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Abstract
Simulated chromatographic data were used to determine the precision and accuracy in the
estimation of peak volumes (i.e., peak sizes) in comprehensive two-dimensional liquid
chromatography in time (LC×LC). Peak volumes were determined both by summing the areas in
the second dimension chromatograms determined and by fitting the second dimension areas to a
Gaussian peak. The Gaussian method is better at predicting the peak volume than the moments
method provided there are at least three second dimension injections above the limit of detection
(LOD). However, when only two of the second dimension signals are substantially above baseline,
the accuracy and precision of the Gaussian fit method become quite poor because the results from
the fitting algorithm become indeterminate. Based on simulations in which the modulation ratio
(MR = 41σ/ts) and sampling phase (φ) were varied, we conclude for well-resolved peaks that the
optimum precision in peak volumes in 2D separations will be obtained when the MR is between
two and five, such that there are typically four to ten second dimension peaks recorded over the
eight σ width of the first dimension peak. This sampling rate is similar to that suggested by the
Murphy-Schure-Foley criterion. This provides an RSD of approximately 2 % for the signal-to-
noise ratio used in the present simulations. The precision of the peak volume of experimental data
was also assessed, and RSD values were in the range of 4–5 %. We conclude that the poorer
precision found in the LC×LC experimental data as compared to LC may be due to experimental
imprecision in sampling the effluent from the first dimension column.
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1. Introduction
Comprehensive two-dimensional liquid chromatography (LC×LC) in time is under
development as a method to increase peak capacity and consequently the average resolution
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of liquid phase separations [1,2]. This technique has been used in large part because of its
higher resolving power as compared to one-dimensional LC [1,3]. Typical samples that have
been analyzed include those from naturally occurring sources such as blood, urine and plant
extracts, as well as man-made items such as drugs and alcoholic beverages [3,4]. LC×LC
can also be useful in metabolomics, proteomics, pharmaceutics, food science and synthetic
polymer research [3,5,6].

LC×LC techniques can be classified into two categories – heart cutting and comprehensive.
Heart-cutting is a technique where a volume of the effluent from the first column is injected
onto the second column, and it was once the most popular form of 2D separations [7]. This
technique results in two individual chromatograms that must be individually analyzed to
provide more information about a particular analyte. When the second dimension separation
directly samples the first-dimension effluent over the entire first dimension run time, this
technique is considered to be “comprehensive” LC×LC [7]. Unlike a typical LC where one
has a detector signal that can be plotted as a virtually continuous function of elution time,
comprehensive LC×LC provides a matrix of data that can be illustrated as a contour plot of
the detector signal vs. the individual elution time axes [7]. While heart-cutting may provide
more information for a single peak that is poorly resolved by the first dimension separation,
on-line, comprehensive LC×LC provides more information for multiple overlapped peaks
[7]. Furthermore, stop-and-go LC×LC and off-line LC×LC are additional comprehensive
LC×LC options that can provide more separation power than on-line LC×LC at the cost of
longer total analysis times [2,8].

Stoll et al. recently demonstrated the ability to successfully reduce the comprehensive
LC×LC run time to as little as 15 minutes [9]. To obtain optimum resolution and peak
capacity over a reasonable timeframe, the second dimension cycle time must be exceedingly
fast. One way of achieving this goal is to use parallel second dimension columns to increase
the throughput of second dimension separation [10–12]. Alternatively, Stoll and coworkers
used second dimension column temperatures of more than 100 ºC to greatly decrease
viscosity and achieve very high linear velocities for analyses of plant leaf tissue extracts,
tryptic peptides, wine, coffee, and urine [9,13–15]. This method employed ultrafast
gradients in the second dimension (about 20 s) with a rate of peak capacity production on
the order of one peak per second [9]. More recently, they achieved peak capacities of two
units per second using 2.7 μm micropellicular phases at high temperature and very high
velocities [16].

An LC×LC uses a typical LC instrument for the first dimension except that, instead of a
detector, there is a switching valve at the end of the column. This switching valve diverts the
first dimension effluent into one of two sample loops and the contents of the loop are
eventually pumped into the second dimension column. A variety of LC columns have been
used in either of the two dimensions including reverse-phase, normal phase, ion-exchange,
and size-exclusion columns [17,18]. The switching valve is programmed to change positions
when the run on the second dimension is complete. The second dimension chromatographic
run is typically a very short run (20 s) relative to the first dimension run (15–60 min). A
major change in the LC×LC design developed by Stoll et al. includes the use of two binary
pumps that alternate pumping through the column for the fast second dimension gradient to
enable the equilibration of one pump while the second pump delivers the second dimension
gradient [14]. A ten-port switching valve regulates the flow from the alternating binary
pumps [14]. Eluent pre-heaters and heating jackets around both columns maintain the
temperature of the mobile phases in this system and curtail potential band broadening [14].
Flow splitting improves the gradient reproducibility while use of an improved diode array
detector allows spectral collection at 80 Hz from 200 nm to 600 nm [9]. A typical signal for
a sequence of second dimension chromatograms is shown in Fig. 1A for data taken at a
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single wavelength [19]. These data contain multiple second dimension chromatograms that
are recorded consecutively. A first dimension peak is sampled one or more times and
injected onto the second dimension column, depending on the sampling period (i.e., the
length of the total second dimension analysis time). Therefore, a peak in a second dimension
chromatogram eluting at the same retention time as a peak in the subsequent second
dimension chromatogram is likely to be the same analyte, as shown in Fig. 1A [19]. To be
even more specific, each second dimension peak area is proportional to the fraction of the
first dimension peak that was collected and injected onto the second dimension column.
Thus, it is important to recognize that the peaks eluting in these consecutive second
dimension chromatograms may be the same component. Keeping this fact in mind, one can
rearrange the recorded data into a contour plot as shown in Fig. 1B [19].

Explanations as to how the sizes of two-dimensional peaks (and therefore the relative
amount of the compound that gives rise to the peak) are determined are given in detail in the
Experimental section [20–22]. However, to be concise, the simplest way to quantify the size
of a two-dimensional peak is to sum the areas underneath the corresponding peaks in the
second dimension chromatograms as shown in Fig. 1C [21]. Summing the peak areas taken
for a single component first-dimension chromatographic peak effectively reconstructs the
first dimension peak and subsequently the total amount of sample injected. Since a peak in a
2D separation is a three-dimensional object, the size of such an object is equivalent to a
volume. Thus, the size of a peak that is proportional to the amount of analyte injected into
the LC×LC will be referred to as a “peak volume” throughout the rest of this work.

Although the use of comprehensive LC×LC separations is increasing, the majority of the
reports have been mainly concerned with qualitative issues. There is somewhat more
literature in the area of GC×GC peak detection and quantification. For example, the
technique of GC×GC-TOF-MS was applied to complex essential oils and provided better
resolution than conventional GC and more accurate results in terms of assigning peaks [23].
Quantitative analysis was performed on polychlorinated biphenyls and polyaromatic
hydrocarbons by using a new cryogenic modulator [24]. Enantioselective analysis of
oxygenated monoterpenes and monoterpene hydrocarbons in Australian tea tree was
successfully performed using GC×GC [25]. Fast quantitative enantioselective analysis, i.e.,
8.5 minutes, was performed by using a short enantioselective second dimension capillary
column in GC×GC analysis of monoterpene compounds in bergamot essential oil [26]. Upon
GC×GC-TOF-MS analysis of Pogostemon cablin Benth (Cablin Patchouli) volatile oil in
traditional Chinese medicines, 394 components were identified [27]. The first application of
quantification using a GC×GC-quadrupole (q) MS took place when European law demanded
that fragranced products be analyzed for 24 components that were alleged to be skin
allergens [28]. GC×GC-qMS was also applied to Pelargonium graveolens essential oil where
65 components were identified using retention indices and literature mass spectral matching
[29]. GC×GC-TOF-MS was used to analyze sterols in doping control samples with
acceptable LOD values and adequate specificity based on a library match [30]. GC×GC-
TOF-MS was also applied to identification of pesticides in tobacco extracts where pesticide
standards were used to isolate matrix interferences and to establish linearity [31]. The
ruggedness of retention times using GC×GC was validated in an intralaboratory study where
reproducibilities in the retention times were found to be 0.12 % in the first dimension
column and 0.74 % in the second dimension column for oxygenated monoterpenes and
monoterpene hydrocarbons in Australian tea tree (Melaleuca alternifolia) [32].

Retention time reproducibility is important for some chemometric quantification methods,
such as parallel factor analysis (PARAFAC) and trilinear partial least squares (tri-PLS). In
conjunction with tri-PLS, six minute GC×GC analyses of cycloalkane and aromatic content
of naphtha samples were carried out with adequate quantitative precision [33]. An

Thekkudan et al. Page 3

J Chromatogr A. Author manuscript; available in PMC 2011 June 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



automated PARAFAC method has been developed for resolving peaks over large sections or
even the entire GC×GC-TOF-MS and has been demonstrated on three different GC×GC-
TOF-MS data sets that offers valuable identification and quantitative information about the
sample [34]. Solid phase micro extraction coupled with GC×GC-TOF-MS has been used to
identify and quantify compounds using a PARAFAC graphical user interface in cacao beans
[35]. An approach for background removal in GC×GC has been demonstrated by estimating
the background level across the chromatographic image and then subtracting from the
chromatogram, which is critical for proper quantification [36]. While the quantitative
GC×GC literature can lend insights into the issues with quantification in LC×LC, some
important differences must be considered, including the type of modulation used (thermal
vs. valve) [37] and the nature of the gradient background in LC.

Reports of quantitative analyses by comprehensive LC×LC are not common. Kivilompolo
and coworkers have resolved antioxidant phenolic compounds in herbs [38] and in wines
and juices [39] with LC×LC-MS. Peak volumes were determined by summing areas [21];
however, an evaluation of precision and accuracy was not performed over a variety of
conditions. Mondello and coworkers have reported quantitative results for LC×LC analysis
of the compounds present in citrus-fruit essential oils [40], but several aspects of their
methodology are ambiguous, namely, their descriptions of two-dimension peak interpolation
and their method for peak integration by triangularization [41]. Reichenbach explained that
peak interpolation and the triangularization method provides the same result as simply
summing the second dimension areas [41].

Some researchers have used chemometric methods, such as PARAFAC, to obtain
quantitative results from LC×LC data (similar to the GC×GC studies described above)
[42,43]. A limitation of the PARAFAC method is that the retention times of both the first
and second dimension separations must be very reproducible [22], and thus this technique
has not been widely applied. In fact, a variety of chemometric techniques has been reviewed
for their potential in resolution, identification, and quantification [44]. Van der Klift et al.
combined an automated method with analyst intervention to quantify triacylglycerols in corn
oil. However, they found that the agreement with a gas chromatographic reference method
was fair at best, and cautioned against relying on quantitative results in LC×LC analysis
[45]. LC×LC was used in conjunction with a time-of-flight mass spectrometer (TOF-MS) as
a detector to analyze atmospheric aerosols [46] and Stevia rebaudiana plant extracts [47].
Calibration curves, limits of detection (LOD) values and precisions were generated based on
known standards in these publications. Dugo et al. quantified polyphenols in red wines using
LC×LC and compared these results against those in standard LC [48]. Horvath et al. studied
the effect of the dilution factor using LC×LC, which could affect quantification in LC×LC
[49]. Stoll et al., in a direct comparison of 1D and 2D methods, found that the average
precision of peak volumes for the LC×LC separation could be as much as a factor of four
worse than the average precision obtained with a LC separation [9]. These authors suggested
that the decrease in precision of quantification by LC×LC arises from errors in selecting the
start/stop integration points for the multiple second dimension chromatograms

In the present work, we want to understand the fundamental limitations to the precision of
quantification in 2D separations. Of specific relevance to our studies, Harynuk et al. used an
area summation technique to examine peak volume in simulated GC×GC data [21].
Specifically, their work studied two potential causes of error from GC×GC as opposed to
GC. These were (1) errors due to dividing a single large first dimension peak into four or
more second dimension peaks and (2) errors related to differences in the phase angle at
which the first dimension peak is sampled. Simulated chromatograms with Gaussian peaks
were generated in Harynuk et al. analogous to our simulations. Their simulations covered a
wide range of modulation ratios at four phase angles. They characterized the accuracy of the
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peak volume determinations as a function of the number of second dimension peaks
summed together. They found that for an MR = 3.0, four to five second dimension peaks
should be summed to obtain accurate peak volumes that were not sensitive to variations in
sampling phase [21].

Adcock et al. fit the consecutive second dimension peak areas to a Gaussian function [22],
which is essentially the approach used in the present work. However, these authors were
mainly concerned with the determination of the first dimension retention time. They found
that at least three second dimension injections were needed to properly sample a Gaussian
first dimension peak, and when only two injections were obtained this method should not be
used. They showed that fitting the second dimension peak areas to a Gaussian provides
accurate first dimension retention times, and suggested using the Gaussian fitting method to
estimate peak area. The reported work covered a limited range of modulation ratios and
phase angles. Column overloading of the second dimension did not affect the accuracy and
precision of the results. They attempted to model a Gaussian peak by simply using the three
largest peak areas and observed no significant difference in the results when all areas that
were above the baseline were included. They concluded that the Gaussian method is a
reliable and robust method for determining first dimension retention times, and is a novel
means for determining peak volume [22].

We expand upon the important results described above. In Harynuk et al., an optimum
modulation ratio (MR = 3.0) was obtained from a previous publication [50], and they did not
use their summation technique to determine a new optimum modulation ratio [21]. In
Harynuk et al., their summation technique was documented in tables and was analyzed only
in terms of “peak volume,” the two-dimensional peak quantification equivalent to one-
dimensional peak areas, while trends in first dimension peak retention time and standard
deviation were not evaluated [21]. In Adcock et al., only 0° and 180° phase angles were
investigated and their experimental modulation ratios only ranged from three to four [22],
which does not allow for the determination of an optimum sampling ratio using the Gaussian
method. Neither Harynuk et al. nor Adcock et al. examined the effects of baseline
disturbances [21,22]. These problems are not too serious in GC, but are much more
important in gradient LC. Asymmetric phasing also was not thoroughly covered in either
work. Finally, the methods of Harynuk et al. and Adcock et al. have not been directly
compared [21,22].

Here, we use simulations of LC×LC chromatograms to investigate the potential causes of
the poor precision observed for LC×LC quantification [9]. We hypothesize that the decrease
in the precision of LC×LC analyses might be due to the following factors: (1) the decrease
in signal-to-noise (S/N) when several smaller peaks in consecutive second dimension
chromatograms are summed to obtain the peak volume; (2) errors in baseline estimation and
determination of start/stop integration points, especially in the case of the rapid second
dimension gradients used in fast LC×LC methods; and (3) errors caused by unavoidable
changes in sampling phase (due to retention time shifts) over repeated second dimension
injections and; (4) differences in the effective S/N of the total signal at different sampling
phases. To investigate these factors, we used simulations to characterize the precision of the
peak volume determination as a function of modulation ratio (MR = 4σ/ts), sampling phase
(φ), and in the presence of background contributions.

We used two methods to estimate LC×LC peak volumes. First, the peak volume was
calculated as the zeroth moment of the first dimension peak simply by summing the areas
under consecutive second dimension chromatographic peaks [21]; this same method allowed
us to also estimate first dimension retention time and peak width [21,51] . Second, we fit
these sequential second dimension peak areas to a Gaussian model to obtain the peak
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parameters of the first dimension peak, including the amplitude [22]. We postulated that this
method might partially compensate for the decrease in precision caused by the errors in
determining the area of the second dimension chromatogram peaks occurring in the tails of
the first dimension chromatograms. While we acknowledge that a simple Gaussian model is
generally inadequate to fit experimental chromatograms, we felt that this approach might
yield acceptable results due to the small number of second dimension areas that constitute
the first dimension chromatogram (typically two to five areas in experimental work and in
our simulations.

2. General Considerations
In the present work we used the modulation ratio, MR = 4σ/ts, to represent the effect of
changing the sampling frequency on the quantification of the peaks [50]. The value of MR
approximates the number of significant second dimension peaks observed in a given
chromatogram. This is similar in nature to the parameter N = 8σ/ts used by Murphy et al. [7],
only differing from it by a factor of two.

The sampling phase represents the time where sampling events begin with respect to the
retention time of a particular first dimension peak. We used a modification of the definition
proposed by Seeley [20]

(1)

where T is the midpoint of the sampling cycle closest to the peak retention time, and 1tR is
the true retention time of the first dimension peak [20]. Our modification is to include the
2π, rather than representing the phase as a fraction. This is essentially the same method as
used by Marriott et al. [21,22,50].

The modulation ratio can have a pronounced effect on the appearance and resolution of the
first dimension chromatogram [4,7,20]. In addition, the sampling phase, φ, has a significant
effect on the first dimension chromatogram [4,20]. According to Seeley, adequate resolution
in LC×LC requires a modulation ratio greater than 2.7 [20]. However, according to Murphy
et al., in order to preserve first dimension resolution, a modulation ratio of 1.5 is adequate
when a peak is in-phase, while a modulation ratio of two is needed when a peak is out-of-
phase [7]. However, these works do not address the impact of sampling rate on the precision
of quantification.

Davis et al. developed a stochastically-based, empirical model for the effective first
dimension peak broadening from undersampling the first dimension chromatogram [53].
The effective peak width of an undersampled first dimension chromatographic peak is
expressed by its standard deviation (1σeff) which is the product of the original first
dimension peak standard deviation (1σ) and an average broadening factor (<β>). Davis et al.
[4] showed that the effective peak capacity, n’c,2D, is modified by an average broadening
factor <β> such that

(2)

where the Giddings equation for the ideal peak capacity (nc,2D) is
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(3)

and 1nc and 2nc are the peak capacities of the first and second dimensions, respectively
[3,54–56]. This equation is typically referred to as the “product rule” [53]. Davis et al.
determined the average broadening factor based on Monte Carlo simulations and statistical
overlap theory of many hundreds of thousands of simulations of complete 2D
chromatograms to be

(4)

where ts was the sampling interval in the first dimension, and the quantity ts/1σ was between
0.2 and 16 [4,53]. The salient characteristics of the LC×LC chromatographic simulations
include the fact that the sample heights followed a random exponential distribution, and both
first dimension and second dimension retention times followed a Poisson random
distribution. All peaks in each dimension were assumed to have the same peak width, which
differed between the two dimensions. This broadening factor can be used to represent the
average loss of peak capacity that occurs due to first dimension undersampling. Blumberg
describes the process of sampling from the first dimension as accumulating re-sampling
where sampling takes place in two steps: a boxcar accumulator and an ideal snapshot
sampler. Blumberg also includes boxcar filters to perform a linear interpolation step between
data points [57]. In this work, we calculate moments by summation of the raw second
dimension area data points, and thus, the linear interpolation is not necessary [21]. The
effective standard deviation of the sampled first dimension chromatograms is therefore
calculated as:

(5)

While in the present work, we are not directly concerned with peak capacity and resolution
issues, it is possible that the undersampling that occurs in LC×LC separations could well
have a major effect on the precision and accuracy of quantification.

In this work, we have generated a series of simulations wherein the first dimension standard
deviation and retention time were varied. While in previous work, effects due to
undersampling and variations in the above parameters on the peak width, resolution, and
retention time of Gaussian peaks were studied, the effects of these parameters on the
accuracy and precision of quantification were not investigated [4,7,9,20]. The goal of the
present work was to evaluate and compare the precision and accuracy of peak volumes
obtained in LC×LC experiments using area summation and Gaussian fitting methods and to
assess in so far as possible the reasons for the poorer precision of LCxLC as compared to LC
as seen in Stoll’s work [9].

We make the following assumptions in this paper. First, in both dimensions, all peaks are
Gaussian, thus:
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(6)

where A is the peak area (zeroth moment), tR is the retention time of the peak (first
moment), σ2 is the variance (second central moment) and t is time. In addition, we assume
that the duty cycle of the sampling device is 100 %. Finally, it should be noted that the
effects of peak overlap were not considered here. We felt that it was necessary to first study
the accuracy and precision of the quantification of a single peak.

We also wanted to test our findings on real LC×LC chromatograms. Thus, we obtained the
LC×LC chromatograms of a standard mixture from Stoll et al. [9,15]. These data were from
a comparison of 1D and 2D quantification [9]. Just as was done for the simulations above,
peak volumes were calculated both by summing the individual areas of the second
dimension chromatograms (i.e., the zeroth moment) [21] and by fitting a Gaussian peak to
these second dimension areas [22]. The precision and accuracy of these peak volume
estimates were then evaluated. To detect the effects of the chromatographic baselines
(background) on our analysis, we added peaks that mimicked the experimental responses to
blank chromatograms obtained from Stoll et al. [9].

3. Experimental
All data simulations were run on a Dell® Optiplex GX270 computer running Windows XP
using a Pentium 4 2.8 GHz processor with 1 GB of RAM. Data analysis was performed in
the MATLAB® programming environment, version 7.2.0.232 from Mathworks (Natick,
MA, USA). Nonlinear fitting was accomplished using the Optimization Toolbox with the
following parameters: 1000 function evaluations maximum, 100 iterations maximum, 10−8

minimum difference for the function, 10−4 minimum difference for the variables to be
optimized, 10−6 minimum difference in variables for finite differencing, and 60 seconds
maximum time.

An in-house MATLAB program was used to generate sampled Gaussian peaks in the first
dimension with known elution times, peak standard deviations, areas and sampling intervals.
Only four second sections of the second dimension chromatograms were simulated, as
shown in the contour plot in Fig. 1. Five hundred (500) replicate simulations were
performed for each set of chromatographic peak parameters used. The area of the ith second
dimension chromatogram was calculated using eqs (7)–(9) [20].

(7)

(8)

where y is given by eq. (6), and z is
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(9)

Here, ATotal is the total area of the first dimension chromatographic peak, Ai is the area of
the ith-sampled section and is therefore the area of the corresponding second dimension
peak, and erfc is the complementary error function. In our simulations, the true volume of
the peak was constant and set to 80. The above equations were used to generate the first
dimension chromatograms according to the desired specifications for the chromatographic
peak, i.e., retention time, standard deviation, and sampling interval [20]. Normally
distributed noise with a mean of zero and a standard deviation of 0.03 was added to each of
the second dimension chromatographic simulations containing a single Gaussian peak. The
maximum peak heights in the second dimension using this approach ranged from 0.79 to
2.5, giving S/N values ranging from 26 to 84.

Individual second dimension peak areas were summed to give the total peak volume. In the
case of the experimental chromatograms from Stoll et al. [9], the second dimension
chromatograms were integrated using an in-house integration program that enabled the user
to draw the baseline manually for the second dimension chromatograms, and the resulting
areas were summed (the moments method) [21]. The number of samples injected onto the
second dimension column from the first dimension effluent encompassed the entire
simulated peak, and the number of these fractions was equal in all cases. This integration
method will be referred to throughout as the moments method because it provides the zeroth,
first and second central moments of the data, i.e., area, mean position, and standard
deviation, respectively [51]. These areas were also fit to a Gaussian equation using a
nonlinear least-squares solver to estimate the parameters of the parent first dimension
chromatographic peak from which they are derived [22]. This technique provides estimates
for the peak volume, retention time, and peak standard deviation just like the moments
method. The nonlinear least-squares solver provides data-fitting solutions for a nonlinear
curve when initial guesses for the solutions, along with upper and lower bounds for the fit
parameters are provided. The initial guesses for the nonlinear least-squares solver for these
simulations are found in Table 1. Lower bounds of zero were chosen so that solutions would
not be negative. The selected upper bounds were chosen to allow for a wide range of
solutions but to prevent an unrealistic result. This integration method will be referred to
throughout as the Gaussian method [22]. The percent relative standard deviation (% RSD)
was calculated for 500 replicates to determine the reproducibility of the first dimension peak
parameters using the moments method [21] and the Gaussian method [22].

3.1. Effect of Changes in the First Dimension Sampling Phase
For the first set of simulations, eight different first dimension retention times were used
ranging from 1.050 to 1.225 min at 0.025 min intervals, as shown in Table 2 and Fig. 1. This
results in sampling phases from 0 to −π at 0.143π intervals. Two series of simulations were
carried out, with the peak width of the first dimension peak corresponding to a standard
deviation of 0.20 min (MR = 2.29) and 0.12 min (MR = 1.37) respectively (see Table 2). The
sampling interval was 0.35 min, and seven injections from the first dimension column into
the second dimension column were simulated, i.e., injections at 0 min, 0.35 min, 0.70 min,
1.05 min, 1.40 min, 1.75 min, and 2.10 min. The second dimension peak conditions were as
follows: a retention time of 2 s, a standard deviation of 0.135 s and a sampling interval of
0.0125 s. Five hundred (500) distinct replicates of this data set were generated.
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3.2. Effect of Changes in the First Dimension Sampling Frequency
A set of simulations was performed as the first dimension peak width was varied but the
elution time was held constant. Nine standard deviations were used from 0.10 to 0.50 min at
0.05 min intervals, corresponding to modulation ratios ranging from 1.14 to 5.71. The first
dimension retention time was 1.15 min, and the sampling interval was 0.35 min, giving a
constant sampling phase of −0.57π. The second dimension simulation parameters were the
same as those used for the previous simulations, and again 500 replicates were simulated.
Chromatographic peak areas from the second dimension were then integrated for all seven
injections onto the second dimension column because the highest standard deviation, 0.50
min, provided a significant amount of area for all seven injections. The precision and
accuracy of the peak volumes as obtained from the moments method and the Gaussian
method were assessed as described above.

3.3. Simulations with Experimentally Obtained Baseline Signals
Experimental LC×LC data obtained by Stoll et al. for a series of mixtures containing six
compounds (1–6) were analyzed. These standards are indole-3-acetonitrile (1), indole-3-
propionic acid (2), indole-3-acetic acid (3), tryptophan (4), 5-hydroxytryptophan (5), and
tyrosine (6). The details of this experiment are described by Stoll et al. [9], and an example
chromatogram is shown in Fig. 2. These were three replicates of these experimental
chromatograms. Prior to integration, the LC×LC chromatogram was divided into sections so
that only one peak could be found. For peaks 1–6, the Gaussian method [22] was performed
with acceptable value ranges as listed in Table 1b.

In addition, three sets of simulations were performed where the individual second dimension
areas of peaks 1–6 were used as the basis for the generation of second dimension Gaussian
peaks. Normally distributed noise with a mean of zero and a standard deviation of 0.03
mAU was added to each of these second dimension chromatographic simulations. These
Gaussian peaks were then directly added to blank LC×LC chromatograms. These blank
LC×LC chromatograms consisted of water injected onto the same gradient system that was
used to separate the indole standards. These peak areas were placed at approximately the
same retention times as peaks 1–6 as described in Table 3. The first series of simulated
peaks are denoted as 1a–6a. Simulated second dimension Gaussian peaks were added to
three replicates of the LC×LC background chromatograms. The areas of these second
dimension peaks were obtained from the first replicate of the experimental data for peaks 1–
6 and added to all three backgrounds. This analysis was performed to evaluate the effect of
the variability of the fast gradient backgrounds on the precision of the peak volume
estimates. In the second simulation set, peaks 1b–6b were simulated using second dimension
Gaussian peaks with areas corresponding to all three experimental replicates and added to
each of the three backgrounds. This simulation was performed to test the reproducibility of
peak volumes with shifting retention times. In a third set of simulations, simulated peaks 1c–
6c were positioned at randomly generated first dimension retention times with a standard
deviation in peak position of 0.35 min, which was the approximate observed variation in
first dimension retention times. These simulated peaks were added to the first replicate of
blank chromatograms. Fifty simulations were performed and this set demonstrated the effect
that variations in the sampling phase has on peak volume quantification. For these peaks, the
Gaussian method was performed with the upper and lower bounds as listed in Table 1b.

4. Results and Discussion
4.1. Effect of Changes in the First Dimension Sampling Phase

4.1.1 Effect of Sampling Phase on Peak Volume Determination—Representative
first dimension chromatograms illustrating the effect of sampling phase are shown in Fig. 3.
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When sampling is exactly in-phase (φ = 0π) a second dimension injection will be is obtained
at the center of the peak (Fig. 3a). This results in three consecutive second dimension
chromatograms with significant areas, as shown by the bar graph adjacent to Fig. 3a. When
sampling is completely out-of-phase (φ = −π), a symmetric pattern of peaks to either side of
the peak center is obtained (Fig. 3d). Retention times between 1.050 min and 1.225 min
result in an asymmetric distribution of peak areas in the first dimension chromatograms (Fig.
3b and 3c).

Results for integration of the second dimension chromatographic peaks with 1σ = 0.12 and
0.20 min are shown in Table 2. These two peak widths correspond to modulation ratios of
1.37 and 2.29, respectively. For the narrower first dimension peak chromatograms, either
two or three of the subsequent second dimension chromatograms show significant areas (in
bold), while for the broader first dimension peak chromatograms, three or four of the
subsequent second dimension chromatograms show significant areas (in bold). The S/N
values for the second dimension are given in parentheses. The moments method [21] for
both peak widths gives accurate peak volumes in all cases.

The results from both methods for these simulations are shown in Fig. 4. First, we see that
the precision of the moments method at MR = 2.29 is somewhat better (1.3 %) than the
Gaussian fit method (1.7 %), and at this MR the results from both methods are independent
of sampling phase. However, at the lower sampling rate (MR= 1.37) the moments method
gets a bit worse (2.0 %) while the Gaussian fit method becomes much less precise (up to
10% RSD), especially when sampling is fully out of phase. Using a propagation of error
equation derived by Eikens and Carr for the calculation of the precision of 0th moment as a
function of the number of data points used in the integration, the % RSD values ranged from
1.4 % to 1.7 % [58]. At the faster sampling rate both methods are rather accurate, typically
better than 0.3 %. The moments method remains quite accurate at the slower sampling rate
for all sampling phases but the accuracy of the Gaussian method deteriorates quite badly and
becomes very sensitive to sampling phase. The behavior of the Gaussian method is expected
based on the fact that at the lower value of MR the parameters from this fitting method
become indeterminate, as a minimum of three data are required to determine the three peak
parameters (area, 1tR and 1σ.

To compare these results against the precision and accuracy obtainable with 1D-LC
chromatography, 500 replicates of a peak generated with peak widths corresponding to σ
values of 0.12 min and 0.20 min and the same S/N were simulated. The % RSD for the area
estimates were 0.70 % and 0.78 %, for MR values of 1.37 and 2.29, respectively. Relative to
the LC×LC results using the moments method, 1D-LC area determination is approximately
2.8 times more precise.

4.1.2 Effect of Sampling Phase on Determination of Retention Times and Peak
Widths—Because the Gaussian method [22] and the moments method [21] yield estimates
for peak positions (i.e., retention times) and peak widths (i.e., 1σ values), we evaluated the
accuracy and precision of these results as well. The estimated retention times from the
Gaussian fit in the vast majority of cases was excellent, with the worst error being an
overestimation of 0.8 % (results not shown). The estimated retention time from the moments
method in the vast majority of cases was also good with the worst error being an
underestimation of 1.0 %. Thus, the use of the Gaussian fit procedure or the moments
method to estimate the first dimension retention time could be quite useful. It should be
noted that the moments method was overall less precise than the Gaussian method for the
retention times, i.e., RSD values of 1.1 % vs. 0.5 %, respectively.
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There were large differences in the estimated 1σ values of the first dimension
chromatographic peaks relative to the 1σeff values predicted by eqn. 4 as estimated by the
moments method for MR = 1.37 and shown in Fig. 4h. In the case of these narrower first
dimension peaks, inaccurate estimations of 1σ values occurred ranging from −21.5 % to 9.6
% error, as the sampling phase varied from in-phase (φ = 0) to out-of-phase (φ = −π). This
phase dependence was also observed by Blumberg for modulation ratios less than two [57],
which will be explained in detail later. For the broader first dimension peaks (MR = 2.29), 1σ
values were well-estimated, ranging from a −1.6 % to a 0.1 % error as compared to the
values predicted by eqn. 4, with a lesser dependence on the sampling phase. Using the
Gaussian method, the peak width of the MR = 1.37 peak was increasingly underestimated as
the peak shifted from being in-phase to out-of-phase, i.e., from a 0.3 % error to a −8.2 %
error. In the case of the MR = 2.29 peaks, the errors ranged from 0.9 % to −0.2 %. It should
be noted that especially in the case for MR = 1.37, where the % RSDs for the 1σ values are
quite large, the differences in peak widths are probably insignificant.

4.2. Effect of Changes in the Modulation Ratio
4.2.1 Effect of Modulation Ratio on Peak Volume Determination—Fig. 5 shows
the results of simulations when the first dimension peak width parameter (1σ) and thus MR
was varied at constant sampling interval and phase. This simulation allows the
characterization of the effect of sampling frequency. When first dimension peaks are narrow
relative to the sampling interval, i.e., 1σ = 0.15 min (MR = 1.7, see Fig. 5a), fewer second
dimension peaks result, each with a larger S/N. As a result, simulations with 1σ = 0.15 min
(MR = 1.7) provided a low % RSD value for the peak volume using the moments method as
shown in Fig. 6. However, when first dimension peaks are wider, i.e., (1σ = 0.45 min, MR =
5.0, see Fig 5d), there is a loss in precision of quantification because more frequent sampling
gives rise to a smaller second dimension peaks leading to a lower S/N for each of the second
dimension chromatograms. As peak width was increased there was a steady loss in precision
using the Gaussian method. The accuracy of the peak volumes was good in all cases over
this range. Based on this result and on the results from the previous series of simulations,
where it was shown that for an MR of 2.2 the precision of the volume determination was
independent of phase, we conclude for well-resolved peaks that the optimum quantitative
precision in 2D separations will be obtained when the modulation ratio to the first dimension
standard deviation is approximately two; that is, four samples are taken across the 8σ peak
width. According to Blumberg, a change in the sampling phase does not have a significant
effect on the broadening until MR < 2 [53,57], which we also observe in our simulations.

When Gaussian peaks were fitted to the second dimension peak areas at 1σ = 0.10 min (MR
= 1.1, the average peak volume error was 4.8 % and the % RSD for 500 replicates was 2.7
%. At this low sampling rate, there are only two significant points available for the Gaussian
fit. Clearly, the system is ill-defined. Thus, there was an overestimation of the volume in this
simulation and a dramatic decrease in precision.

Using the moments method, all simulations resulted in a peak volume % RSD of
approximately 1.8 %, and the accuracy varied from +0.1 % to −1.5 % as the peak width
increased. The propagation of error as calculated using the Eikens and Carr approach gave
% RSD values ranging from 1.4 % to 1.8 % [58]. This is again due to the lower S/N of
analyte signal spread over more second dimension chromatograms. This trend includes the
simulation where there were only two points (1σ = 0.10 min) because, in contrast to the
Gaussian method, the moments method does not require a minimum number of first
dimension data points. Based on the results shown in Figs. 4 and 6, the precision and
accuracy of the peak volumes using both the moments and Gaussian methods are
comparable if there are at least three data points above the LOD.
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To compare results against typical one-dimensional chromatography, 500 replicates of a
peak generated with the same 1σ value ranging 0.10 min to 0.50 min at 0.05 min increments
were simulated. As 1σ increased, the % RSD values increased from 0.67 % to 1.1 %, 1D-LC
areas were two to three fold more precise than the LC×LC method based on the moments
method, similar to the results obtained in the sampling phase study.

4.2.2 Effect of Sampling Frequency on Measurement of Retention Time and
Peak Width—We also evaluated the accuracy and precision of retention times and peak
widths. Overall, the estimates of retention time from the Gaussian fit were excellent; the
worst error in the retention time of −0.8 % for 1σ = 0.10 min. The next worse error was +0.3
%. Once again, the use of the Gaussian fit procedure to estimate the first dimension retention
time was useful only if there were enough points to define a Gaussian. The highest error in
retention time using the moments method was −1.8 % when 1σ = 0.10 min, while the other
estimates ran from only 0.01 % error to −0.9 % error when 1σ = 0.50 min.

The first dimension peak width parameter (i.e., 1σ) was computed from the observed second
dimension peak areas using both the Gaussian and moments methods and compared to 1σeff
computed from eqn. 4. Small differences were observed when the Gaussian method was
used except when 1σ = 0.10 min, (see Figure 6). In this case, an error of −3.3 % was
observed. With wider peaks, the difference varied from 0.0 % to 0.3 %. Because there is a
larger number of significant samples injected onto the second dimension column when the
peaks are wider, the accuracy of the 1σ estimate improved. The 1σ = 0.10 min simulation is
an extreme case where there are too few significant areas to estimate the standard deviation
accurately. Using the moments method, the error in the difference ranged from −0.3 % to
−5.7 % as 1σ increased. For the Gaussian and moments methods, the % RSD decreased from
6.4 % to 2.3 % and from 34.7 % to 2.0 %, respectively, as the MR value was increased from
1.1 to 5.7. Based on the results shown in Fig. 6, the precision and accuracy of the 1σ values
estimated using both the moments and Gaussian methods are comparable.

4.3 Comprehensive Study of Effect of Sampling Phase and Frequency on Measurement of
Peak Parameters

In order to more completely map out the precision and accuracy of the peak volumes as a
function of φ and MR values, we carried out a grid search of the entire range of φ and MR
values. The precisions and accuracies in peak volume, retention time, and peak standard
deviation obtained from these simulations are shown in Figs. 7, 8, and 9, respectively. The
figures on the left are based on the Gaussian method and those on the right are from the
moments method.

4.3.1 Effect on the Peak Volume Estimation—The Gaussian method is least precise
when sampling is strongly out of phase and very slow (see Fig 7A). Peak volume precision
is essentially independent of sampling phase and frequency for the moments method as seen
in Fig. 7B. When estimating peak volumes via the Gaussian method, the worst errors are
obtained when peaks were undersampled, as seen in Fig. 7C. The moments method gives
very good accuracy throughout (see Fig. 7D). We attribute the apparent decrease in % error
for high modulation rations to the peak being so wide relative to the data window (i.e., 1σ
value of 0.5 min vs. a 4 min chromatogram) that there are losses in peak recovery in this
simulation.

4.3.2 Effect on Retention Time Estimation—When looking at a Gaussian evaluation
of retention time precision, the largest %RSD values are obtained for undersampled
asymmetric peaks as shown in Fig. 8A. This observation may be explained by low S/N
signals in the tails of the first dimension peaks not being detected. Retention time precision
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is essentially constant when evaluating by the moments method as demonstrated in Fig. 8B.
A maximum error in retention time is obtained when using the Gaussian method for
undersampled asymmetric peaks as seen in Fig. 8C for the same reason that poor precision
in retention time is observed. In Fig. 8D, it can be seen that the retention time is
underestimated when using the moments method for the same undersampled asymmetric
region as the simulation shown in Fig. 8C.

4.3.3 Effect on Peak Width Estimation—Undersampled, out-of-phase peaks provide
poor precisions when peak standard deviations are evaluated via the Gaussian method as
seen in Fig. 9A. Sufficient sampling is necessary for the Gaussian method to model a peak
adequately. On the other hand, undersampled in-phase peaks provide extremely poor
precision when using the moments method as seen in Fig. 9B. It is likely that the low S/N
signals in the tails of the first dimension peaks are not being sampled consistently. It is
important to note that calculations of the peak standard deviation differences are based
against a predicted peak standard deviation formula. In any case, as seen in Figs. 9C and 9D,
the maxima and minima % differences against the predicted peak standard deviation are
obtained with undersampled first dimension peaks regardless of whether the moments or
Gaussian method was used. It is interesting to note, however, that good predictions of the
peak width occurred when the MR > 2 for both fitting methods.

In summary, the Gaussian method provides peak volume precisions that were generally
better than those of the moments method except in the cases of out-of-phase sampling and
narrow peak widths relative to the sampling interval because in those cases there are only
two significant second dimension areas available to fit to a Gaussian peak. A minimum of
three sampling points are needed to accurately and precisely fit a Gaussian; however,
splitting the first dimension effluent into more than five or six fractions causes some
decrease in the precision. Therefore, the Gaussian method is used to best effect with a
modulation ratio range from two to five, with changes in sampling phase having little or no
effect. For situations where the modulation ratio is less than two or greater than five, the
moments method will provide more accurate and precise results for peak volumes.

4.4. Analysis of Sources of Irreproducibility in Experimental Chromatograms
Comparison of the preceding results concerning the %RSD in peak volume with the report
of Stoll et al. [9] shows that the precision predicted here is much better than seen by Stoll.
There are several reasons why this may be so. The first relates to problems caused by
irreproducible baselines. A second is the impact of sampling phase, which can shift between
different LC×LC runs due to retention time variations. Both of these effects are considered
in Fig. 10.

The % RSDs for three replicate LC×LC runs reported by Stoll for their six “standard” peaks
are given in Fig. 10 as the dark blue bars (peaks 1–6). These may be compared to the light
blue bars which give the %RSDs obtained when the first of the three replicate runs (shown
in blue in Fig. 11) was added to three replicate LC×LC runs of a blank (peaks 1a–6a). Thus,
the only source of imprecision for peaks 1a–6a is variations in the baseline under the actual
peaks. Clearly baseline fluctuations are not the chief problem. This was confirmed by the
simulated data for peaks 1b–6b (yellow bars) in which the three replicates of data set a. were
added to the three baseline replicates used in data set b. We see only a small increase in
%RSD over that observed for the experimental peaks 1–6. Finally, peaks 1c–6c (red bars)
illustrate the impact of run-to-run variations in the sampling phase due to retention time
variations. This was done by introducing peaks with variable phase to a background
chromatogram, and evaluating the %RSD in the estimated peak volumes over 50
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randomizations. Clearly sampling phase fluctuations although more important than baseline
fluctuations do not account for the poor precision in Stoll’s data.

Since we have eliminated the possibility that phase fluctuations and baseline fluctuations do
not explain the relatively poor precision of LC×LC analysis, we need to re-examine our
assumptions. First, we assumed that all peaks are Gaussian in both dimensions.
Chromatographic peaks generally are not perfectly Gaussian but either front or tail. Despite
this fact, the moments method should not be affected by peak asymmetry since it works by
the simple addition of the second dimension peaks. Next, we assumed that the duty cycle of
the sampling device is 100 %. This assumption may be poor because it is possible that the
sampling loop collecting the first dimension effluent may be overfilled before being injected
into the second dimension column or the timing of this injection into the second dimension
column may be inaccurate causing a misrepresentation of the LC×LC contour plot.
Confirmation of this conclusion requires further experimental work, which is beyond the
scope of the present work. It should be noted that this factor is not relevant to GC×GC
experiments where thermal modulation is used, instead of the valve modulation commonly
used in LC×LC.

5. Conclusions
The precision of measurement of peak size, retention time and peak width in LC×LC were
studied by simulating the process of sampling the first dimension separation for injection
onto the second dimension column. The data were analyzed by two independents methods;
the second dimension peak areas were used as input into a Gaussian peak fitting algorithm
and to the method of moments. The simulations were done over a wide range in modulation
ratio (MR, equivalent to sampling frequency) and sampling phase, φ.

• The Gaussian method is generally better than the moments method in that it
provides somewhat better precision and is essentially independent of phasing when
MR is between two and five.

• Both the moments method and the Gaussian method gave good results for estimates
of the first dimension retention times, with %RSDs and % errors generally less than
1 %. For either method, the best accuracy and precision were obtained for MR
values ranging from two to five. First dimension peak widths could also be
estimated using these methods but with poorer accuracy and precision.

• When we applied our methods of peak size measurement to the experimental data
of Stoll et al. [9] agreement between our precison and theirs was acceptable. Stoll
et. al. obtained an average precision of 3.9% (by the moments method) over their
six “standard” species which were well separated peaks. In this work, the average
precision of the moments and Gaussian methods were 4.2 % and 5.8 %
respectively. All six standard peaks were well above the limit of quantification
(LOQ) with the lowest S/N being 23. These results indicate a precision of LC×LC
that is four-fold poorer than in conventional LC.

• Our calculations clearly show that the poorer precision of LC×LC as compared to
1D-LC cannot be attributed to: a) the segmentation of a single 1D peak into
multiple second dimension peaks, b) the higher baseline signals encountered in the
fast gradient second dimension chromatograms, c) random fluctuations in sampling
phase due to variations in first dimension retention time or d) asymmetry in second
dimension peaks.
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Fig. 1.
(A) Simulated sequential second dimension chromatograms for a single component. The
vertical lines in this figure denote the point of injection from the first dimension column
onto the second dimension column; (B) A contour plot of this same simulated data; (C)
Demonstration of how to sum the second dimension chromatogram areas to generate the
volume of a LC×LC peak and of the fitting the second dimension peak areas to the Gaussian
model to reconstruct the first dimension chromatogram and subsequently to obtain the
volume of the two-dimensional peak. The numbers 1–6 in the mesh plot correspond to the
sequential ‘slices’ or second dimension chromatograms. This figure corresponds to the 1σ =
0.20 min (MR = 2.29), tR = 1.05 min case shown in Table 2.
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Fig. 2.
A contour plot of the LC×LC chromatogram provided by Stoll et al. [9]. Peaks 1 through 6
are the standards identified in the text. The colorbar units are in milliabsorbance units
(mAU) measured at a wavelength of 220 nm.
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Fig. 3.
The effect of first dimension sampling phase on the series of second dimension peak areas.
Sampling period is set at 0.35 min for peaks with a first dimension retention times and
sampling phases of (a) 1.050 min (φ = 0), (b) 1.100 min (φ = −0.286π), (c) 1.175 min (φ =
−0.714π), and (d) 1.225 min (φ = −π). 1σ = 0.20 min (MR = 2.29). The vertical lines indicate
the start and stop of the accumulation intervals. The bar graphs to the right show the relative
amount of analyte injected onto the second dimension column upon sample collection at the
indicated vertical lines.
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Fig. 4.
The effect of sampling phase (φ) and MR on peak metrics as a function of sampling phase
variations. Results of the moments and Gaussian fit method are given as filled (●) and open
circles (○), respectively: (a) and (b) % RSD in peak volume; (c) and (d) % error in peak
volume; (e) and (f) % RSD in 1σ; (g) and (h) % difference in 1σ relative to that calculated by
eq. 4.
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Fig. 5.
Effect of peak width on sampling the first dimension peak at fixed sampling interval and
phase. Conditions: sampling interval 0.35 min, 1tR = 1.15 min (φ = −0.572π) for a peak
with 1σ values of (a) 0.15 min (MR = 1.7), (b) 0.25 min (MR = 2.9), (c) 0.35 min (MR = 4.0),
and (d) 0.45 min (MR = 5.1).
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Fig. 6.
The effect of MR on peak metrics. Results of the moments and Gaussian fit method are
given as filled (●) and open circles (○), respectively: (a) % RSD in peak volume; (b) % error
in peak volume; (c) % RSD in 1σ; (d) % difference in 1σ relative to that calculated by eq. 4.
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Fig. 7.
The effect of sampling phase (φ) and modulation ratio (MR) on the precision and accuracy
of peak volume determination.. The circles (●) and triangles (▲) represent the values
previously shown in Figs. 4 and 6. (A) %RSD of peak volume using the Gaussian method;
(B) %RSD of peak volume using the moments method; (C) % error of peak volume using
the Gaussian method; (D) % error of peak volume using the moments method.
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Fig. 8.
The effect of sampling phase (φ) and modulation ratio (MR) on the precision and accuracy
of peak retention times.. The circles (●) and triangles (▲) represent the values previously
shown in Figs. 4 and 6. (A) %RSD of retention time using the Gaussian method; (B) %RSD
of retention time using the moments method; (C) % error of retention time using the
Gaussian method; (D) % error of retention time using the moments method.
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Fig. 9.
The effect of sampling phase (φ) and modulation ratio (MR) on the precision and accuracy
of peak width determination.. The circles (●) and triangles (▲) represent the values
previously shown in Figs. 4 and 6. (A) %RSD of peak volume using the Gaussian method;
(B) %RSD of peak volume using the moments method; (C) % error of peak volume using
the Gaussian method; (D) % error of peak volume using the moments method.
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Fig. 10.
Comparison of Experimental and Simulated Estimates of Peak Volume. The bars represent
the % RSD in peak volume for the evaluation of peaks 1–6 in the work of Stoll [9]. Results
from the moments method and the Gaussian method are given in the top and bottom panes
respectively. The blue bar represents %RSD of quantification of the results of three replicate
LCxLC chromatograms from Stoll et al. The cyan bar gives %RSD of quantification of the
results from simulated Gaussian peaks in which a single replicate (represented by the six
blue profiles shown in Fig. 11) added to three replicate real LC×LC blank chromatograms.
The yellow bar represents the %RSD of quantification of simulated Gaussian peaks from the
three replicates of shown in Fig. 11 (blue, green and red, respectively) to three LC×LC blank
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chromatograms. The dark red bar represents the %RSD of quantification for 50 replicate
simulated Gaussian peaks positioned at randomly generated first dimension retention times
with a standard deviation in peak position of ±0.35 min (±2π), (1σavg = 0.21 min, ts = 0.35
min), added to the same blank LC×LC chromatogram.
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Fig. 11.
First dimension chromatographic profiles derived from the second dimension peak areas for
peaks 1–6. The blue profile is the first replicate, the green profile is the second replicate, and
the red profile is the third replicate.
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Table 1

Summary of initial guesses and bounds used for the Gaussian fitting algorithm

Simulations Volume Retention Time Standard Deviation

a) Parameter Variationsa

Initial guess 86 1.15 min 0.2 min

Lower bound 0 0 min 0 min

Upper bound 286 2.1 min 1.6 min

b) Peaks 1–6b

Initial guess Volume from moments method tR from moments method 1σ from moments method

Lower bound 0 0% retention window c 0 min

Upper bound 20000 100% retention window 0.35 min

a
Parameter Variations refers to the two simulations where retention time and 1σ were varied to explore the effect of sampling phase and frequency.

b
Peaks 1–6 refer to the initial guesses for Gaussian fitting used to estimate peak volumes for peaks 1–6 in the experimental LC×LC data from Stoll

et al.

d
Retention window refers the range of 1st dimension times represented in the data to be fit, i.e., if the peak window is from 3.0 5.0 min, 0 %

retention window is 3.0 min, 100 % retention window is 5.0 min and 50 % retention window is 4.0 min.
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Table 3

Summary of second dimension retention times and standard deviations to which second dimension areas for
peaks 1–6 were added to blank LC×LC chromatograms (n = 3).

Peak # 2tR (s) 2σ (s)

1a-c 15.25 0.3125

2a-c 15.25 0.2500

3a-c 13.25 0.4688

4a-c 10.25 0.2188

5a-c 10.25 0.2500

6a-c 6.25 0.3125

Peaks 1a–6a, 1b–6b and 1c–6c are simulated Gaussian peaks with areas determined from the experimentally determined first dimension added to
real LC×LC blank chromatograms.
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