylcholin-
esterase staining. Colonies were scored using an Olympus BX40 
microscope under a 10 !  objective. CFU-megakaryocytes were 
defined as pure megakaryocytic colonies containing more than 
50 megakaryocytes per colony, mixed megakaryocytic colonies 
contained nonmegakaryocytic and megakaryocytic cells in the 
same cluster, and granulocyte/macrophage colonies ( 1 30 cells) 
did not contain megakaryocytes.

  Statistical Analysis 
 Results were expressed as mean  8  SEM, except when indi-

cated. The significance of the differences between the two groups 
was investigated using Student’s t tests. Level of significance was 
set at p  !  0.05.

  Results 

 Platelets and Megakaryocytes in Normal Newborn 
and Adult Mice 
 First, we sought to establish the normal platelet count 

ranges for newborn and adult C57BL/6 mice. Platelet 
counts were significantly lower in healthy 1-day-old mice 
than in 2-month-old mice (mean  8  SD: 710  8  148  !  
10 6 /ml vs. 1,342  8  186  !  10 6 /ml; p   !   0.001) ( fig. 1 ). 
Thrombocytopenia was therefore defined as a platelet 
count less than two standard deviations below the age-
appropriate mean ( ! 415  !  10 6 /ml in newborn pups and 
 ! 970  !  10 6 /ml in adult mice).

  To determine whether C57BL/6 mice exhibited devel-
opmental differences in megakaryocytopoiesis compa-
rable to those described in humans (and were therefore 
an adequate model for this study), we then evaluated 
megakaryocyte concentration and size in the bone mar-
row, liver, and spleen of normal newborn and adult mice 
 [16] . As shown in  table 1 , the liver was the main site of 
megakaryocytopoiesis in the healthy newborn mouse 
(similarly to an early second-trimester human fetus  [17, 
18] ), while the bone marrow had the highest megakaryo-
cyte concentration in the adult mouse. Indeed, the bones 
in the newborn mice were largely cartilaginous, and the 
marrow space was not yet completely formed. Megakary-
ocytes were present in the spleen of newborn and adult 
mice, but in lower concentrations than in the liver or 
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  Fig. 1.  Platelet counts in newborn and adult mice. One-day-old 
healthy neonates had significantly lower platelet counts than 
healthy adult mice. Control mice received daily injections of the 
antibody vehicle and had platelet counts similar to those of un-
treated age-matched animals. Mice rendered thrombocytopenic 
by daily injections of MWReg30 had platelet counts that were sig-
nificantly lower than age-matched placebo controls. Data are 
shown as means  8  SE  M. ** p  !  0.001 vs. placebo control. 
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bone marrow, respectively. No megakaryocytes were 
identified in the adult liver. As in humans, megakaryo-
cytes were significantly smaller in newborn than in adult 
mice (p  !  0.001) ( fig. 2 ).

  Determining the Effects of the Anti-Platelet Antibody 
on Platelet Counts and Megakaryocytopoiesis 
 After administration of antiplatelet antibody for 7 

consecutive days, the mean platelet counts in newborn 
and adult mice were 30–40% of the normal means for age 
(287  8  27  !  10 6 /ml for neonates, n = 12; 452  8  98  !  
10 6 /ml for adults; n = 8) ( fig. 1 ). However, the responses 
to thrombocytopenia varied depending on the develop-

mental stage (newborn vs. adult) and the hematopoietic 
organ studied. Specifically, when thrombocytopenic 
newborn mice were compared to age-matched controls, 
the megakaryocyte concentration did not change signifi-
cantly in the neonatal liver (1.6  8  0.1 vs. 1.9  8  0.1, p = 
0.21), but decreased in the bone marrow (0.2  8  0.04 vs. 
0.5  8  0.1, p = 0.02) and increased in the spleen (0.69  8  
0.10 vs. 0.37  8  0.08, p = 0.04) ( fig. 3 a). Adult thrombocy-
topenic mice also had a higher megakaryocyte concen-
tration in the spleen compared to controls (1.04  8  0.15 
vs. 0.68  8  0.11, p = 0.01), but exhibited no significant 
change in the bone marrow (8.74  8  0.59 vs. 8.33  8  0.70, 
p = 0.67) ( fig. 3 d).

Table 1. Megakaryocyte (Mk) concentration, diameter and volume in normal neonatal and adult mice

Newborn mice (n = 34) Adult mice (n = 22)

concentration
Mk/250 �m2

diameter
�m

volume concentration
Mk/250 �m2

diameter
�m

volume

Bone marrow 0.3380.04 (n = 10) 14.0681.08 1,817.98410.9 5.2780.34 20.1380.32 4,403.98199.7
Liver 1.7880.12 16.0480.14 2,167.9857.7 no Mks
Spleen 0.8480.16 15.2180.45 1,964.98174.9 0.7080.19 20.7680.32 4,865.48154.3

a b

c d

  Fig. 2.  Photomicrograph of megakaryo-
cytes expressing vWF (original magnifica-
tion  ! 400) in the liver of control newborn 
pups ( a ), thrombocytopenic newborn pups 
( b ), bone marrow from control adults ( c ), 
and bone marrow from thrombocytopenic 
adults ( d ). The difference in size between 
neonatal and adult megakaryocytes is 
clearly evident.  
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  In regard to megakaryocyte size, thrombocytopenic 
newborn mice did not increase their megakaryocyte vol-
ume compared to controls in any of the hematopoietic 
organs analyzed, including the liver (2,783.4  8  123.8 vs. 
2,521.2  8  173.2, p = 0.23), spleen (2,122.4  8  233.6 vs. 
1,788.7  8  110.3,   p = 0.21) and bone marrow (2,011.4  8  
163.4 vs. 2,156.7  8  278.3, p = 0.64) ( fig. 3 b). In contrast, 
thrombocytopenic adult mice had significantly larger 
megakaryocytes than controls in the spleen (6,071.6  8  
915.6 vs. 3,131.0  8  226.2, p  !  0.01) although not in the 

bone marrow (4,250.4  8  417.1 vs. 3,657.7  8  447.4, p = 
0.35) ( fig. 3 e). 

  To mathematically estimate the combined effect of 
megakaryocyte number and size on the megakaryocyte 
mass, we then multiplied the mean megakaryocyte con-
centration by the mean volume in each organ. This anal-
ysis revealed a substantial reduction in the bone marrow 
megakaryocyte mass in thrombocytopenic newborn 
mice compared to controls (473.0  8  99.0 vs. 1,009.9  8  
199.7, p = 0.02), and no significant change in the liver 
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  Fig. 3.  Box-plots displaying the megakaryocyte (Mk) concentration, size and mass in the bone marrow (BM), 
liver (Liv) and spleen (Spl) of neonates (   a–c ), and in the bone marrow and spleen of adult mice ( d–f ). The box-
plot margins represent the 25th–75th percentiles, the whiskers represent the ranges, and the line, the median. 
N = Normal; T = thrombocytopenic.  *  p  !  0.05 and  *  *  p  !  0.01 versus age-matched controls.     
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(4,595.1  8  494.9 vs. 4,489.1  8  261.8, p = 0.89) or the 
spleen (1,505.9  8  282.5 vs. 721.7  8  173.9, p = 0.07) al-
though the latter one exhibited a trend ( fig. 3 c). Throm-
bocytopenic adult mice, in contrast, increased their 
megakaryocyte mass by approximately 4-fold in the 
spleen (6,727.1  8  1,603.5 vs. 1,603.7  8  231.1, p  !  0.01), 
and exhibited no significant change in the bone marrow 
(36,128.1  8  3,145.1 vs. 30,915.8  8  5,406.8, p = 0.43) 
( fig. 3 f). 

  Effect of MWReg30 on Megakaryocyte Progenitors 
 We then sought to evaluate megakaryocyte progenitor 

number in mice with MWReg30-induced thrombocyto-
penia, using megakaryocyte progenitor assays (n = 6 per 
group). As shown in  figure 4 , neonatal liver cells from 
nonthrombocytopenic mice gave rise to significantly 
more megakaryocyte colonies than adult bone marrow 
cells (181.1  8  32.8 vs. 26.5  8  4.3, p   !   0.001). Thrombo-
cytopenic mice had colony counts similar to those of 
their nonthrombocytopenic age-matched controls (131.1 
 8  30.1 vs. 181.1  8  32.8 and 36.9  8  11.3 vs. 26.5  8  4.3 
for neonates and adults, respectively).

  Discussion 

 In the present study, we compared the responses of fe-
tal and adult C57BL/6 mice to thrombocytopenia in-
duced by the administration of an antiplatelet antibody. 
The main objective of the study was to determine wheth-
er fetal mice respond to immune thrombocytopenia in a 
manner similar to adult mice, or whether fetuses/neo-
nates exhibit developmental differences in response to in-
creased platelet demand. Based on our previous observa-
tions in thrombocytopenic human neonates and adults 
 [12] , we hypothesized that newborn mice would be able 
to increase the megakaryocyte number, but not size, in 
response to increased platelet demand. 

  Overall, our murine studies further supported our hy-
pothesis that there are biological differences in mega-
karyocytopoiesis between neonates and adults, which are 
evident under normal as well as pathological conditions. 
First, we confirmed that the hematologic system of a 
healthy newborn mouse closely resembles a mid-second-
trimester human fetus, with the liver being the primary 
site of hematopoiesis while also exhibiting some hemato-
poietic activity in the bone marrow  [19, 20] . Furthermore, 
these initial studies confirmed that megakaryocytopoi-
esis in the newborn mouse shares many features of mega-
karyocytopoiesis in human neonates, with neonatal 

megakaryocytes in both species being substantially 
smaller than their adult counterparts. These observa-
tions supported the theory that platelet counts in the 
newborn are maintained primarily by the high prolifera-
tive rate of megakaryocyte progenitors, and also con-
firmed the suitability of the murine model to study devel-
opmental differences in megakaryocytopoiesis. 

  The response of adult mice to thrombocytopenia was 
consistent with the findings of previous studies in animal 
models and in humans with consumptive thrombocyto-
penia, and was characterized by an overall compensatory 
increase in megakaryocyte mass. Most previous studies 
evaluating megakaryocytopoiesis in adult animal models 
of experimental thrombocytopenia reported an early and 
rapid increase in megakaryocyte volume, which reached 
a peak between days 3 and 4  [10, 21, 22] , followed by in-
creased megakaryocyte numbers between days 4 and 10 
after the onset of thrombocytopenia  [10] . We chose 7 days 
of thrombocytopenia because after 7 days we expected to 
see compensatory changes in both megakaryocyte size 
and number. 

  Interestingly, the most significant changes in our 
model were observed in the spleen. The importance of the 
spleen as a megakaryocytopoietic organ in adult mice 
treated with various pharmacologic agents  [23] , with leu-
kemic or myeloproliferative states  [24, 25] , and also with 
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  Fig. 4.  Megakaryocyte colonies (CFU-Mk) generated from new-
born liver and adult bone marrow. Murine newborn liver cells 
(Liv) generated significantly more megakaryocyte colonies than 
adult bone marrow cells in culture (mean megakaryocyte colo-
nies per 1  !  10 5  cells plated: 181.1  8  32.8 for newborn liver versus 
26.5  8  4.3 for adult bone marrow, p        !  0.001). There were no sig-
nificant differences between thrombocytopenic and nonthrom-
bocytopenic age-matched controls in regard to colony counts. 
Data are presented as mean  8  SEM.           
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acute thrombocytopenia induced by platelet antiserum 
 [26]  has been demonstrated by several studies. More re-
cently, the role of the spleen in the post bone marrow 
transplant setting, where it seems to be the organ of first 
response, has also been highlighted  [27–29] . Further-
more, studies of posttransplantation megakaryocytopoi-
esis have consistently shown that the largest megakaryo-
cytes are produced in the spleen and at the earliest post-
transplantation stages  [27–29] . Our findings indicate that 
this is also true in response to immune-mediated throm-
bocytopenia in adult mice. Newborn mice, in contrast, 
significantly increased the concentration of megakaryo-
cytes in the spleen, but not the megakaryocyte volume, in 
response to fetal thrombocytopenia. These findings are 
consistent with our prior observations in human neo-
nates with thrombocytopenia, who also exhibited in-
creased megakaryocyte numbers without a correspond-
ing increase in megakaryocyte size  [12] .

  Translating splenic findings from mouse models to 
humans has been difficult because the contribution of the 
spleen to human megakaryocytopoiesis remains unclear. 
In adult humans, G-CSF has been shown to cause spleno-
megaly, thought to be due to induction of extramedullary 
hematopoiesis  [30, 31] . In human fetuses, the spleen does 
not normally function as a site of granulocytopoiesis or 
erythropoiesis at mid-gestation  [32] , but its contribution 
to normal or to stress fetal megakaryocytopoiesis has 
never been studied. Nevertheless, we believe that the 
finding that murine neonatal splenic megakaryocytes 
significantly increase in number, but not in volume, in 
response to thrombocytopenia supports the hypothesis 
that our observations in human neonates represent true 
developmental differences.

  We also elected to express megakaryocyte size as vol-
ume (in a manner similar to previous studies by Harker 
 [10, 11] ) because even small changes in megakaryocyte 
diameter translate into large changes in megakaryocyte 
volume, and because the volume, rather than the diam-
eter of each megakaryocyte, determines the number and 
size of platelets that it produces. When applying this con-
cept, however, it is important to recognize that the pro-
cess of sample fixation induces tissue shrinkage, so that 
our measurements do not represent actual in vivo sizes. 
Nevertheless, since all samples were processed in a simi-
lar manner, this method allows for comparisons between 
groups.

  Similar to our previous report in human neonates and 
adults  [12] , our murine studies suggest that neonates have 
a limited ability to increase megakaryocyte size in re-
sponse to thrombocytopenia. The reasons underlying the 

lack of increase in megakaryocyte size in newborn mice 
are unclear. Previous transplant studies by our group 
evaluating the phenotype of neonatal megakaryocytes in 
the adult microenvironment demonstrated that the de-
velopmental differences between neonatal and adult 
megakaryocytes are due both to cell-intrinsic and to mi-
croenvironmental differences  [29] . Among the cell-in-
trinsic differences, we recently reported that the response 
of human megakaryocytes to Tpo is different at various 
stages of development. Specifically, under identical cul-
ture conditions, Tpo potently stimulated the maturation 
and polyploidization of adult megakaryocytes, while it 
inhibited the polyploidization of neonatal megakaryo-
cytes  [33] . Since megakaryocyte ploidy and size are close-
ly correlated, it is tempting to hypothesize that these dif-
ferent responses to Tpo contribute to the observed dif-
ferences in megakaryocyte size between neonates and 
adults. In regard to the fetal versus adult hematopoietic 
microenvironment, developmental differences might ex-
ist in the expression levels of factors stimulating or sup-
pressing megakaryocyte maturation (i.e. IL-6  [34] , IL-11 
 [35] , vascular endothelial growth factor  [36] , platelet fac-
tor 4  [37] ), or of chemokines that have been proven criti-
cal for megakaryocyte maturation, such as stromal-de-
rived factor and/or fibroblast growth factor 4  [38] . Prior 
studies have also shown that thrombocytopenic neonates 
have lower serum Tpo concentrations than adults with 
similar mechanisms and degrees of thrombocytopenia 
 [39, 40] . These findings have led to the hypothesis that 
neonates do not upregulate Tpo production to the same 
degree as adults, which could presumably also contribute 
to the blunted response to thrombocytopenia observed in 
neonates.

  We also recognize that the fetal thrombocytopenia in-
duced in our model was only moderate. It could therefore 
be hypothesized that the lack of response in newborn 
pups was associated with the moderate severity of the 
thrombocytopenia  [41] . However, the doses and routes of 
administration of the antibody were carefully titrated to 
generate similar degrees of thrombocytopenia in new-
born and adult mice, so that most adult mice in our study 
also had moderate thrombocytopenia. Furthermore, pre-
vious studies have shown that platelet levels of approxi-
mately 40% of normal induce enlargement of megakary-
ocytes  [21] , a finding that was present in adult but not 
newborn mice. 

  Several mechanisms have been proposed to explain 
the decrease in platelet production sometimes observed 
in immune thrombocytopenia, including inhibition of 
megakaryocyte proliferation or maturation induced by 
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