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neuropeptide Y (NPY), respectively. All were present in the 
SCN of both species and no differences between them were 
seen. On the basis of neuronal phenotype, the SCN was or-
ganized into three basic regions that contained VIP-immu-
noreactive (-ir), CalB-ir and VP-ir cells, in the ventral, middle 
and dorsal SCN, respectively. In the rostral SCN, GRP-ir cells 
were in both the VIP and the CalB cell regions, and in the 
caudal area they were distributed across a portion of each of 
the other three regions. Fibers containing NPY-ir and sero-
tonin (5-HT)-ir were most concentrated in the areas contain-
ing VIP-ir and CalB-ir cells, respectively. The details of the 
spatial relationships among the labeled cells and fibers seen 
here are discussed in relation to different approaches inves-
tigators have taken to characterize the SCN more generally. 

 Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Over the course of evolution, diurnal and nocturnal 
species have diverged with respect to mechanisms that 
coordinate the daily patterning of many features of their 
behavior and physiology. The primary drive for these 
rhythms comes from a circadian timekeeping system that 
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 Abstract 
 Evolutionary transitions between nocturnal and diurnal pat-
terns of adaptation to the day-night cycle must have in-
volved fundamental changes in the neural mechanisms that 
coordinate the daily patterning of activity, but little is known 
about how these mechanisms differ. One reason is that in-
formation on these systems in very closely related diurnal 
and nocturnal species is lacking. In this study, we character-
ize the suprachiasmatic nucleus (SCN), the primary brain 
structure involved in the generation and coordination of cir-
cadian rhythms, in two members of the genus  Acomys  with 
very different activity patterns,  Acomys russatus  (the golden 
spiny mouse, diurnal) and  Acomys cahirinus  (the common 
spiny mouse, nocturnal). Immunohistochemical techniques 
were used to label cell bodies containing vasoactive intesti-
nal polypeptide (VIP), vasopressin (VP), gastrin-releasing 
peptide (GRP) and calbindin (CalB) in the SCN, as well as two 
sets of inputs to it, those containing serotonin (5-HT) and 
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can be described at the simplest level as consisting in 
mammals of three central components [Klein et al., 1991]. 
These include the suprachiasmatic nuclei (SCN) which 
contain the primary self-sustaining oscillators that gen-
erate and coordinate the rhythms, inputs through which 
photic and non-photic signals entrain these rhythms to 
24 h cycles in the environment, and outputs that distrib-
ute rhythmic signals from the SCN to brain regions that 
more directly regulate behavior and physiology. Although 
this circadian system enables animals to maintain inter-
nal synchrony and to anticipate rhythmic changes in the 
environment, processes referred to as masking can mod-
ulate these rhythms on a daily basis by more directly in-
fluencing the variables in question [e.g., activity, body 
temperature; Mrosovsky, 1999]. Masking does not in-
volve anticipation of a change in the environment, but 
rather an immediate response to such changes. Exposure 
to darkness during the day, for example, can stimulate an 
abrupt increase in activity in a nocturnal animal and a 
decrease in a diurnal one, and these effects are not brought 
about via changes in the endogenous circadian timekeep-
ing system. The effect of a masking stimulus on activity 
ends immediately after it is removed. Both the circadian 
regulation of activity and masking differ in day- and 
night-active species. In diurnal species the circadian sys-
tem drives sleep during the night and wakefulness during 
the day, whereas masking by light at night directly stimu-
lates activity, and by darkness during the day decreases 
it. Both systems have the opposite effects in nocturnal 
species [Mrosovsky, 1999; Hagenauer and Lee, 2008].

  The SCN are bilateral collections of tightly packed 
cells located in the anterior hypothalamus dorsal to the 
optic chiasm, one on each side of the third ventricle [Klein 
et al., 1991]. They contain multiple populations of cells 
that differ with respect to their distribution and function, 
but at the simplest level, the SCN have been described by 
Abrahamson and Moore [2001] as containing ‘shell’ and 
‘core’ regions on the basis of differences in inputs as well 
as the phenotypes of cells within. The term ‘core’ refers 
to an area of the SCN, typically ventral, which contains 
cell bodies with vasoactive intestinal polypeptide (VIP) 
and gastrin-releasing peptide (GRP) and receives input 
from the retina, the raphe nucleus and the intergeniculate 
leaflet (IGL) of the thalamus. The ‘shell’ refers to an area 
of the SCN where cells containing vasopressin (VP) are 
present [Abrahamson and Moore, 2001; Moore et al., 
2002]. Although the SCN of almost all mammals contain 
these three peptides and inputs, respectively, the general 
bi-partite conceptualization of the SCN has been criti-
cized recently by Morin et al. [2006] for oversimplifying 

the basic structure of the nucleus within any given species 
and for overlooking important differences among spe-
cies. There is cross-species variability, for example, with 
respect to the presence or absence of a number of peptides 
contained within SCN cells as well as the distributions 
and the degree of overlap among these phenotypically 
distinct populations of cells [Goel et al., 1999; Morin et 
al., 2006]. The patterns of inputs to the nucleus also vary 
from species to species and do not always map onto core 
and shell regions as defined by cell phenotype [Caval-
cante et al., 2002; Morin et al., 2006; Pinato et al., 2007]. 
Of particular note is that in some species, such as ham-
sters and mice, what has been called the core actually 
consists of different, though partially overlapping, sub-
regions associated with cells of different phenotypes 
[Morin et al., 2006] and functions [Antle and Silver, 2005]. 
For example, in the SCN of hamsters CalB and substance 
P are concentrated in a central region of the caudal por-
tion of the core which contains relatively few cells with 
either VIP or VP [Morin et al., 1992; Silver et al., 1996]; a 
similar sub-region of the SCN is demarcated by the pres-
ence of met-enkephalin in the ground squirrel SCN 
[Smale et al., 1991]. The significance of the species differ-
ences in SCN organization is unknown, however, and 
those that have been identified have not been associated 
with whether an animal is nocturnal or diurnal.

  As with SCN anatomy, many indicators of SCN func-
tion appear to be the same across species with very dif-
ferent activity patterns. This is the case for rhythms of 
metabolic activity, expression of genes that are central to 
the core molecular oscillator and expression of genes that 
encode proteins and peptides representing several output 
systems [reviewed in Smale et al., 2008]. Recent data sug-
gest that although production of one SCN output signal, 
VP, is the same, responses to it can be reversed in diurnal 
and nocturnal species [Kalsbeek et al., 2008]; however, 
there are also some features of SCN function that can dif-
fer in some day- and night-active species. These include 
patterns of expression of immediate early genes [Krajnak 
et al., 1997], rhythms in neuronal firing rates [Jiao et al., 
1999], temporal patterns of expression in TGF �  [Tour-
nier et al., 2007], and effects of GABA agonists and an-
tagonists on rhythm phase [Novak et al., 2004]. It is not 
yet known whether or how these might ordinarily con-
tribute to differences in patterns of overt rhythmicity.

  Most of what is known about neural substrates under-
lying rhythms comes from research on mammals that are 
quite stable with respect to the temporal niche they oc-
cupy. Some animals, however, are very plastic and can be 
diurnal in some environmental conditions and nocturnal 
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in others [Kronfeld-Schor and Dayan, 2003, 2008]. Ex-
amples include microtine rodents that are diurnal in win-
ter and nocturnal in the summer [Rowsemitt et al., 1982] 
and cotton rats in which patterns differ across individu-
als and change over time [Camerson and Spencer, 1981; 
Johnston and Zucker, 1983; Hoogenboom et al., 1984; 
Hagenauer and Lee, 2008]. Plasticity can be promoted by 
changes in masking or in circadian mechanisms [Mro-
sovsky and Hattar, 2005]. An example of the former was 
recently reported for Nile grass rats in which a change 
from a day- to a night-active pattern was associated with 
a reversal in masking responses to light [Redlin and 
Mrosovsky, 2004]. Relatively little is known about the 
neural substrates underlying masking and a number of 
brain regions might play a role [Redlin, 2001], including 
the SCN [Li et al., 2005]. Nothing is known about the neu-
ral mechanisms responsible for differences in masking 
seen in animals with day- and night-active patterns of 
rhythmicity.

  One excellent animal model with which such issues 
could be addressed is the golden spiny mouse ( Acomys 
russatus , Muridae), a diurnal species that is capable of 
adjusting to a nocturnal pattern in certain circumstanc-
es. These animals have a limited distribution in rocky 
deserts in northeastern Egypt, southern Israel and Jordan 
[Mendelson and Yom-Tov, 1999] and in most, but not all 
[Scott and Dunstone, 2000] of their natural habitat they 
are diurnal [Shkolnik, 1966, 1971; Haim and Borut, 1975; 
Kronfeld-Schor et al., 1994, 2001a; Elvert et al., 1999]; 
however, when they are transferred to the laboratory 
from their natural habitat at Ein Gedi, where they are 
most active during the day, patterns of all individuals 
change abruptly, with some becoming nocturnal and 
others becoming active both day and night [Kronfeld-
Schor et al., 2001a]. This immediate change also occurs 
when the animals are transferred from the field into con-
stant darkness (DD) in the laboratory [Levy et al., 2007]. 
These patterns raise the possibility that golden spiny 
mice have a circadian timekeeping system that is highly 
plastic and can drive daytime behavior in some condi-
tions (e.g., the field) and nighttime activity in others (e.g., 
the lab). An alternative explanation is that the circadian 
system does not change, but activity is masked in such a 
way that one pattern is evident in the field and another in 
the lab. For example, the laboratory conditions might re-
veal a fundamental circadian drive for nocturnality that 
is ordinarily masked in most of the natural habitat of 
these animals [Kronfeld-Schor et al., 2001a; Cohen and 
Kronfeld-Schor, 2006; Levy et al., 2007]. This hypothesis 
is supported by data from controlled field experiments 

showing that when they have the chance (e.g., in the ab-
sence of a competitor,  Acomys cahirinus ), golden spiny 
mice are active both during day and at night [Shkolnik, 
1971; Gutman and Dayan, 2005; Kronfeld-Schor and 
Dayan, 2008]. We have suggested previously that golden 
spiny mice are in an intermediate evolutionary state rep-
resentative of what can occur during evolutionary transi-
tions from nocturnal to diurnal patterns of adaptation to 
the environment [Kronfeld-Schor and Dayan, 2008]. This 
possibility is supported by a mosaic pattern of other ad-
aptations some of which support daytime and others 
nighttime activity. For example, their dark skin pigmen-
tation [Chaplin, 2004; Jablonski, 2004] and high concen-
tration of ascorbic acid in the eyes, which enables them 
to withstand intense solar radiation [Koskela et al., 1989], 
are typical adaptations to daytime activity. On the other 
hand, their retinal structure is like that of nocturnal 
mammals [Kronfeld-Schor et al., 2001b], as is their capac-
ity for non-shivering thermogenesis which helps support 
activity when ambient temperatures are lowest [Kron-
feld-Schor et al., 2000, 2001c].

  The predominantly diurnal but highly flexible golden 
spiny mouse has a congener,  Acomys cahirinus,  the com-
mon spiny mouse, which is strictly nocturnal throughout 
its range as well as in the laboratory [Kronfeld-Schor et 
al., 1994; Elvert et al., 1999; Weber and Hohn, 2005]. The 
existence of these two very closely related species pro-
vides a unique opportunity to examine the mechanisms 
that might be responsible for inter-specific variation in 
activity patterns and in the level of commitment an ani-
mal has to a given temporal niche. Our long-term goal is 
to use the golden spiny mouse as an alternative animal 
model for the study of interactions between masking and 
circadian systems and how these might determine the ex-
tent to which an animal is active during the day or night. 
One possibility is that processes within the SCN are re-
sponsible, and another is that the SCN is the same and 
the differences emerge from structures or functions of 
other brain regions involved in regulation of daily 
rhythms. A third possibility is that differences in tempo-
ral organization of day and night-active animals emerge 
from processes operating both within and beyond the 
SCN. In the current study we begin to evaluate these al-
ternatives by describing and comparing the basic organi-
zation of the SCN in golden and common spiny mice. 
Specifically, we used immunohistochemical techniques 
to examine the distributions of VIP, VP, GRP, CalB, NPY 
and serotonin (5-HT) in the SCN of these two species.
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  Methods 

 Animals and Housing  
 Animals were adult male and female golden and common 

spiny mice from our breeding colony at the I. Meir Segals Zoo-
logical Garden at Tel Aviv University. The source of the breeding 
colony is Ein Gedi, near the Dead Sea, Israel, where the two spe-
cies coexist. The mice were individually housed in 38  !  24  !  13 
cm plastic cages, under controlled laboratory conditions of LD
12:   12, and ambient temperature of 29   °   C, with food (standard ro-
dent chow) and water ad libitum. All procedures were conducted 
in accordance with and approved by the Institutional Animal 
Ethics Committee (L-02-45). All efforts were made to minimize 
the number of animals used and their discomfort.

  Perfusion and General Immunocytochemical Procedure  
 At the time of perfusion, animals were given an overdose of 

isoflorane and perfused transcardially with 0.01  M  phosphate-
buffered saline (PBS), pH 7.2, followed by 4% paraformaldehyde 
(Sigma, St. Louis, Mo., USA) in 0.1  M  phosphate buffer. Brains 
were post-fixed for 4 h, transferred to 20% sucrose solution over-
night, and then stored in cryoprotectant at –20   °   C until section-
ing. Brains were later returned to sucrose and sectioned coronal-
ly at 30  � m on a freezing microtome.

  Free-floating sections were rinsed in PBS, and then incubated 
in (i) 5% normal serums in PBS with 10% Triton X-100, followed 
by (ii) primary antibody for either NPY, VIP VP, GRP, 5 HT or 
CalB (see below for details) on a rotator for 48 h at 4   °   C. Tissue was 
then incubated in (iii) biotinylated secondary antibody, followed 
by (iv) avidin–biotin peroxidase complex (ABC Vectastain Kit; 
Vector Laboratories, Burlingame, Calif., USA). Protein was visu-
alized by reacting with diaminobenzidine (0.5 mg/ml; Sigma) in 
Trizma buffer (Sigma). Sections were then mounted, dehydrated, 
and coverslipped with Permount.

  Antibodies and sera used for each antigen were as follows. VP: 
(i) NGS, (ii) guinea-pig anti-VP (Peninsula Laboratories, Bel-
mont, Calif., USA; 1:   40,000), (iii) biotinylated goat anti-guinea-
pig (Vector; 1:   200). VIP: (i) NGS, (ii) guinea-pig anti-VIP (Penin-
sula Laboratories, Belmont, Calif., USA; 1:   20,000), (iii) biotinyl-
ated goat anti-guinea-pig (Vector; 1:   200). CalB: (i) NDS, (ii) mouse 
anti-CalB (Sigma; 1:   20,000), (iii) biotinylated donkey anti-mouse 
(Jackson; 1:   200). 5-HT: (i) NGS, (ii) rabbit anti-5-HT (Peninsula 
Laboratories, Belmont, Calif., USA; 1:   50,000), (iii) biotinylated 
goat anti-rabbit (Vector; 1:   200). NPY: (i) NGS, (ii) rabbit anti-NPY 
(Peninsula Laboratories, Belmont, Calif., USA; 1:   20,000), (iii) bi-
otinylated goat anti-rabbit (Vector; 1:   200). GRP: (i) NGS, (ii) rab-
bit anti-GRP (Peninsula Laboratories, Belmont, Calif., USA;
1:   10,000), (iii) biotinylated goat anti-rabbit (Vector; 1:   200). Dele-
tion controls were run in which primary antibodies were omitted 
but the rest of the procedures were the same as those used for ex-
perimental tissue. In all cases the control tissue processed without 
a primary antibody revealed no staining at all in either species, 
whereas tissue processed concurrently with primary antibodies 
was clearly stained for the antigen, in both species.

  Data Analyses 
 Slides were examined and photomicrographs taken using a 

Zeiss light microscope (Axioskop 2 Plus; Carl Zeiss, Göttingen, 
Germany). Photographs of representative sections were taken 
with a digital camera (AxioCam MRc) attached to the micro-

scope. Contrast and color balance were optimized using Zeiss
AxioVision software (Carl Zeiss Vision). Figures were then as-
sembled using Adobe Illustrator and Adobe Photoshop (Adobe 
Systems, San Jose, Calif., USA).

  Results 

 General 
 The SCN of the golden and common spiny mouse were 

very similar with respect to the size and shape of the nu-
cleus and the distribution of peptidergic cells and of se-
rotonin and NPY fibers within it. In this paper we present 
photographs of the rostral, middle and caudal levels of 
the SCN of the golden spiny mouse ( fig. 1 ,  2 ,  5 ,  6 ), but only 
the mid-level SCN of the common spiny mouse ( fig. 1 ,  3 ) 
to avoid unnecessary redundancy. Descriptions we pro-
vide below apply to the SCN of both species. 

  In cresyl violet-stained material the SCN appeared as 
discrete bilaterally symmetrical nuclei immediately dor-
sal to the caudal third of the optic chiasm in both the 
golden ( fig. 1 A–C) and the common ( fig. 1 D) spiny mice. 
Cells within the nucleus were smaller and more densely 
packed than in surrounding tissue. The distinction was 
less sharp along the dorsal border where some smaller 
cells in the peri-SCN area were interspersed amongst 
larger more diffusely distributed ones. In coronal sec-
tions the SCN had a teardrop shape that was expanded 
along the dorso-ventral axis in its caudal regions. At its 
rostral end, the third ventricle extended completely be-
tween the two SCN and in caudal regions it extended only 
between the most dorsal portions of the two nuclei which 
were thus in closer contact with each other. The optic chi-
asm was considerably thicker in both  Acomys  species 
compared to rodents more traditionally used in research 
(mice, rats and hamsters).

  Vasoactive Intestinal Polypeptide 
 In both species, parvicellular VIP-ir neurons and fi-

bers were present within the SCN ( fig. 2 ,  3 ). In rostral 
sections these cells were seen in a somewhat narrow band 
that extended across the full medial-lateral extent of the 
nucleus and curved dorsally at both ends to form what 
looked like a cup lining the outer edges of the nucleus. In 
the most caudal sections, VIP-ir cells were concentrated 
in a more restricted region of the ventral SCN that did not 
extend all the way from its medial to lateral boundaries 
( fig. 2 ). Numerous parvicellular VIP-ir neurons were also 
embedded within the optic chiasm ventral to the SCN 
proper, separated from it by the dorsal portion of the op-
tic chiasm; fibers from these VIP-ir cells extended dor-
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sally through the optic chiasm and into the SCN ( fig. 2 , 
 3 ). No VIP-stained cells were seen in other regions of the 
hypothalamus.

  Most VIP-ir fibers emanating from the SCN were part 
of a single large tract emerging from the full extent of the 

medio-lateral axis of the nucleus into the sub-PVN zone 
( fig. 2–4 ). These were most evident in sections containing 
caudal regions of the nucleus, where they extended dor-
sally for a considerable distance ( fig. 4 A–C). VIP-ir fibers 
in this area were lined with boutons suggestive of an SCN 

A B C D

  Fig. 1.  A series of cresyl violet-stained coronal sections through the SCN of the golden spiny mouse ( A–C ) and 
common spiny mouse ( D ) from rostral ( A ) through caudal ( C ) poles of the nucleus. 3V = Third ventricle, OC = 
optic chiasm. Bar = 100 microns. 

  Fig. 2.  Sections stained for immunohisto-
chemical detection of VIP (top row) and 
VP (bottom row) in the SCN of golden 
spiny mice. Rostral, middle and caudal 
sections are depicted from left to right, re-
spectively. There is little overlap between 
the areas of the SCN containing VIP-ir 
and VP-ir cells. Areas containing neither 
peptide are evident in the center of the ros-
tral and middle sections of the nucleus and 
in the centro-lateral region of the caudal 
portion of the nucleus. 3V = Third ventri-
cle, OC = optic chiasm. Bar = 100 mi-
crons. 
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projection onto cells or fibers in the sub-PVN area. La-
beled fibers that appeared to originate in the SCN also 
extended dorsally into the paraventricular nucleus of the 
hypothalamus (PVN;  fig. 4 D–F) and the paraventricular 
thalamus (PVT;  fig. 4 G–I). VIP-ir fibers were also appar-
ent lateral to the SCN, adjacent to the optic chiasm and 
the supraoptic nucleus (SON) and rostral to the SCN 
where they were in the anteroventral periventricular area 
(AVPV;  fig. 4 J, L, N) and the medial preoptic nucleus 
(MPOA;  fig. 4 J, K, M). A dense plexus of labeled fibers 
was also seen in the bed nucleus of the stria terminalis 
(BNST), but these did not appear to originate in the 
SCN. 

  Vasopressin 
 Parvicellular VP-ir neurons and fibers in both species 

were present across the rostral-caudal extent of the SCN 
( fig. 2 ,  3 ). Within the mid to rostral SCN these cells were 
most concentrated in an arc that extended dorsally from 
the ventromedial region of the nucleus to its ventrolat-
eral aspect; within this area they were slightly more con-
centrated dorso-medially. As was the case for VIP-ir cells, 
those containing VP-ir were embedded within the optic 
chiasm ventral to the SCN. These VP-ir cells were most 
evident ventral to the medial aspect of the SCN where 
their distribution appeared to overlap slightly with that 
of VIP-ir cells ( fig. 2 ,  3 ). In the caudal SCN the distribu-
tion of VP-ir cells was somewhat more limited, as they 
did not extend into the dorso-lateral region of the nucle-
us. This dorso-lateral region also contained very few VIP 
neurons. Some large magnocellular VP-ir cells were pres-
ent along the third ventricle immediately dorsal to the 
SCN ( fig. 3 ), in the PVN and in the SON; in males, mag-
nocellular VP-ir cells were also seen in a small cluster 
mid-way between these two nuclei and in the BNST (data 
not shown).

  Large numbers of fine caliber VP-ir fibers were seen 
exiting the SCN from its medial region into the sub-PVN 
zone all along its rostro-caudal extent ( fig. 2 ,  3 ). Within 
the sub-PVN zone these fibers diverged into a medial and 
a lateral pathway separated by a region with relatively few 
fibers. The larger of these two pathways was concentrated 
in the medial region of the sub-paraventricular area and 
the smaller was in a more lateral region. Both were some-
what more dense dorsal to the caudal than to the rostral 
portion of the nucleus. These fibers extended a consider-
able distance into the sub-PVN zone where some branched 
in a direction lateral to it. As with VIP, some fine caliber 
VP-ir fibers fanned out from the SCN into the surround-
ing POA, some extended rostrally into the MPOA and 

  Fig. 3.  Sections through the SCN (mid-SCN) of the common spiny 
mice that have been stained for immunohistochemical detection 
of VIP, VP, GRP, Cal-B, NPY and 5-HT. The bar in the lower left 
portion of the NPY photomicrograph indicates 100 microns in 
photos that depict VIP, VP, GRP, Cal-B and NPY. The larger photo 
of the 5-HT staining was taken at a higher magnification and the 
scale bar represents 50 microns. The insert in the upper left portion 
of the photograph of 5-HT staining shows the SCN at lower mag-
nification in order to illustrate the distribution of the labeled fibers 
within the SCN in relation to the area around it; here the scale bar 
represents 100 microns. 3V = Third ventricle, OC = optic chiasm. 
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  Fig. 4.  Fibers containing VIP-ir in different regions of the rostral 
hypothalamus and in the thalamus of golden and common spiny 
mice. Fibers are present in the sub-PVN zone ( A–C ), the PVN 
( D–F ), the PVT ( G–I ), the AVPV (medial box of  J ;  L ,  N ) and the 
POA (lateral box of  J ;  K ,  M ). Low magnification photomicro-
graphs on the left ( A ,  D ,  G ,  J ) are of tissue from golden spiny mice; 
the scale bar in  J  represents 200 microns in these four photomi-

crographs. High magnification photomicrographs in the middle 
column ( B ,  E ,  H ,  K ,  L ) depict tissue of golden spiny mice and those 
in the right column depict tissue of common spiny mice ( C ,  F ,  I , 
 M ,  N ); the bar in  K  represents 50 microns in all of these high mag-
nification photographs. 3V = Third ventricle, OC = optic chi-
asm.  
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AVPV, and some were seen directed laterally to the SON. 
Fine caliber VP-ir fibers were also present in the PVN 
and PVT.

  Gastrin-Releasing Peptide 
 In both species GRP-ir neurons and fibers were pres-

ent within the SCN all along its rostal-caudal axis, al-
though there were somewhat fewer of them than there 
were of cells containing VIP-ir and VP-ir. GRP-ir cells 
were also seen within the optic chiasm ventral to the SCN 
( fig. 3 ,  5 ). In sections through the rostral SCN, GRP-ir 
cells were most concentrated in the ventral portion of the 
nucleus, whereas in mid-level sections they were most 
dense in the ventro-lateral portion of the nucleus. In the 
caudal regions, GRP-ir cells extended dorsally into the 
area noted above where few VIP-ir or VP-ir cells were 
seen ( fig. 5 ).

  The major tract of GRP-ir fibers emanating from the 
SCN extended dorsally into the sub-PVN zone. In caudal 
sections, approximately 300–400 microns dorsal to the 
SCN, some of these fibers branched out from the pri-
mary tract and curved in a lateral direction. Some fine 
caliber GRP fibers were also seen in the PVN and PVT.

  Calbindin 
 Staining for CalB was seen in the SCN where it was 

primarily restricted to cell bodies, although in some cas-
es it could be seen in processes as they emerged from the 
soma ( fig. 3 ,  5 ). CalB-ir cells extended from rostral to 
caudal SCN but were most numerous at its mid-level 
( fig. 5 ). These cells were most heavily concentrated in 
what appeared as a somewhat spherical sub-nucleus with-
in the mid to lateral area where, as noted above, few VIP-
ir or VP-ir cells were seen ( fig. 3 ,  5 ). At the rostral end of 
their distribution some CalB-ir cells were embedded in 
the optic chiasm. Labeled cells surrounded the SCN 
throughout its rostro-caudal extent and at the level of the 
mid and caudal SCN these cells appeared as an arc that 
extended dorsally and laterally from the SCN ( fig. 5 ).

  Neuropeptide Y 
 Large numbers of thick varicose NPY-ir fibers were 

present in the hypothalamic area surrounding the SCN 
all along its rostral-caudal axis ( fig. 3 ,  6 ). Within the ros-
tral SCN, NPY-ir fibers were sparse but in the mid and 
caudal regions a substantial plexus of fine caliber-labeled 
fibers was present ( fig. 6 ). These fibers were most concen-

  Fig. 5.  Sections through the SCN of golden 
spiny mice that have been stained for im-
munohistochemical detection of GRP (top 
row) and CalB (bottom row). Rostral, mid-
dle and caudal sections are depicted from 
left to right, respectively. There is little 
overlap between the areas of the SCN con-
taining cells with CalB-ir seen here and 
those depicted in figure 2 with VIP-ir and 
VP-ir cells. 3V = Third ventricle, OC = op-
tic chiasm. Bar = 100 microns.                                               
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trated in the ventral aspect of the nucleus but also ex-
tended dorsally well beyond where VIP-ir cells were seen; 
( fig. 2 ,  3 ,  6 ). NPY-ir fibers, however, were conspicuously 
absent in the outer-most region of the nucleus, which ap-
peared as something of a halo encircling the area of la-
beled fibers ( fig. 3 ,  6 ). In the caudal SCN, NPY-ir fibers 
were concentrated within a central area of the nucleus 
encircled by the surrounding area where few labeled fi-
bers were seen.

  At the level of the caudal SCN some NPY-ir fibers were 
present between the two nuclei, within the optic chiasm 
ventral to them and in the peri-SCN area, particularly its 
dorsolateral aspect. Many NPY-ir fibers extended later-
ally between the SCN and the SON. NPY was also present 
in cells and fibers in the PVN. 

  Serotonin 
 Fine caliber 5-HT-ir fibers were present from the ros-

tral to the caudal pole of the SCN and were somewhat 
more concentrated in the ventral portion of the nucleus 
( fig. 3 ,  6 ). Some 5-HT-ir fibers were also present in the 
surrounding hypothalamus and in the optic chiasm ven-
tral to the SCN.

  Discussion 

 Basic Structure of the SCN 
 Overall, based on cresyl violet-stained sections and 

on immunohistochemical analyses, the SCN appears to 
be very similar in  A. russatus  and  A. cahirinus,  and the 
basic cell phenotypes and inputs to the nucleus in these 
two species have been seen in a wide variety of others 
[Moore et al., 2002; Morin et al., 2006]. Cells within the 
SCN were smaller and more densely packed than in sur-
rounding tissue and the nucleus, which appeared as a 
teardrop shape that expanded along the dorso-ventral 
axis from its rostral to its caudal extent. Another con-
spicuous difference from rostral to caudal poles was that 
the third ventricle extended completely between the two 
nuclei to the optic chiasm rostrally, whereas in caudal 
regions it only reached the level of the most dorsal por-
tions of the two nuclei which were thus in more direct 
contact with each other along the full length of their 
medial aspects. 

  One unusual characteristic of the SCN of spiny mice 
was that some cells phenotypically identical to those 
within it were actually separate from it, embedded with-

  Fig. 6.  Sections through the SCN of the 
golden spiny mice that have been stained 
for immunohistochemical detection of 
NPY (top row) and 5-HT (bottom row). 
Rostral, middle and caudal sections are 
depicted from left to right, respectively. 
The bar in the lower left portion of the 
NPY photomicrograph indicates 100 mi-
crons in all three photographs in that row. 
The larger photographs of the 5-HT stain-
ing were taken at a higher magnification 
and the scale bar represents 50 microns. 
The inserts in the upper right portions of 
the photographs of 5-HT staining show 
the SCN at lower magnification in order to 
illustrate the distribution of the labeled fi-
bers within the SCN in relation to the area 
around it; here the scale bar represents 100 
microns. 3V = Third ventricle, OC = optic 
chiasm.                                               
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in the optic chiasm ventral to it ( fig. 2 ,  3 ,  5 ). Processes 
immunoreactive for VP, VIP and GRP appeared to pro-
ject from these cells through the chiasm and into the 
SCN. We have not seen reports of this feature in other 
species. Developmental processes responsible for the dif-
ferences in location of the populations of cells within the 
SCN and within the optic chiasm, respectively, are un-
clear, but could involve two waves of cell birth or of cell 
migration.

  Organization of Cell Bodies within the SCN 
 Vasopressin, the first peptide described in the SCN 

[Vandesande et al., 1975], has been found in this nucleus 
of almost all mammals examined to date, which includes 
a considerable number of species [Sofroniew and Weindl, 
1980; Card and Moore, 1984; van den Pol and Tsujimoto, 
1985; Cassone et al., 1988; Reuss et al., 1989; Smale et al., 
1991; Moore, 1993; Goel et al., 1999]; however, it should 
be noted that VP is not seen in the SCN of some species, 
such as the mink [ Mustela vison ; Bonnefond et al., 1994], 
the musk shrew [ Suncus murinus ; Tokunaga et al., 1992] 
and the naked mole-rat [ Heterocephalus glaber ; Rosen et 
al., 2007]. At mid-levels of the  Acomys  SCN, VP-ir cells 
were most concentrated in an arc that extended across the 
dorso-medial portion of the nucleus and continued 
through the full extent of the medial SCN; in the caudal 
regions the arc was more limited, as the cells were not 
present in the lateral portion of the dorsal SCN ( fig. 2 ). 
The main features of this general pattern are similar to 
those seen in many species. In nocturnal rodents VP cells 
have been shown to have rhythms in both electrical activ-
ity and in expression of core clock genes [Antle and Silver, 
2005].

  The ventral portion of the  Acomys  SCN contained two 
relatively distinct regions distinguishable on the basis of 
neuropeptides concentrated within them, as is the case in 
the SCN of mice [Abrahamson and Moore, 2001], ham-
sters [Morin et al., 1992; Silver et al., 1996], ground squir-
rels [Smale et al., 1991] and grass rats [Smale and Bover-
hof, 1999; Mahoney et al., 2000]. The most ventral aspect 
of the  Acomys  SCN contained cells immunopositive for 
VIP, whereas CalB-ir cells were most concentrated im-
mediately dorsal to them. VIP, the second peptide to be 
identified in the SCN [Samson et al., 1979], is to our 
knowledge present in all mammals that have been exam-
ined, and this includes a considerable number of species 
representing numerous orders [Sims et al., 1980; Card 
and Moore, 1984; Antonopoulos et al., 1987; Cassone et 
al., 1988; Reuss et al., 1989; Tillet et al., 1989, 1994; Smale 
et al., 1991; Tokunaga et al., 1992; Moore, 1993; Mikkelsen 

and Fahrenkrug, 1994; Martinet et al., 1995; Goel et al., 
1999; Smale and Boverhof, 1999; Negroni et al., 2003]. 
These cells are typically, but not always, concentrated in 
a region of the SCN separate from that containing VP-ir 
cells. For example, these two populations of cells overlap 
completely in the SCN of sheep [Tillet et al., 1989] and of 
some species of opossum [Cassone et al., 1988]. In noc-
turnal rodents VIP exhibits a daily rhythm within the 
SCN and VIP cells appear to transmit photic information 
essential for entrainment to the intrinsically oscillatory 
cells of the shell [Maywood et al., 2006]. The fact that this 
peptide appears to be present in the SCN of all mammals, 
including  Acomys , suggests that VIP was present in a 
common ancestor and provides further support for this 
model whereby it is essential for entrainment, a function 
that is universal.

  Cells containing CalB-ir were most concentrated in 
the central portion of the  Acomys  SCN, extending from 
the rostral to caudal ends of the nucleus, surrounded by 
the regions containing VP-ir and VIP-ir cells, respective-
ly ( fig. 3 ,  5 ). The distribution of CalB cells varies some-
what across species, and CalB is not present in the SCN 
of all species. It is seen throughout the SCN of marmosets 
[Costa and Britto, 1997] and  Cryptomys  [Negroni et al., 
2003], in the central SCN of humans [Mai et al., 1991] and 
in the peripheral portions of the nucleus in rats [Celio, 
1990]. Reports of the distribution of CalB in the SCN of 
the mouse have been somewhat inconsistent [Abraham-
son and Moore, 2001; Morin et al., 2006]. Although in 
hamsters CalB-expressing cells lack rhythmic electrical 
activity [Jobst and Allen, 2002], lesions of this sub-region 
suggest that it is essential for normally functioning circa-
dian rhythms in behavior [Kriegsfeld et al., 2004]. It is not 
yet clear if this would be the case in other species, such as 
 Acomys . 

  Relatively small populations of GRP-ir cells were pres-
ent in the  Acomys  SCN where they were in an area over-
lapping both that of VIP-ir cells and that of CalB-ir cells. 
As with VIP, GRP has been detected in the SCN of all 
species that have been examined [Roth et al., 1982; Pan-
ula et al., 1984; van den Pol, 1986; Mikkelsen et al., 1991; 
Martinet et al., 1995; Smale and Boverhof, 1999; Abra-
hamson and Moore, 2001; Moore et al., 2002; Negroni et 
al., 2003]. The presence of these cells in the  Acomys  SCN 
further reinforces the view that this peptide performs a 
function that is universal and essential for normal pat-
terns of rhythmicity. It has been suggested that this in-
volves modulation of responses of other SCN cells to light 
as well as communication among different populations of 
SCN cells [Antle and Silver, 2005].
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  Inputs to the SCN: NPY and 5-HT 
 Fibers immunoreactive for NPY appear to be present 

in the SCN of all of the many mammals that have been 
examined [Card and Moore, 1984; Smith et al., 1985; 
Ueda et al., 1986; Cassone et al., 1988; Reuss et al., 1989; 
Bons et al., 1990; Smale et al., 1991; Moore, 1993]. The 
SCN of  Acomys  contained fibers and terminals with im-
munoreactive NPY ( fig. 3 ,  6 ). From the rostral through 
mid-levels of the SCN these fine caliber NPY-labeled fi-
bers were most concentrated in the ventral half of the 
SCN across an area overlapping those of both CalB- and 
VIP-ir cells. In the caudal sections, however, NPY fibers 
were more clustered in the central region of the nucleus. 
NPY-ir fibers were conspicuously absent in the area where 
VP-ir cells were most concentrated. These fibers are like-
ly to arise from cells in the IGL, as is the case in other 
diurnal and nocturnal species [e.g., hamsters, Card and 
Moore, 1984;  A. niloticus , Smale et al., 2001], and might 
convey non-photic signals to the SCN [Yannielli and 
Harrington, 2004].

  5-HT-ir fibers were present in the SCN all along its 
rostro-caudal axis and their distribution overlapped that 
of NPY but was not identical to it ( fig. 3 ,  6 ). They were 
most highly concentrated in the furthest ventral aspect of 
the nucleus beyond which their density progressively de-
creased. There was no sharp boundary between the areas 
in which they were most and least concentrated, as was 
the case for NPY ( fig. 3 ,  6 ). In species in which the func-
tion of 5-HT inputs to the SCN has been examined ex-
perimentally, they appear to play roles in the modulation 
of photic influences on the SCN and perhaps the media-
tion of non-photic effects on the circadian system [Yan-
nielli and Harrington, 2004]. Interestingly, this role ap-
pears to be different in nocturnal and at least one diurnal 
species [Cuesta et al., 2008], suggesting that the 5-HT in-
puts seen here in both species of spiny mice might have a 
different influence on their rhythms. The spiny mice 
could represent an ideal system with which to test the 
generality of the relationships between 5-HT function 
and rhythms in day- and night-active animals.

  Peptidergic Outflow from the SCN  
 In both species of  Acomys  there was considerable over-

lap between fibers containing VP-ir, VIP-ir and GRP-ir 
as they extended outward from the SCN, but there were 
also some differences. All of these peptides were seen 
within fibers exiting the SCN dorsally to the PVN, and in 
the case of VIP and VP some of these appeared to con-
tinue to the PVT. These three peptides were also seen in 
fibers that extended caudally into the full subparaven-

tricular area and in fibers that fanned out in a rostral di-
rection into the POA and the AVPV. Fibers containing 
VP-ir, VIP-ir and GRP-ir also extended laterally from the 
SCN adjacent to the optic tract to the SON. Relative den-
sities of fibers containing these three different peptides 
in different areas surrounding the SCN were somewhat 
variable. For example, VIP-ir fibers formed two distinct 
tracts in the sub-PVN zone, but VP-ir axons in that area 
were evenly distributed across the full extent of the me-
dio-lateral axis of the sub-PVN area. In addition, some 
GRP-ir fibers branched off from that primary tract to fan 
out in a lateral direction, reaching parts of the POA where 
neither VIP- nor VP-labeled fibers were seen. Overall, 
these patterns suggest that there is considerable conver-
gence of different peptidergic signaling peptides in many 
regions but that the balance of inputs from these different 
populations might be somewhat variable, and in one area 
cells possibly receive input from GRP but not VIP or VP 
cells.

  Sub-Compartments of the SCN 
 One issue that the current data can influence involves 

the best way of thinking and communicating about re-
gional differences within the SCN more generally. As 
noted above, when characterizing the substructure of the 
SCN, the tradition, derived initially from work on rats 
and hamsters, has been to focus on major differences be-
tween two regions described by Moore et al. [2002] as a 
core and a shell, respectively. This distinction is based 
primarily on the distribution of SCN cells containing 
VIP, GRP and VP, and fibers containing serotonin and 
NPY, and inputs from the retina [Card and Moore, 1984; 
Abrahamson and Moore, 2001; Moore et al., 2002]. More 
recently, Morin et al. [2006] have argued that SCN orga-
nization is more complex and that ‘oversimplification 
may hinder rather than facilitate understanding’ of SCN 
structure-function relationships. These authors use triple 
labeling techniques to very directly compare distribu-
tions of inputs to the SCN and cells of different pheno-
types within it and show that, indeed, the distinction be-
tween core and shell overlooks many features of SCN 
anatomy in rats and mice. Recent functional data also 
support the notion that a simple core-shell distinction 
might neglect important aspects of SCN function, as sub-
regions of the core operate in very different ways [Antle 
and Silver, 2005] and functional properties of cells can 
vary along a spatial gradient extending from ventral to 
dorsal SCN and not be restricted by traditional boundar-
ies [Davidson et al., 2009]. There might, however, be some 
value in communicating certain features of the SCN in 
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