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Abstract
Background—The ratio of pulse wave amplitude (PWA) during reactive hyperemia compared
to baseline as measured by peripheral arterial tonometry is as a non-invasive measure of
microvascular endothelial function referred to as the pulse wave amplitude reactive hyperemia
index (PWA-RHI). Whether upstream conduit vessel structure may affect downstream resistance
vessel PWA has not been clearly examined. We tested the hypothesis that digital PWA is
influenced by brachial artery diameter (BAD) and that this association would influence
comparison of PWA-RHI between genders.

Methods—Measures of vascular structure and microvascular function were carried out in 115
patients varying in cardiovascular risk profiles (average age 57 yrs, male n = 79, CAD n = 43).
PWA was assessed using modified finger photoplethysmography (peripheral arterial tonometry,
PAT) at baseline and following 5 minutes of brachial artery occlusion. Brachial artery diameter
(BAD) was assessed using high-resolution ultrasonography.

Results—There was a negative association between BAD and PWA-RHI and (r = −0.34,
p<0.05). Women had greater PWA-RHI and smaller BAD compared with men (p<0.05). When
co-varying for BAD, there were no longer gender differences in PWA-RHI. Moreover, when a
subgroup of men and women without CAD (n = 40) matched for BAD were examined, there were
no gender differences in PWA-RHI.

Conclusions—PWA-RHI obtained from PAT is associated with BAD. Studies examining
gender differences in microvascular endothelial function with PAT may need to correct for BAD
as a potential confounder.
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The ratio of digital pulse wave amplitude (PWA) during reactive hyperemia (RH) compared
to baseline as measured by PAT has gained acceptance as a non-invasive measure of
microvascular endothelial function. The reactive hyperemia index (RHI) obtained from PAT
is partially dependent on NO synthesis 18, is associated with conduit and coronary
endothelial function 5,11,12, and can be improved by therapies known to improve
endothelial function 1,31. PWA-RHI is also associated with cardiovascular risk factors6,11,12
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and is predictive of future CV events 2,24. However, a scarcity of data exists regarding the
physiology of the PAT signal.

Numerous studies acknowledge an inverse association between baseline vascular dimension
and flow mediated vasodilation8–10,16,25,28,29. Relative peak arterial dilation is a function
of baseline vessel diameter with dilation being greater in smaller vessels compared to larger
vessels 28. Given the strong association between baseline vascular structure and hyperemic
function, current guidelines for the assessment of endothelial function via brachial artery
reactivity advocate that measures of flow mediated dilation be expressed in absolute terms
as well as relative to baseline diameter to improve diagnostic and prognostic capability as
well as risk stratification 4. Upstream conduit vessel structure may affect downstream
resistance vessel function27. Smaller upstream conduit arteries (i.e. reduced brachial artery
diameter) result in lower absolute distal flows and this in turn could modulate digital shear
stress and PWA 3,23. Moreover, smaller conduit vessels may increase pulse wave
amplification (i.e. the pulse wave is amplified as it travels from central to peripheral arteries
owing to differences in vascular stiffness, wave reflections and vascular size) and this too
could influence the amplitude of the digital volume pulse 3,14. Despite the potential inter-
relation of conduit vessel geometry with resistance vessel function, no study has examined
the association between brachial artery diameter and digital PWA measured by PAT.

The potential association between brachial artery geometry and PWA might have important
clinical and research implications for studies that compare PWA-RHI between different
populations with variable vascular geometry. For example, the examination of gender
differences in cardiovascular disease prevention, detection and treatment is an ever-growing
and evolving field. A substantial proportion of reported gender differences in conduit artery
endothelial dependent dilation may be explained by smaller baseline vessel diameters in
women9,20. Moreover, men have higher central-to-peripheral pulse wave amplification than
women26 and this too may perpetuate gender differences in PWA-RHI. Studies that examine
differences in microvascular endothelial function between men and women using PAT may
need to account for gender differences in BAD but this has yet to be examined.

The primary purpose of this study was to examine the association between digital PWA-RHI
and brachial artery diameter (BAD). A secondary purpose was to put potential findings in
context by examining gender differences in PWA-RHI as they relate to brachial artery
diameter (BAD).

Methods
Subjects

One hundred and fifteen patients reporting to the outpatient Preventive Cardiology Clinic of
Tufts Medical Center agreed to participate in this study. For the gender sub-group study, 34
women and 31 men without CAD and matched for other potential confounders were selected
from the initial cohort and compared. Exclusion criteria included patients with LDL-C > 100
mg/dl, severe valvular heart disease, recent myocardial infarction (within three months) or
unstable cardiac symptoms, congestive heart failure or left ventricular ejection fraction
<40%, renal insufficiency (serum creatinine > 2 mg/dL), active liver disease or Raynaud’s
disease.

The presence or absence of the following cardiovascular risk factors was assessed in each
patient: male sex; hypertension (systolic blood pressure > 140 mmHg, diastolic blood
pressure > 90 mmHg); hypercholesterolemia (total serum cholesterol > 200 mg/dL or taking
lipid lowering medication); diabetes mellitus (fasting glucose levels > 126 mg/dl or
treatment with an oral hypoglycemic agent); and family history of cardiovascular disease.
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CAD was defined as the presence of ischemia or infarction on single-photon emission
computed tomographic nuclear myocardial perfusion imaging or > 50% stenosis of an
epicardial coronary artery by angiography. All patients with CAD were stable (defined as
patients with previous myocardial infarction, stable angina, or any patient who had
undergone revascularization).

Vascular measures were performed with the subject in the supine position in a dimly lit,
temperature-controlled room following a ten-minute acclimatization period. Patients were
instructed to refrain from taking vasoactive medications the day of testing. Patients also
refrained from caffeine, smoking, exercise and were in a fasted state for vascular testing.
Patients gave written informed consent and this study was approved by the institutional
review board at Tufts Medical Center.

Finger pulse wave amplitude
Beat-by-beat pulse wave amplitude was captured using finger arterial tonometry (Itamar
Medical Ltd., Israel) as previously described in detail 12. A plethysmographic finger cuff
was placed on the index finger of both hands. The PWA-RHI index was calculated as the
ratio of the average PWA over a 1-minute period starting 1-minute after 5-min of ischemia
(60–120 seconds post ischemia) induced by brachial cuff inflation to a supra-systolic BP
(200 mmHg), divided by the average PWA of a 3.5 minute baseline period. The PWA
obtained from the finger of the non-occluded arm was also measured continuously and
served as a control signal. Final values were normalized to the contra-lateral hand to account
for any drift in the magnitude of the signal due to systemic factors. This was done
automatically using customized computer software.

Brachial artery diameter and flow mediated dilaton
Brachial artery diameter was assessed using high resolution ultrasonography (Philips,
Andover MA). Briefly, the brachial artery was longitudinally imaged 2-cm above the
antecubital fossa using a high-resolution (10mHz) linear array vascular ultrasound
transducer. Diameters were measured during end-diastole (gated with ECG R-waves) using
ultrasonic calipers. The average of 5 evenly spaced measures (distance between the anterior
and posterior intima-blood interfaces) obtained within a 5 cm segment of the vessel was
used for subsequent analysis. Reactive hyperemia was then induced (see above) and sixty
seconds following release of the occlusion cuff, brachial diameter was once again measured.
Responses were calculated as percentage change in brachial artery diameter from baseline
(flow mediated dilation, FMD). Measures of PWA-RHI and FMD were carried out at the
same time. Intra-observer and inter-observer variability in our lab has previously been
established to be low (1.8% and 2.8% respectively) 12.

Statistical analysis
All data are reported as means ± SEM. A priori significance was set at p < 0.05. Normality
of distribution was assessed using Kolmogorov-Smirnof and Shapiro-Wilk tests. Subjects
were divided into quartiles and analysis of variance (for parametric data) with Schefe post
hoc testing was used to assess differences in continuous outcome variables between groups.
Mann-Whitney U tests were used to assess differences in all outcome variables that were not
normally distributed. Chi-square tests were used to compare categorical variables. Pearson’s
(parametric) and Spearman’s rank (nonparametric) correlation coefficients were used to
assess relationships between variables of interest. Stepwise multiple regression analysis was
performed to examine predictors of PWA-RHI in our cohort. Variables entered into the
model included traditional cardiovascular risk factors (age, gender, presence/absence of
hypertension, diabetes, hyperlipidemia, family history, and BMI), presence/absence of
clinically determined CAD, baseline PWA and BAD. Multivariable logistic regression was
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used to examine if PWA-RHI, baseline PWA and BAD were predictors of CAD. The fit of
the regression models were checked by the Hosmer-Lemeshow test for goodness of fit. Area
under the receiver operator characteristic (ROC) curve was also examined to determine the
predictive power of BAD and baseline PWA for detecting presence of CAD.

Recent work from Mizia-Stec et al. has demonstrated that the product of FMD and BAD
(termed the FMDxBAD index) may be a more parsimonious way of accounting for the
influence of vessel size when examining gender differences in flow-mediated dilation 16.
Therefore, PWA-RHI×BAD was calculated as a composite index to adjust PWA-RHI for
BAD 16. Similarly, PWA-RHI×baseline PWA was calculated as a composite index to adjust
PWA-RHI for baseline PWA 16. Data analysis was carried out using Statistical Package for
the Social Sciences (SPSS, v 16.0.1, SPSS, Inc., Chicago, IL).

Results
BAD, baseline PWA and PWA-RHI

PWA-RHI and brachial artery diameter were inversely correlated (r = −0.34, p<0.05).
Characteristics of the subjects according to quartile of PWA-RHI are presented in Table 1
and Table 2. Quartiles were not different in age, sex, body mass index, prevalence of
hypertension or diabetes mellitus. Separating subjects according to quartile of PWA-RHI,
those with the lowest PWA-RHI had the largest brachial artery diameter (Figure 1, p<0.05).
This relationship remained when expressing brachial artery diameter relative to body surface
area (Table 2, p<0.05). There were modest differences in use of beta-blockers and statins
between quartiles (Table 1). Use of beta blockers and statins was significantly lower in
quartile 1 versus quartile 2 (p<0.05). Differences in BAD across quartiles prevailed after
adjusting for use of beta blockers and statins (p<0.05).

According to stepwise multiple regression, baseline PWA, BAD and smoking status entered
into the model as predictors of PWA-RHI (R2 = 0.47; p<0.05). Baseline PWA explained
14.7% of the variance in PWA-RHI (β = 0.00, SE = 0.00, 95% confidence interval: −0.00 –
0.00, p<0.05). BAD explained an additional/incremental 4.4% of the variance (β = −0.172,
SE = 0.070, 95% confidence interval: −0.312 – −0.033, p<0.05). Smoking explained an
additional/incremental 3.1% of the variance (β = 0.156, SE = 0.074, 95% confidence
interval: 0.009 – 0.302, p<0.05). Presence or absence of hypertension, diabetes mellitus,
coronary artery disease, hyperlipidemia, body mass index and gender did not enter into the
model. Medication use did not predict PWA-RHI and PWA-RHI did not differ between
patients taking a particular medication versus those not taking that medication (data not
shown).

There was a significant positive correlation between BAD and baseline PWA (r = 0.48,
p<0.05). There was a significant inverse association between baseline PWA and PWA-RHI
(r = −0.45, p<0.05). There was a significant inverse association between BAD and FMD (r =
−0.42, p<0.05). There was a significant positive association between PWA-RHI and FMD (r
= 0.31, p<0.05).

Gender Differences in BAD, PWA and PWA-RHI
An inverse association between PWA-RHI and resting BAD in the subgroup without CAD
was found (−0.47, p<0.05). As seen in Table 3, gender groups did not differ in age, body
mass index, or the prevalence of hypertension, hyperlipidemia, diabetes mellitus, smoking
status, or family history of CVD. Women had lower BSA, lower baseline PWA, lower
resting BAD and lower hyperemic BAD (Table 2, p<0.05). Women had significantly higher
PWA-RHI compared with men (Figure 2, p<0.05). However, when PWA-RHI was adjusted
for resting BAD with ANCOVA, there were no longer gender differences in PWA-RHI
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(Figure 2). Twenty women and 20 men were matched for BAD. In this subgroup, BAD in
women was 3.76 ± 0.07 mm and BAD in men was 3.77 ± 0.1 mm (p > 0.05). Groups
matched for BAD did not differ in PWA-RHI (Figure 3).

A positive association between PWA-baseline and resting BAD in the subgroup without
CAD was found (0.54, p<0.05). When PWA-RHI was adjusted for baseline PWA with
ANCOVA, there were no longer gender differences in PWA-RHI (adjusted means: women
1.58 ± 0.08 vs. men 1.53 ± 0.09 %, p>0.05). Twenty women and 20 men were also matched
for baseline PWA. In this sub-group, baseline PWA in women was 409.9 ± 39.4 and PWA
in men was 410.6 ± 47.2 (p > 0.05). Groups matched for baseline PWA did not differ in
PWA-RHI (women 1.47 ± 0.1 vs. men 1.49 ± 0.1 %, p>0.05).

There was a positive association between BAD and BSA (0.31, p<0.05). Adjusting PWA-
RHI for BSA via ANCOVA had no effect on gender differences in PWA-RHI, with women
maintaining higher values then men (1.72 ± 0.1 vs. 1.38 ± 1.0, p<0.05).

Adjusted PWA-RHI for the prediction of CAD
According to binary logistic regression, PWA-RHI was not a significant predictor of CAD
in our cohort (p>0.05). Moreover, the area under the ROC curve for PWA-RHI as a
predictor of CAD was not significant (0.571, p = 0.19). According to binary logistic
regression, PWA-RHI×BAD index was a significant predictor of CAD (β = 0.285, SE =
0.120, Wald statistic = 5.658, 95% confidence interval: 1.052 – 1.683, p<0.05). Area under
the ROC curve for PWA-RHI×BAD index was significant (AUC = 0.648, p = 0.007).
According to binary logistic regression, PWA-RHI×baseline PWA index was a significant
predictor of CAD (β = 0.001, SE = 0.000, Wald statistic = 6.758, 95% confidence interval:
1.000 – 1.002, p<0.05). Area under the ROC curve for PWA-RHI×baseline PWA index was
significant (AUC = 0.645, p = 0.008).

Discussion
In this study, there are several noteworthy findings. BAD is associated with digital PWA
and PWA-RHI suggesting that measurement of peripheral microvascular function by PAT is
influenced by conduit artery structure. PWA-RHI was significantly higher in women
compared to men. When statistically adjusting for BAD, PWA-RHI was no longer different
between genders. Moreover, when a subgroup of men and women were matched for BAD,
there were no gender differences in PWA-RHI. PWA-RHI is a function of baseline PWA.
When statistically adjusting for baseline PWA, PWA-RHI was no longer different between
genders. Moreover, when a subgroup of men and women were matched for baseline PWA,
there were no longer gender differences in PWA-RHI. Finally, adjusting PWA-RHI for
BAD or baseline PWA improved the power of PWA-RHI to predict the presence of CAD in
a heterogenous patient population varying in CV risk. These findings suggest that BAD and
baseline PWA are significant correlates of PWA-RHI and this has both physiologic and
clinical relevance.

BAD, PWA and microvascular endothelial function: Physiological implications
Previous work has shown that relative peak arterial dilation is a function of baseline arterial
diameter and there is an inverse association between BAD and brachial FMD8–10,16,25,28,29.
Similar to this, baseline PWA was inversely associated with PWA-RHI. Similar to what has
been reported with brachial FMD, digital PWA-RHI appears to be a function of baseline
PWA.

BAD was positively associated with baseline PWA and inversely associated with PWA-RHI
and this may be mediated by the nature of the dilatory stimulus 19,30. Vessels with the same
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blood flow may have different levels of shear stress owing to divergent diameters, providing
a different stimulus to the blood vessel wall 21. There is an inverse association between
artery diameter and shear such that a larger vessel experiences a much smaller shear stress 4.
Thus, relative dilation in smaller vessels appears to be more than in larger vessels 28. Indeed,
it has been demonstrated that noted gender differences in conduit artery flow-mediated
dilation are explained by larger baseline vessel diameters in men 8,9,16,25 and this may be
attributable to differences in local shear stress 13,15. Recent findings from Thijssen et al.
have also suggested that lower FMD in larger vessels is due to intrinsic architectural
differences in blood vessel structure 28 as smaller vessels tend to be hyper-responsive to
vasoactive agents. Thus, lower shear stress coupled with altered vascular morphology (i.e.
differences in wall:lumen ratio and smooth muscle/elastin concentrations) in patients with
larger BAD may contribute to increased downstream digital PWA and reduced PWA-RHI.
Therefore, in individuals with variable brachial geometry, adjusting PWA-RHI for BAD
may be needed to accurately examine microvascular endothelial function using PAT.

Gender differences in BAD and PWA
Recently, Hamburg et al. reported gender differences in PWA-RHI in the Framingham
Heart Study cohort 6. We noted similar gender differences in PWA-RHI in our patient
population with women having higher values then men. Interestingly, statistically adjusting
for BAD in the present study eliminated gender differences in PWA-RHI. Moreover when
matched for BAD, PWA-RHI was similar in men and women. This would suggest that BAD
is a significant determinant of gender-mediated differences PWA-RHI. Additionally,
baseline PWA was also different between genders with men having larger amplitudes.
Although brachial FMD is usually expressed relative to BAD, previous studies have noted
that making an additional adjustment for BAD abolishes gender differences in FMD16. Our
results build upon this observation and suggest that when examining gender differences in
PWA-RHI, an additional adjustment for BAD or baseline PWA may be warranted.

There was an association between BAD and body surface area. However adjusting PWA-
RHI for BSA did not have an effect on gender differences in PWA-RHI. Large BAD is not
simply a manifestation of larger body size. And although a static measure, BAD reflects
dynamic physiology (i.e. balance of hormonal, neural, metabolic factors acting on the vessel
wall) with additional modulation occurring via increases in atherosclerotic cardiovascular
disease burden 7.Therefore, body surface area may not be used as a surrogate measure of
vascular geometry when correcting for gender differences in PWA-RHI.

CAD differences in BAD and PWA: Clinical implications
An interesting finding was the low prevalence of CAD in patients with very low PWA-RHI.
PWA-RHI has been shown to be associated with cardiovascular risk factors, yet findings
from the Framingham Heart Study have demonstrated that PWA is not a predictor of overt
cardiovascular disease 6. Similar to previous findings 6, we noted that PWA-RHI was not a
significant predictor of CAD in our cohort. Our findings would suggest that this may be
attributable to the confounding influence of larger BAD and subsequently larger baseline
PWA in select patients with low PWA-RHI 7. Individuals with CAD have larger BAD,
possibly secondary to positive vascular remodeling in the presence of atherosclerosis7,17.
Indeed in our cohort, BAD was higher in CAD+ versus CAD− patients (4.03 ± 0.09 vs. 3.79
± 0.09 mm, p<0.05). As such, baseline PWA was also higher in CAD+ versus CAD−
patients (549.3 ± 49.5 vs. 430.8 ± 39.2, p<0.05). Adjusting PWA-RHI for BAD improved
the predictive power of PWA-RHI for detecting CAD. Similarly, adjusting PWA-RHI for
baseline PWA also improved the predictive power of PWA-RHI for detecting CAD.
Therefore adjusting PWA-RHI for BAD or baseline PWA may improve the capacity of PAT
for predicting the presence of CAD.
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Limitations to this study should be noted. We did not quantitatively assess brachial blood
flow and shear stress 19,22. Thus, our contention that the link between BAD and digital
PWA may be related to modulation of the shear stress stimulus remains speculative.
Additional study is required to substantiate the association between BAD and PWA
empirically.

In conclusion, BAD is associated with baseline digital PWA and this may affect the
interpretation of digital PWA measured during reactive hyperemia (as an index of
microvascular endothelial function). Studies that examine differences in microvascular
endothelial function between individuals with variable vascular geometry (i.e. gender
differences in BAD or vascular remodeling secondary to CAD) with PAT may need to
account for differences in vascular size and/or baseline PWA.
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Figure 1.
Brachial artery diameter for each quartile increase in PWA-RHI. Quartile 1 and Quartile 2
had significantly greater BAD than Quartile 4 (p<0.05).
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Figure 2.
Pulse wave amplitude during reactive hyperemia (PWA-RHI) in women and men unadjusted
(top) and adjusted for brachial artery diameter (bottom).
* significant gender difference (p < 0.05).
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Figure 3.
Pulse wave amplitude during reactive hyperemia (PWA-RHI) in women and men matched
for brachial artery diameter.
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Table 3

Gender comparison characteristics.

variable Women
n = 34

Men
n = 31

Age, yrs 56 ± 2 53 ± 2

Body mass index, kg/m2 29 ± 1 28 ± 1

Body surface area* 1.85 ± 0.03* 2.06 ± 0.03

Hypertension, % 45 35

Dyslipidemia, % 38 32

Diabetes mellitus, % 3 16

Family Hx, % 50 42

Smoking Hx, % 29 23

PWA-baseline, AU 292.3 ± 34.1* 593.0 ± 72.0

BAD, mm 3.4 ± 0.1* 4.2 ± 0.1

BAD/BSA 1.87 ± 0.07* 2.06 ± 0.06

FMD, % 11.3 ± 0.9* 9.1 ± 0.7

*
significant group difference (p<0.05).
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