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Abstract
As repositories of chemical molecules continue to expand and become more open, it becomes
increasingly important to develop tools to search them efficiently and assess the statistical
significance of chemical similarity scores. Here we develop a general framework for
understanding, modeling, predicting, and approximating the distribution of chemical similarity
scores and its extreme values in large databases. The framework can be applied to different
chemical representations and similarity measures but is demonstrated here using the most common
binary fingerprints with the Tanimoto similarity measure. After introducing several probabilistic
models of fingerprints, including the Conditional Gaussian Uniform model, we show that the
distribution of Tanimoto scores can be approximated by the distribution of the ratio of two
correlated Normal random variables associated with the corresponding unions and intersections.
This remains true also when the distribution of similarity scores is conditioned on the size of the
query molecules in order to derive more fine-grained results and improve chemical retrieval. The
corresponding extreme value distributions for the maximum scores are approximated by Weibull
distributions. From these various distributions and their analytical forms, Z-scores, E-values, and
p-values are derived to assess the significance of similarity scores. In addition, the framework
allows one to predict also the value of standard chemical retrieval metrics, such as Sensitivity and
Specificity at fixed thresholds, or ROC (Receiver Operating Characteristic) curves at multiple
thresholds, and to detect outliers in the form of atypical molecules. Numerous and diverse
experiments carried in part with large sets of molecules from the ChemDB show remarkable
agreement between theory and empirical results.

Introduction
As chemical repositories of molecules continue to grow and become more open,1–5 it
becomes increasingly important to develop the tools to search them efficiently. In one of the
most typical settings, a query molecule is used to search millions of other compounds not
only for exact matches, but also frequently for approximate similarity matches. In a drug
discovery project, for instance, one may be interested in retrieving all the commercially-
available compounds that are “similar” to a given lead, with the aim of finding compounds
with better physical, chemical, biological, or pharmacological properties.

The idea of searching for molecular “cousins” is of course not new, and constitutes one of
the pillars of bioinformatics where one routinely searches for homologs of nucleotide or
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amino acid sequences. Search tools such as BLAST6 and its significance “E-scores” have
become de facto standards of modern biology, and have driven the exponential expansion of
bioinformatics methods in the life sciences.

In chemoinformatics, several approaches have been developed for chemical searches,
including different molecular representations and different similarity scores. However, no
consensus tool such as BLAST has emerged, for several reasons. Some of the reasons have
to do with the cultural differences between the two fields, especially in terms of openness
and data sharing. But there are also more technical and fundamental reasons–in particular
there has been no systematic derivation of a theory that can account for molecular similarity
scores and their distributions and significance levels. As a result, many existing search
engines do not return a score with the molecules they retrieve, let alone any measure of
significance.

Examples of fundamental questions one would like to address include: What threshold
should one use to assess significance in a typical search? For instance, is a Tanimoto score
of 0.5 significant or not? And how many molecules with a similarity score above 0.5 should
one expect to find? How does the answer to these questions depend on the size of the
database being queried, or the type of queries used? A clear answer to these questions is
important for developing better standards in chemoinformatics and unifying existing search
methods for assessing the significance of a similarity score, and ultimately for better
understanding the nature of chemical space.

These questions are addressed here systematically by conducting a detailed empirical and
theoretical study of chemical similarity scores and their extreme values. Surprisingly rare
previous work related to these questions include an interesting study by Keiser et al.,7 which
uses empirical fitting of distributions to extreme chemical similarity scores but does not
derive a predictive mathematical theory of chemical scores and their extremes values, and a
short preliminary report of some of our own results.8 Here we provide a more general,
complete, and self-contained treatment of these questions, including both new theoretical
and new simulation results. In particular, we extend previous work by studying several
different ways of assessing the significance of chemical similarity scores, by analyzing in
detail how the results depend on the parameters of the query molecule as well as the size of
the database being searched, by applying the general framework to the analysis and
prediction of ROC curves for molecular retrieval, by applying the general framework to the
detection of outlier molecules, and by providing a more complete and predictive
mathematical theory of the distribution of similarity scores and its extreme values.

The rest of this paper is organized as follows. Section 2 defines the molecular
representations and similarity scores that are used throughout the study. Section 3 and 4
develop the probabilistic models required to both approximate empirical distributions of
similarity scores and to create random background models against which significance can be
assessed. Section 5 presents the main theory for the distribution of chemical similarity
scores followed by Section 6 which presents the theory for the distribution of the extreme
values of the score distributions. Corresponding experimental results to illustrate and
corroborate the theory are described in Section 7 and 8, followed by a Discussion and
Conclusions section. To improve readability, the details of the mathematical derivations are
given in the Appendix.

Molecular Representations and Similarity Scores
Many different representations and similarity scores have been developed in
chemoinformatics. The methods to be described here are broadly applicable but, for
exposition purposes, we illustrate the theory using the framework that is most commonly
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used across many different chemoinformatics platforms, namely binary fingerprint
representations with Tanimoto similarity scores. When appropriate, we also briefly describe
how the same approach can be extended to other implementations and settings.

Molecular Representations: Fingerprints
Multiple representations have been developed for small molecules, from one dimensional
SMILES strings to 3D pharmacophores,9 and different representations can be used for
different purposes. To search large databases of compounds by similarity, most modern
chemoinformatics systems use a fingerprint vector representation9–15 whereby a molecule is
represented by a vector whose components index the presence/absence, or number of
occurrences of a particular functional group, feature, or substructure in the molecular bond
graph. Because binary fingerprints are used in the great majority of cases, here we present
the theory for these fingerprints, but it should be clear that the theory can readily be adapted
to fingerprint based on counts. We use  to denote a molecule and A⃗ = (Ai) to denote the
corresponding fingerprint. We let A denote the number of 1-bits in the fingerprint A⃗ (A = |
A⃗|).

In early chemoinformatics systems, fingerprint vectors were relatively short, containing
typically a few dozen components selected from a small set of features, hand-picked by
chemists. In most modern systems, however, the major trend is towards the combinatorial
construction of extremely long feature vectors with a number of components N that can vary
in the 103–106 range, depending on the set of features. Examples of typical features include
all possible labeled paths or labeled trees, up to a certain depth. The advantage of these
longer, combinatorially-based representations is twofold. First, they do not require expert
chemical knowledge, which may be incomplete or unavailable. Second, they can support
extremely large numbers of compounds containing both existing and unobserved molecular
structures, such as those that are starting to become available in public repositories and
commercial catalogs, as well as the recursively enumerable space of virtual molecules.16

The particular nature of the fingerprint components is not essential for the theory to be
presented. To illustrate the principles, in the simulations we have used both fingerprints
based on labeled paths and fingerprints based on labeled shallow trees with qualitatively
similar results. For completeness, the details of the fingerprints used in the simulations are
given below in the Data subsection. For brevity and consistency, the examples reported in
the Results are derived primarily using fingerprints based on paths.

Fingerprint Compression
In many chemoinformatics systems, the long sparse fingerprint vectors are often compressed
to much shorter and denser binary fingerprint vectors. The most widely used method of
compression is a lossy compression method based on the application of the logical OR
operator to the binary fingerprint vector after modulo wrapping to 512, 1,024, or 2,048 bits.
12 Other more efficient lossless methods of compression have recently been developed.15

With the proper and obvious adjustments, our results are applicable to both lossy
compressed and uncompressed fingerprints. Because these are widely used, the majority of
the simulation examples we report are obtained using modulo-OR compressed binary
fingerprints of length N = 1,024. Due to their shorter length, these fingerprints have also the
advantage of speeding up Monte Carlo sampling simulations.

Similarity Scores
Several similarity measures have been developed for molecular fingerprints.17,18 Given two
molecules  and ℬ, the Tanimoto similarity score is given by
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(1)

Here (A ∩ B) denotes the size of the intersection, i.e. the number of 1-bits common to A⃗ and
B⃗, and A ∪ B denotes the size of the union, i.e. the number of 1-bits in A⃗ or B⃗. Because the
Tanimoto similarity is by far the most widely used, the theory and experimental results
reported here are based on the Tanimoto similarity. However, we also briefly describe how
the same theory can be extended to other measures. Because Tanimoto similarity scores are
built from intersections and unions, it will be natural to begin the theoretical analysis by
studying the distribution of these intersections and unions, in particular their means,
variances, and covariances.

Data
In the simulations, we illustrate the methods using fingerprints that are either randomly
generated using one of the stochastic models described in Section 3, or randomly selected
from the 5M molecules or so available in the ChemDB database.1 In the case of the actual
molecules, we use fingerprints associated with two schemes:15 labeled paths of length up to
eight (i.e. 9 atoms and 8 bonds), or labeled circular substructures of depth up to two, with
Element (E) and Extended Connectivity (EC) labeling. In the first scheme, referred to as
paths throughout the paper, for each chemical we extract all labeled paths of length up to
eight starting from each vertex and using depth-first traversal of the edges in the
corresponding molecular graph. For this scheme, each vertex is labeled by the element
(C,N,O, etc) of the corresponding atom and each edge is labeled by the type (single, double,
triple, aromatic, and amide) of the corresponding bond. This scheme is closely related to the
scheme used in many existing chemoinformatics systems, including the Daylight system.12

In the second scheme, for each chemical we extract every circular substructure, of depth up
to two, from the corresponding molecular graph. Circular substructures (see Hert et al.,19

Bender et al.,20 and Hassan et al.21) are fully explored labeled trees of a particular depth,
rooted at a particular vertex. For this scheme, molecular graphs are labeled as follows: each
vertex is labeled by the element (C,N,O, etc) and degree (1, 2, 3, etc) of the corresponding
atom, and each edge is labeled as above. The degree of a vertex is given by the number of
edges incident to that vertex or, equivalently, the number of atoms bonded to the
corresponding atom.

Both in the case of randomly generated fingerprints and actual molecular fingerprints, we
used both uncompressed fingerprints, corresponding also to lossless compressed
fingerprints, as well as lossy compressed fingerprint obtained using the standard modulo-
OR-compression algorithm to generate fingerprint vectors of length 1,024. For both the
randomly generated fingerprints and actual molecular fingerprints, we run typical
simulations using a sample of n = 100 queries against background sets that range from 5,000
to 1 million fingerprints in order to study the effects associated with database size.

Probabilistic Models of Fingerprints
One of the main goals of this work is to derive good statistical models and approximations
for the distribution of similarity scores. At the most fundamental level this can be addressed
by building probabilistic models of fingerprints. Statistical models of fingerprints are
essential for a variety of tasks. For instance, in fingerprint compression, fingerprints can be
viewed as “messages” produced by a stochastic source and understanding the statistical
regularities of the source is essential for deriving efficient compression algorithms that use
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short code words for the most frequent events. Here, statistical models are essential in at
least two different ways: (1) to model and approximate the distribution of statistical scores;
and (2) to assess significance against a random background. Similar observations of course
can be made in bioinformatics to, for instance, assess what is the probability of observing a
particular sequence or alignment score against a random generative or evolutionary model of
protein or DNA sequences. It is worth noting that as a default, we assume that the
distribution over the queries is the same as the distribution over the molecules in the
database. However, these statistical models can also be used to model particular
distributions over the space of queries that may differ from the overall background
distribution.

Single-Parameter Bernoulli and Binomial Model
The simplest statistical model for binary fingerprints is a sequence of independent
identically distributed Bernoulli trials (coin flips) with probability p of producing a 1-bit,
and q = 1 − p of producing a 0-bit. This model can be applied to both long fingerprints with
a very low p or to the modulo-OR compressed fingerprints with a higher value of p. The
coin flip model corresponds to fingerprint features that are randomly ordered and
statistically exchangeable, in fact even independent, and leads to a Binomial model ℬ(N, p),
with only two parameters N and p, for the total number of 1-bits in the corresponding
fingerprints. The single-parameter Bernouilli model is a weak model of real fingerprints for
two reasons. First the probability of the individual components are not identical: some
features are more likely to occur than others. Second, the components are not strictly
independent. These shortcomings are further addressed in the more complex models
described below. Nevertheless, the single-parameter Bernouilli model remains useful
because of its simplicity and tractability, and it provides a point of reference or baseline for
other models.

The Bernoulli model can be used to approximate the distribution of fingerprints in an entire
database such as ChemDB by setting p to the average fingerprint density in the database. If
one then compares the behavior of the number A of 1-bits in the Bernoulli generated
fingerprints and in the actual database, one typically observes that the average of A is the
same in both cases, by construction of p, but the variance is quite different. The variance A
in the Bernoulli generated fingerprints is given by N pq and is always at most equal to the
expectation N p, whereas in large databases of compounds one typically observes a larger
variance (Figure 1). In general, a better model for A is provided by a Normal distribution 
(μ,σ2) where the mean μ = Np and variance σ2 ≠ Npq are fitted empirically to the data.

In some analyses, it is useful to consider fingerprints that contain A 1-bits. These can be
modeled using Bernoulli coin flips with p = A/N, although this is at best an approximation
since in the resulting fingerprints the number of 1-bits is not constant and varies around the
mean value A, introducing some additional variability with respect to the case where A is
held fixed (see Conditional Distribution Uniform model below). Finally, a distribution over
queries that is different from the overall database distribution can be modeled using two
Bernoulli models: one with parameter r for the queries, and one with parameter p (p ≠ r) for
the database.

Multiple-Parameter Bernoulli Model
While the coin flip model is useful to derive a number of approximations, it is clear that
chemical fingerprints have a more complex structure and their components are not exactly
exchangeable since the individual feature probabilities p1,…, pN are not identical and equal
to p but vary significantly. In particular, when the fingerprint components are reordered in
decreasing frequency order, they typically follow a power-law distribution,15 especially in
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the uncompressed case. The probability of the j-ranked component is given approximately
by pj = Cj−α resulting in a line of slope −α in a log-log plot. Thus the statistical model at the
next level of approximation is that of a sequence of non-stationary independent coin flips
where the probability pj of each coin flip varies. This Multiple-Parameter Bernoulli model
has N parameters: p1, p2, …, and pN. In this case, using the independence, the expectation of

the total number A of 1-bits is given by Σi pi and its variance by . In general, this
variance is still an underestimate of the variance observed in actual large databases in spite
of the larger number of parameters compared to the Single-Parameter Bernoulli Model (not
shown). Similarly to the case of the Single-Parameter Bernouilli model, a distribution over
queries different from the overall distribution could be modeled using a Multiple-Parameter
Bernoulli model with a different set of parameters r1,…,rN.

Conditional Distribution Uniform Model
Both the Single-Parameter and Multiple-Parameter Bernoulli models consider the fingerprint
components as independent random variables. The Conditional Distribution Uniform model
is an exchangeable model where the components are weakly coupled and thus not
independent. To generate a fingerprint vector under this model, one first samples the value A
corresponding to the total number of 1-bits in the fingerprint, using a given distribution,
typically a Normal distribution (Figure 1). The model then assumes that conditioned on the
value of A all fingerprints with A 1-bits are equally probably (uniform distribution). Thus,
for example, the Conditional Normal Uniform model has only three parameters: the mean μ,
the standard deviation σ2, and N. Compared to the Binomial model, the additional parameter
in the Conditional Normal Uniform model allows for a better fit of the variance of A in the
data. As we shall see, for the questions to be considered here the Conditional Normal
Uniform model performs the best in spite of the fact that it does not model the probability
differences between different fingerprint components.

Spin Models
More complex, second order, models are possible but will not be considered here. These
models are essentially spin models from statistical physics, and are also known as Markov
Random fields or Boltzmann machines.22,23 In these models, one would have to take into
account also the correlations between pairs of features which can be superimposed over the
Multiple Bernoulli model. In real data, these correlations are often (though not always)
weak, but not exchangeable, and thus behave differently from those introduced in the
Conditional Distribution Uniform model. The slight improvements in modeling accuracy
that may result from spin models come in general at a significant computational cost since
these cannot be solved analytically and therefore cannot be used in a straightforward manner
to derive the probability distribution of the similarity scores. Study of spin models is left for
future work.

Probabilistic Models of Distribution Scores
While in the following sections and the Appendix we show how the distribution of similarity
scores can be estimated somehow from “first principles”, i.e. from the corresponding
probabilistic model of fingerprints, it is also possible to model or approximate the score
distribution directly, for instance by assuming that the scores are approximately normally
distributed and obtaining the mean and standard deviation by sampling methods. In a similar
way, one can also use a Gamma distribution model to completely avoid negative scores, or a
Beta model to insist on bounded scores between 0 and 1, to model the overall distribution of
scores. Another intermediary alternative, which is less direct but still avoids modeling the
fingerprints themselves, is to model the intersections and unions that are used to derive the
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Tanimoto scores, and then try to derive the distribution of the scores from those models. For
example, one could consider modeling both the intersections and corresponding unions
using two different normal distributions and derive the means and standard deviations of
these normal distributions by sampling methods. The commonalities, differences, and
tradeoffs between these various modeling and approximation approaches to the distribution
of chemical similarity scores will become clear in the following sections. The most complex
case, where everything is derived from the probabilistic models of fingerprints, is treated in
detail in the Appendix.

The Distribution of the Similarity Scores
With these preliminaries in place, we are now set to analyze the distribution of Tanimoto
scores under the various probabilistic models.

Main Result
Since the Tanimoto score is the ratio of an intersection over an union, the basic strategy is to
first study the distribution of the corresponding intersection and union, their means and
variances. Note that the intersection and union, in general, are not two independent random
variables, but have a non-zero correlation that must be estimated analytically or through
simulations. In turn, from these results one can derive a closed-form approximation for the
distribution of the Tanimoto scores and its extreme properties. This analysis can be carried
using empirical fingerprint data as well as fingerprints generated by the probabilistic models.
Furthermore, the analysis can be conducted by conditioning on the total number of 1-bits
contained in the query molecule (A) and the molecules being searched (B), by conditioning
on only one of these quantities–typically the number A of 1-bits in the query molecule–and
integrating over the other, or with no conditioning at all by integrating over both the
fingerprints in the queries and the fingerprints in the database being searched. These forms
of conditioning are practically relevant, especially conditioning on A, which will be shown
to lead to much better retrieval results.

In all these cases, one in general finds that:

1. The intersection and union have approximately a Normal distribution with means
and variances that can be estimated empirically or computed analytically in the case
of the probabilistic models.

2. The intersection and union have a non-zero (positive) covariance that can be
estimated empirically or computed analytically in the case of the probabilistic
models.

3. As a consequence, the distribution of the corresponding Tanimoto scores can be
modeled and approximated by the distribution of the ratio of two correlated Normal
random variables.

These facts are demonstrated in the Results section using simulations. In Appendix A,
mathematical proofs are provided for the probabilistic models of fingerprints together with
analytical formula for the means, variances and covariances of the intersections and unions.

Ratio of Two Correlated Normal Random Variables Approximation
Whether one uses the Single Bernoulli/Binomial, Multiple Bernoulli, or Conditional Density
Uniform models, or the empirical intersection and union data, in the end, the Tanimoto score
distribution can be approximated by the distribution of two correlated Normal random
variables approximating the numerator and the denominator. The different models will yield
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different estimates of the mean, variance, and covariance of the respective Normal
distributions.

The density of the ratio of two correlated Normal random variables has been studied in the
literature and can be obtained analytically, although its expression is somewhat involved.24–
27 The probability density for Z = X/Y, where

, and ρ = Corr(X, Y) ≠ ± 1 is given by the product of two terms

(2)

or

(3)

where

(4)

(5)

and

(6)

Thus, anytime one can approximate the intersections and the unions by two correlated
Normal random variables, the distribution of the Tanimoto scores can be approximated
using Equations 2–6 with X = I and Y = U. This approach can be used, for instance, to derive
the mean and standard deviation of the Tanimoto scores under various assumptions
including: (1) the Single- and Multiple-Parameter Bernoulli models with p = r (or pi = ri) for
the average Tanimoto scores across all queries; (2) the Single- and Multiple-Parameter
Bernoulli models with p ≠ r (or pi ≠ ri) for queries modeled by a different Bernoulli model
than the one used for the database being searched; (3) the Conditional Distribution Uniform
model with A fixed, or A integrated over the database distribution, or a distribution over
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queries; and (4) the empirically-derived Normal models for the union and intersection
averaged over the entire database, or focused on a particular class of molecules.

A Python code implementation for the density of the ratio of two correlated Normal random
variables (Equations 2–6) is available from the ChemDB chemoinformatics portal
(cdb.ics.uci.edu), under Supplements.

Extensions to Other Measures
While we have described the theory for the Tanimoto similarity scores, the same theory can
readily be adapted to most other fingerprint similarity measures.17,18 To see this, it suffice to
note that the other measures consist of algebraic expressions built from A ∪ B and A ∩ B, as
well as other obvious terms such as A, B, and sometimes N. For example, the Tversky
measure28,29 is an important generalization of the Tanimoto measure defined by

(7)

where the parameters α and β can be used to tune the search towards sub-structures or super
structures of the query molecule. The numerator and denominator in the Tversky measure
can again be modeled by two two correlated Normal random variables. The only difference
is in the mean and variance of the denominator, and its covariance with the numerator. The
new mean, variance, and covariance can be computed empirically. They can also be derived
analytically for the simple probabilistic models, as described in Appendix A. Similar
considerations apply to all the other measures described in.17,18 Thus the distribution and
statistical properties of all the other similarity measures17,18 can readily be derived from the
general framework described presented here.

Alternatives and Related Approaches
Because the intersections and unions have always positive values, it is also possible in some
cases to approximate their distributions using Gamma distributions. The distribution of
Tanimoto scores can then be modeled using the distribution of the ratio of two correlated
Gamma distributions, for which some theory exists.30–32 Likewise, in regimes where the
finite [0, N] range of the intersections and unions becomes important, the intersection and
union can be rescaled by 1/N and the corresponding distributions modeled using Beta
distributions. In this case, the distribution of Tanimoto scores can be modeled using the
distribution of the ratio of two correlated Beta distributions.33 Finally, as already mentioned,
it is also possible to model or approximate a distribution of Tanimoto scores directly using a
Normal, Gamma, or Beta distribution (or a mixture of these distributions) without having to
first consider the intersections and unions.

It is not possible to give a general prescription as to which approach may work best in a
practical application, since this may depend on the details and goals of a particular
implementation. However, the theory presented provides a general framework for predicting
and modeling the distribution of Tanimoto scores that can be adapted to any particular
implementation. And using this distribution, it is possible to derive measures and
visualization tools to assess the quality and significance of the molecules being retrieved
with a given query and the corresponding rates of false positives and false negatives, as
described in the next sections.
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Theory: Z-Scores, E-Values, P-Values, Outliers, and ROC Curves
There are various computational approaches for determining the significance of similarity
scores. All these approaches derive from the distribution of similarity scores. Significance
scores include Z-scores, E-values, and p-values associated with the extreme value
distribution34–36 of similarity scores. The distribution of similarity scores can also be used
to detect outliers and predict ROC (Receiver Operating Characteristic) curves in chemical
retrieval. As we shall see, these significance analyses can be done and yield better results
when conditioned on the size of the queries.

Z-Scores
In the Z-score approach, one simply looks at the distance of a score from the mean of the
corresponding family of scores, in numbers of standard deviations. Therefore the Z-score is
given by

(8)

The parameters μ and σ can be determined either empirically from a database of fingerprints,
using the statistical models described above. While Z-scores can be useful, their focus is on
the global mean and standard deviation of the distribution of the scores, not on the tail of
extreme values. Thus we next consider two measures that are more focused on the extreme
values.

E-Values
When considering a particular similarity value or selecting a similarity threshold t for a
given query, an important consideration is the expected number of hits in the database above
that threshold. To use a terminology similar to what is used for BLAST, we refer to this
number as the E-value. From the distribution of scores in a database of size D, the E-value
corresponding to a Tanimoto threshold t is estimated by

(9)

where F(t) is the cumulative distribution of the corresponding similarity scores, which can
be approximated using the methods described above.

Extreme Value Distributions and P-Values
The second approach focused on extreme values corresponds to computing p-values. For a
given score t, its p-value is the probability of finding a score equal to or greater than t under
a random model. Thus in this case, one is interested in modeling the tail of the distribution
of the scores, and more precisely the distribution of the maximum score.34–36 This
distribution depends on the size of the database being searched since for a given query, and
everything else being equal, we can expect the maximum similarity value to increase with
the database size.

Consider a query molecule  used to search a database containing D molecules, yielding D
similarity scores t1,…,tD. The cumulative distribution of the maximum max is given by
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(10)

under the usual assumption that the scores are independent and identically distributed. Here
F(t) is the cumulative distribution of a single score. A p-value is obtained by computing the
probability

(11)

that the maximum score be larger than t under F. The density of the maximum is obtained
by differentiation

(12)

where f (t) is the density of a single score. In the case of Tanimoto similarity scores, f (t) can
be approximated by the ratio of two correlated Normal random variables approach described
above, and F(t) is obtained from f (t) by integration. F(t) can also be approximated by25

(13)

where  is the cumulative distribution of the normalized Normal
distribution and

(14)

This approximation is good when the denominator of the ratio of two correlated Normal
random variables is positive, with its standard deviation much larger than its average. In any
case, by combining Equations 2, 12, and 13, we get:

(15)

Finally, because the Tanimoto scores are bounded by one, the theory of extreme value
distributions shows that the cumulative distribution of the normalized maximum score nD,
normalized linearly in the form nD = aDmax + bD using appropriate sequences aD and bD of
normalizing constants, converges to a type-III extreme value distribution, or Weibull
distribution function, of the form
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(16)

The linear normalization can be ignored since it is absorbed into the parameters of the
Weibull distribution. The advantage of the Weibull formula is its suitability for representing
Fmax in a closed form that can be easily and efficiently computed. How to fit in practice the
Weibull distribution to the data is described in Appendix B.

Outliers
The framework allows us to detect molecules that are atypical, within their group, in the
following sense. From the framework we can predict the typical (average) distribution of
Tanimoto scores for a given query size S, or the expected number of hits above any given
threshold t, given S. Clearly if we are dealing with an actual query molecule  with a
fingerprint containing A = S 1-bits, if the distribution of observed scores for  differs from
the typical distribution given A, then the molecule  can be viewed as being atypical within
the class of molecules in the database containing A 1-bits in their fingerprints. The
difference between the typical distribution of scores for molecules with A 1-bits and the
distribution of scores generated by the actual query  can be measured in many ways, for
instance by using the relative entropy or Kullback Leibler divergence between the two
distributions.37 Similar considerations can be made using the expected number of scores
above a given threshold for molecules with A 1-bits versus the actual number observed for
molecule .

ROC Curves
Finally, the general framework can be used to predict false positive and false negative rates,
as well as standard ROC (Receiver Operating Characteristic) curves. For conciseness, let us
describe the approach for ROC curves, which plot false positive rates on the x-axis versus
true positive rates on the y-axis. Consider a set of molecules (e.g. a set of Estrogen Receptor
binding molecules) as a set of positive examples used to search a large database for similar
molecules. Empirically, or using the ratio of correlated Normal random variables approach,
one can derive a density f and a corresponding cumulative distribution F for the similarity
scores of the positive examples, and a density g and a corresponding cumulative distribution
G for the similarity scores of the negative examples provided by the overwhelming majority
of the molecules in the large database. Thus for a given threshold t on the Tanimoto
similarity, the corresponding point on the ROC is easily obtained and given by

(17)

In other words, using continuous approximations, the equation of the ROC curve is given by
y = 1 − F(G−1(1 − x)). Similarly, other measures such as Specificity or Sensitivity can be
estimated at any given threshold.

Now, armed with this theoretical framework we can proceed with simulations to
demonstrate how the framework can be applied and assess the quality of the corresponding
predictions. The following sections describe experimental results obtained using actual
molecules from the ChemDB. A large number of experiments were carried and only a
sample of the main results is described here for brevity. Unless otherwise specified, the
results reported here are obtained using path fingerprints compressed to 1,024 bits using
lossy modulo-OR compression.
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Simulation Results: The Distribution of Similarity Scores
We first examine the quality of the ratio of correlated Normal random variables
approximation. Figure 2 shows in the left column the empirical distributions of the sizes of
the intersections and unions averaged across the entire database and obtained by Monte
Carlo methods, for both lossy compressed fingerprints (upper plots) and uncompressed
fingerprints (lower plots) together with their Normal approximations. The positive
covariance between the intersections and unions is Cov(I,U) = 3048.5 (with corresponding
correlation Corr(I,U) = 0.82) for the lossy compressed fingerprints, and Cov(I,U) = 1253.2
(Corr(I,U) = 0.35) for the uncompressed fingerprints. In the right column, one can see the
corresponding histogram of Tanimoto scores and the ratio of correlated Normal random
variables approximation. Overall, the ratio of correlated Normal random variables approach
approximates the histograms very well in this case, where one is using averaging over all
molecules.

To test whether the ratio of correlated Normal random variables approximation works well
at a finer grained level, we repeat a similar experiment but conditioning on the size A of the
query molecules. In fact, in this experiment we use an even more stringent theoretical
model. Instead of fitting Normal distributions to the intersections and unions (as in Figure
2), we assume that the data is generated by the Conditional Normal Uniform Model with
only two parameters that are fit to the mean and variance of B across the entire ChemDB. As
described in the Appendix, this gives us analytical formulas for the means and variances of
the intersections and unions for each value of A, as well as their covariances. Figure 3
provides heat maps showing the corresponding empirical and predicted distributions of the
intersections (first row) and unions (second row) as a function of A. The last row compares
the observed Tanimoto score distribution to the predicted Tanimoto score distribution, using
the ratio of correlated Normals approach. Overall, there is remarkable agreement between
the theoretical predictions and the corresponding empirical observations at all values of A
and at all Tanimoto scores, especially considering that the Conditional Normal Uniform
model used in these heat maps has only two parameters that are fit to the actual data (the
mean and variance of B in ChemDB).

Likewise, Figure 4 shows how for each value of A, the covariance between the union and the
intersection is well predicted by the Conditional Normal Uniform model, with a small
deviation observed for molecules with a high bit count where the covariance is slightly
smaller than predicted by the theory, probably as a result of a decrease in the variability of
the size of the union for queries associated with molecules from ChemDB with a large A
(the size of the union tends to be close to A since the components in the complement have
exceedingly small probabilities).

In sum, these results show that the distribution of Tanimoto scores can be modeled,
predicted, or approximated accurately with the framework proposed here. Among the
simplest models, the Conditional Normal Uniform Model performs best. Conditioning on
the size A of the query can play an important role, since there are significant variations in the
distribution of the scores as A varies.

Z-Scores, E-Values, P-Values, Outliers, and ROC Curves
We now turn to the assessment of significance using Z-scores, E-values, extreme value
distributions and p-values, and ROC curves. Figure 5 provides four examples, one in each
column, of pairs of molecules where the top molecule can be viewed as the query, and the
bottom molecule can be viewed as a potential “hit” retrieved while searching a random
subset of 100,000 molecules taken from the ChemDB. The four queries have different sizes
corresponding to A = 16, 109, 199, and 258. The corresponding four Tanimoto similarity
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scores are 0.200, 0.400, 0.571, and 0.233. Columns a and d correspond to similar Tanimoto
scores, although they should be viewed quite differently due to the disparity in the size A of
the corresponding queries, as shown in the following analyses.

Z-Scores
The Z-score is the distance of a Tanimoto score from the mean measured in number of
standard deviations. As usual, for a given query of size A, the mean and standard deviation
can be computed over all molecules, or over molecules of size A only. As expected, Figure 5
shows that the Z-scores computed over all molecules are not very informative and would
indicate that all four pairs of molecules have Z-scores above 9 and therefore are significantly
very similar. The Z-scores computed by conditioning on A are slightly more informative:
while they still return three of the matches corresponding to columns a, b, and c as highly
significant (Z-scores above 5) compared to random, they begin to separate these cases from
the case of column d which is scored as not being very significant (Z-score of 0.810).

E-Values
As described previously, the E-value for a Tanimoto score t represents the expected number
of “hits” above t and can be estimated empirically or predicted from the distribution of the
scores and the size D of the database (Equation 9). Figure 5 shows again that theoretical E-
values obtained by conditioning on A are more useful and in the range of the E-values
observed empirically (here D = 100,000). The empirical E-values, or the predicted E-values
conditioned on A, now clearly separate the similarity in column d as being non significant.
The empirical and predicted E value show that when the size of the molecular fingerprints is
taken into consideration, the E-value in column d is considerably less significant that the E-
value in column a, in spite of the fact that the Tanimoto score in d (0.233) is higher than the
Tanimoto score in a (0.200). In addition, the E values identify column c as being the only
one with really significant similarity (E-value of 0.1).

Figure 7 provides further evidence of the utility of E-values and conditioning on A. This
Figure is obtained by using 55 Estrogen-Receptor binding molecules38 together with a
random sample of 100,000 molecules extracted from the ChemDB. For each one of the 55-
Estrogen Receptor ligands and any threshold, the figure essentially plots the number of
molecules that have a score above that threshold. Thus, for example, for t = 0 all 100,000
molecules have a score above t, corresponding to 55 superimposed dots on the graph.
Likewise, for t = 1 there are 55 superimposed dots with vertical value equal to 0 because no
molecule scores higher than 1. Note how the number of hits varies greatly in the threshold
interval [0.1, 0.3]. The solid red line represents the predicted E-values obtained using the
Conditional Normal Uniform Model and the corresponding ratio of two correlated Normal
random variables approximation integrated over all the molecules. The red curve is slightly
shifted with respect to the empirical points because the molecules in the Estrogen receptor
dataset have an average size of 143 bits, while molecules in ChemDB have an average size
of 205 bits. Deviations from the red line are observed in the actual data. The right side of
Figure 7 shows how this can be corrected by looking at individual molecules, in this case the
molecules with the smallest (A = 64) and largest (A = 305) size among the dataset of
Estrogen Receptor ligands. The predicted curves obtained by conditioning on the
corresponding values of A are in excellent agreement with the corresponding empirical
values.

Extreme Value Distributions and P-values
The p value for a score t is computed from the extreme value distribution and corresponds to
the probability of observing a maximum score above t. It is thus given by the complement
(Equation 11) of the cumulative distribution of the maximum scores (Equation 10). It can
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again be measured empirically by Monte Carlo sampling or predicted from the distribution
of the scores and its extreme value distribution, in particular using the Weibull form of
Equation 16 (see also Appendix B). Figure 5 demonstrates again examples of p-value results
for actual molecule searches in ChemDB. Each search yields one binary result of whether or
not the maximum score is greater than a threshold. Multiple searches of the query molecule
against different samples are thus needed to derive a probability that directly compares to
the computed p-value. As in the case of E-values, the figure shows that the p-values
obtained by conditioning on A closely approximate the p-values obtained by Monte Carlo
simulations. These p-values very clearly identify column c as the only column
corresponding to a significant Tanimoto similarity with respect to ChemDB. Unlike the E-
value above, the p-value is not effective for separating columns a and d. This is because the
p-value is useful for assessing Tanimoto scores that are in the tail of high scores and does
not work well on average scores. Additional results showing good agreement between
predicted and empirical p-values as well as additional technical details are given in
Appendix B (Figure 10 and Figure 12).

Outliers
The notion of outliers, like the notion of significance, is relative to a particular background
distribution. For instance, we can apply the general framework to easily detect molecules
that are outliers, or behave atypically, with respect to the rest of the molecules in a database
such as ChemDB. This is illustrated in Figure 6 with an example focusing on molecules
satisfying A = 220 showing the distribution of the scores for 100 such molecules. The red
curve represents essentially the predicted distribution conditioned on A = 220. The green and
blue curve identify two different molecules in this group, with very typical and very atypical
behavior, as measured in terms of Kullback-Leibler divergence. The KL divergence is given

by  and can be used to measure the dissimilarity between any
distribution P(t) of scores and the expected distribution M(t). The typical molecule has a KL
divergence of 0.003 (green) while the atypical molecule has a KL divergence of 1.075
(blue).

ROC Curves
Figure 8 compares empirical and predicted ROC curves for six diverse data sets of
molecules taken from the literature: (1) 55 Estrogen Receptor ligands;38 (2) 17
Neuraminidase inhibitors;38 (3) 24 p38 MAP Kinase inhibitors;38 (4) 40 Gelatinase A and
general MMP ligands;38 (5) 36 Androgen Receptor ligands;39 and (6) 28 steroids with
Corticosteroid Binding Globulin (CBG) Receptor affinity40 against a random background of
100,000 molecules selected from the ChemDB and used as negative examples. The
distribution of positive scores is obtained empirically by deriving all the pairwise scores in
each dataset. The distribution of negative scores is obtained in each case by all the pairwise
scores between molecules in the corresponding positive sets and the 100,000 molecules in
the negative set. The distribution of negative scores is modeled here as a ratio of two
correlated Normal random variables, or as a single Normal, Gamma, or Beta (after
rescaling) distribution. In all cases, the predicted ROC curves approximate the empirical
ROC curves well. Thus in short, the framework presented here allows one to predict both
True and False, Positive and Negative, rates at all possible thresholds quite accurately and
estimate retrieval measures such as Specificity, Sensitivity, Precision, and Recall at a given
threshold, or estimate ROC curves over then entire set of possible score thresholds.
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Discussion and Conclusions
This paper develops the statistical theory for modeling, predicting, approximating, and
understanding the distributions of chemical similarity scores and their extreme values. The
framework allows one to answer the questions raised in the Introduction and yields simple
guidelines to determine the significance of chemical similarity scores by computing Z-
scores, E-values, and p-values. To demonstrate the advantages of Z-scores, E-values, and p-
values, consider for example a Tanimoto score of 0.5. The significance of this score depends
on many considerations including the size of the database, the kinds of molecules
represented in the database, and the molecular representations used. For instance, the
significance of a 0.5 score varies when it is obtained in a database containing 1,024 modulo-
OR-compressed path fingerprints versus one containing circular substructure finger-prints
with lossless compression. This makes the 0.5 Tanimoto score very specific to the particular
implementation. In contrast, the Z-score, E-value, and p-value corresponding to a Tanimoto
score of 0.5 take into account the global distribution of the scores and are more intrinsic and
comparable across different implementations and experiments.

The parameters describing the score distributions can be derived from various models of
finger-prints or they can be learned empirically. The detailed derivation in Appendix A
demonstrates how the models can be conditioned on the size of the query molecule (A) and/
or database molecule (B) providing multiple sets of parameters specific to those sizes.
Parameters learned from empirical data can also be conditioned on molecule size, by
sampling correspondingly from molecule finger-prints containing A and/or B 1-bits.
Conditioning the parameters on both A and B greatly increases the number of parameters.
For instance, in a typical implementation using 1,024 modulo-OR-compressed path
fingerprints, the value of A and B could span the 1–500 range, requiring a number of
parameters in the 5002 range. A large number of parameters may increase the look-up time
thus adding complexity to the search. The results presented here show that conditioning on
the query molecule size A alone offers a good tradeoff because of the manageable parameter
size (~ 500) and considerably improved retrieval results compared to no conditioning at all.
Furthermore, using probabilistic models such as the Conditional Normal Uniform model, the
number of parameters can be further reduced to a very small number (~ 2), although it may
still be desirable to precompute and store the parameters of the score distributions at each
possible value of A. Likewise, in order to condition the parameters of the Weibull extreme
value distribution on A, Appendix B demonstrates a simple approach where the parameters
can be computed economically by simple polynomial functions of A. For several
applications, it is also possible to condition the distribution of scores or extreme values on
groups of related molecules, for instance molecules known to have the same biological
function or bind to the same receptor. In this case, theoretical distributions such as the
distribution of the ratio of two correlated Normal random variables or the Weibull
distribution for extreme values must be fitted to empirical data.7

This work has been in part inspired by analogies with the field of bioinformatics and the
problem of searching large databases of nucleotide or amino acid sequences using standard
tools such as BLAST. However, in considering future applications of the theory to
chemoinformatics, it is important also to take into consideration some of the differences
between the two fields, including differences in culture with respect to data sharing,
openness, and standardization. In addition, BLAST was originally created to detect
homology due to evolution. While natural evolution is different from the process that has led
to the small molecules found in chemoinformatics databases today, we do not believe that
this alone results in a fundamental difference, especially in light of the fact that increasing
numbers of synthetic biological sequences are being bioengineered. Perhaps more
significant is the fact that simple die toss models are better in general at modeling biological
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sequences, than simple coin flips are at modeling small molecule fingerprints. This is due to
the sequential nature of biological sequences and the non-sequential nature of molecular
fingerprints. For instance, a small die toss perturbation of a biological sequence results in
another sequence, whereas a coin flip perturbation of a fingerprint does not correspond, in
general, to a valid fingerprint. However, even such a difference, appears to be more
quantitative than qualitative and implies that different probabilistic models may be used in
different domains.

As far as other domains are concerned, it is worth noting that the greneral methods presented
here are not limited to chemoinformatics, but could be applied to other areas of information
retrieval, particularly to text retrieval which is formally very similar to chemical retrieval.
Text retrieval methods often represent documents precisely by binary fingerprints, similar to
molecular fingerprints, using the well-known “bag of words” approach. In this approach,
each document is viewed as a bag of words, and the components of the corresponding
fingerprint index the presence or absence of each word from the vocabulary in the
document. In addition, similarity between documents is often computed from the
corresponding fingerprints using precisely the same Jaccard-Tanimoto similarity measure.

In the short term, however, it is likely that users of chemoinformatics search engines, as well
as users of Google and other text search engines, will continue to inspect the top hits
returned by a search manually and rely on the raw Jaccard-Tanimoto scores or the
corresponding Z-scores, E-values, and p-values to assist them with their inspections. It is in
high-throughput data mining applications with large number of queries applied to one or
multiple databases, possibly orders of magnitude larger than the ones available today, and
when manual inspection becomes impossible, that the framework developed here may find
its most fruitful applications.
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Appendix A: Probabilistic Models of Fingerprints
In this Appendix, we show how the probabilistic models can be treated analytically and how
the means, standard deviations, and covariances of the intersections and unions can be
computed.

A1. Single-Parameter Bernoulli Model
For this model, we assume that the fingerprints B⃗ in the database are generated by N coin
flips with a constant probability p of producing a 1-bit. The distribution of the number of 1-
bits in the database fingerprints is then given by a a Binomial distribution ℬ(N, p), which can
be approximated by a Normal distribution  (N p, N pq) for N large. Likewise, we can
assume that the query fingerprints are produced by coin flips with constant probability r of
producing a 1-bit. The case where r ≠ p can be treated at no extra cost. Consider a
fingerprint query A⃗, with A 1-bits with Binomial distribution ℬ(N, r), which can be
approximated by  (Nr, Nrs) (s = 1 − r) for N large. Let I ⃗ = (Ii) and U ⃗ = (Ui) denote the
intersection and union fingerprints. Then the intersection size I = A ∩ B = Σi Ii = Σi(Ai ∩ Bi)
is a random variable with Binomial distribution ℬ(N, pr), which can be approximated by a
Normal distribution  (N pr, N pr(1 − pr)) for N large, as well as a Poisson distribution 
(N pr) when N is large and pr is very small. Similarly, the union size U = A ∪ B = Σi Ui =
Σi(Ai ∪ Bi) is a random variable with Binomial distribution ℬ(N, 1 − qs) = ℬ(N, p + r − pr),
which can be approximated by a Normal distribution for N large  (N(1 − qs), N(1 − qs)qs),
and a Poisson distribution (N(p + r − pr)) when N is large and p +r − pr is small.

Under the Binomial model, we can get an exact expression for the distribution of the
Tanimoto scores. The Tanimoto score T = I/U can only take rational values t between 0 and
1. Assuming that n and m are irreducible, with 0 ≤ n ≤ m and t = n/m, the probability P(T =
t) is given exactly by

(18)
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where K is the largest integer such that Km ≤ N, i.e. . Clearly if t is not rational, this
probability is 0. Thus, from this distribution we can derive all the properties of the score
distribution, including its mean and variance, under the assumptions of the Binomial model.

To further simplify matters, by approximating the numerator I and denominator U by
Normal distributions as described above, we can view the Tanimoto score as the ratio of two
correlated Normal random variables. Thus we next need to compute the covariance between
I and U. Noticing that the components Ii and Uj are independent for i ≠ j, we have

(19)

A direct calculation gives

(20)

so that

(21)

Thus we can approximate the distribution of the Tanimoto scores under the simple Bernoulli
model by studying the ratio of two correlated Normal random variables approximating the
numerator I and denominator U, with means, variances, and covariances as described above.

In Figure 1, the distributions of the number of 1-bits in actual fingerprints contained in the
ChemDB and fingerprints generated by the Single-Parameter Bernoulli model, with p
chosen to fit the average, are compared. Though both distributions have the same mean by
construction, the variance of the ChemDB distribution is significantly larger. Both
distributions are also well approximated by Normal distributions with  (μ = 218, σ2 =
9552) for the empirical distribution, and  (μ = 218, σ2 = 172) for the Binomial model. The
additional width parameter of the Normal model helps to capture the diverse sizes of
molecules represented in the empirical fingerprints and can be used effectively in a
Conditional Normal Uniform model.

Figure 9 shows the distributions of the intersections and unions of fingerprints generated
using a Single-Parameter Bernoulli model with p fit to approximate the mean of the
fingerprints in ChemDB (p ≈ 205/1,024) for both the queries and the database. Normal
approximations to these distributions are superimposed on the two histograms. Figure 9 also
shows the empirical distribution of the scores together with the corresponding ratio of
correlated Normal random variables approximation.

A2. Multiple-Parameter Bernoulli Model
The analysis above for the Single-Parameter Bernoulli model can easily be extended to the
Multiple-Parameter Bernoulli model by using similar expressions for the mean, variance,
covariance of the individual variables Ii and Ui and combining them using the linearity of
the expectation and the independence of components associated with different indices. In
this case, we let p1, p2,… pN be the vector of probabilities for the database and r1,r2,…rN the
vector of probabilities for the queries. The mean and variance of I are given by Σi piri and Σi
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piri(1 − piri) respectively. Thus I can be approximated by a Normal distribution  (Σi piri,Σi
piri(1 − piri)). Likewise, the mean and variance of U are given by Σi(1 − qisi) and Σi(1 −
qisi)qisi respectively. Thus U can be approximated by a Normal distribution  (Σi(1 −
qisi),Σi(1 − qisi)qisi). Finally, for the individual covariance terms we have Cov(Ii,Ui) = piri(1
− pi −ri + piri) and Cov(Ii,Uj) = 0 for i ≠ j. Therefore the full covariance is given by the sum
Cov(I,U) = Σi piri(1 − pi − ri + piri). Thus one can effectively proceed with the ratio of two
correlated Normal random variables approximation, as for the Single-Parameter Bernoulli
model.

In spite of its many parameters, the Multiple-Parameter Bernoulli model suffers from some
of the same weaknesses as the Single-Parameter Bernoulli model compared to empirical
fingerprints (result not shown). In particular, when using the empirical probabilities pi, the
model can easily fit the average of A but tends to underestimate the variance of A, where A is
the number of 1-bits in the empirical fingerprints.

A3. Conditional Distribution Uniform Model
With the Conditional Distribution Uniform we can first fit a distribution, typically a Normal,
to the size A of the fingerprints in the database or the set of queries. This in general provides
a better fit than what can be obtained using the Bernoulli models. Second, this model allows
exact conditioning on the size A of the queries or of the molecules being searched. In the
Single-Parameter Bernoulli approach, conditioning on A is not implemented exactly but
approximated by using p = A/N. Finally, once A is fixed, the uniform portion of the model
ensures exchangeability without independence of the components.

Conditioning on A and B
In the Conditional Distribution Uniform model it is easy to see that for fixed A and B the
intersection I = A ∩ B has a hypergeometric distribution with probabilities given by

(22)

for A + B − N ≤ k ≤ min(A, B), and 0 otherwise.

To study the Tanimoto scores directly, we have the conditional density

(23)

and conditional cumulative distribution

(24)
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Therefore, the probability distribution for the similarity T can be derived from the
hypergeometric distribution of I, given A, B and N. In particular, we have the conditional
distribution

(25)

where the sum is over the distribution P(B). This approach is thus consistent with the
Conditional Distribution model which depends on the model for P(B). To model this

distribution, we can use the Binomial model . But it is often
preferable, as previously discussed, to use a more flexible Normal model with

(26)

where the mean and standard deviation are fitted to the empirical values. The unconditional
distribution of Tanimoto scores is given by a second integration over the distribution P(A) of
queries

(27)

For the Conditional Distribution Uniform model, we can derive the means, variances, and
covariances of the intersections and unions at all levels of conditioning. First, conditioned on
A and B the mean of this hypergeometric distribution is E(I|A,B) = AB/N. The variance is
given by Var(I|A,B) = A(B/N)(1 − B/N)(N − A)/(N − 1). The union can be studied from the
intersection by writing U = A + B − I, so that P(U = k|A,B) = P(I = A + B − k|A, B). So
conditioned on A and B, the expectation of U is given by E(U) = A + B − E(I) using the
linearity of the expectation. Likewise, Var(U|A,B) = Var(I|A,B), i.e. the variance of U is
equal to the variance of I. In the same way, we can also estimate the covariance by writing
Cov(I,U) = E(IU) − E(I)E(U) and writing U = A + B − I yields

(28)

Conditioning on A only (or B only)
We can now condition over A only (or B only, mutatis mutandis), i.e. integrating over B. For

this we assume that B has a distribution with mean μB and variance . This distribution
could be Normal but does not have to be so. Only the mean and variance of this distribution
are used in the following calculations, and similarly for the distribution of A. Integrating
over B, the mean of the intersection and the union are given by
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(29)

and

(30)

To compute the corresponding variances, we write

(31)

here by B⃗ we wish to denote all the fingerprints in the database, and B = |B⃗| is the bit
counting function. By expanding the square and integrating first over molecules satisfying B
= |(B⃗)|, and then over B, we get

(32)

These integrals can easily be calculated and yield

(33)

This is an example of the law of total variance or variance decomposition formula

(34)

which will be used again in the following calculations without further mention. The same
decomposition for the union yields

(35)

and finally

(36)
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Similarly, to calculate the covariance, we have

(37)

which gives

(38)

After integration over B, we finally get

(39)

No Conditioning
If now we integrate with respect to the query molecules A, the means are given by

(40)

and

(41)

To compute the variances, we apply again the law of total variance to obtain:

(42)

which yields

(43)

Likewise, for the union
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(44)

which yields

(45)

And finally for the covariance we have

(46)

which can again be expanded as

(47)

from which

(48)

which yields

(49)

When the queries come from the database itself with the same distribution, we can simplify
the last set of formulae for the mean, variance, and covariance using μA = μB and σA = σB.

In short, we have derived general analytical formulas for the means, variances, and
covariances of the intersections and unions of fingerprints under the Conditional
Distribution Uniform Model, with various degrees of conditioning. These formulas can be
used directly to derive corresponding ration of correlated Normal random variables
approximations to the corresponding Tanimoto score distributions.
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Appendix B: Extreme Value Distribution
This Appendix describes a complementary approach to the Extreme Value Distribution
(EVD) of the similarity scores using a Poisson distribution. It also describes how the
parameters of the Weibull approximation to the EVD (Equation 16) can be fit to the data.

B1. Extreme Value Distribution Using the Poisson Distribution
As described in the main text, the cumulative distribution of the maximum score, max, in a
database of size D is given by

(50)

F(t) is the cumulative distribution of the similarity scores which can be obtained empirically
through Monte Carlo experiments, or analytically using, for instance, the ratio of correlated
Normal random variables approach. For a large enough Tanimoto threshold t, it is
reasonable to assume that obtaining a score above t is a rare event which thus ought to
follow a Poisson distribution. In other words, the probability of obtaining k similarity scores
above t with a database of size D should be approximately given by the Poisson distribution

(51)

with parameter λt,D dependent on the threshold t and the size D of the database being
searched. Note that λ could also depend on the A of the query. λ is size also the expectation
of the corresponding Poisson distribution, thus λt,D is the expected number of scores above
threshold t, which is also called the E-value, and can be computed by Equation 9

(52)

The cumulative distribution Fmax(t) corresponds to the probability of having no scores above
the threshold t and therefore is given by Pt,D(0):

(53)

Equations 50 and 53 give indistinguishable results for Fmax (Figure 10), which can be
expected also by looking at the Taylor expansion of e−[1−F(t)].

B2. Fitting the Weibull Distribution Function
As previously described, the probability of max can be represented by a type-III extreme
value distribution, or Weibull distribution function, of the form

(54)
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where μ is the location parameter, σ is the scale parameter and ξ is the shape parameter. μ is
set to one because the Tanimoto score, t, is bounded by one. Parameters σ and ξ depend on
underlying cumulative distribution of scores, F(t), and the size of the database, D.
Substituting Fmax(t) from Equation 50 in Equation 54 and solving for the parameters we get
the Equation defined over F(t) > 0, t ≠ 1

(55)

To solve for σ and ξ, we substitute two values of t (t1 ≠ t2) in the equation to get the
following solutions:

(56)

(57)

Equations 56 and 57 show very explicitly how the parameters can be calculated for a
specific database size(D) and Tanimoto cumulative distribution(F(t)). F(t) can be computed
either empirically, by sampling Tanimoto scores from random fingerprints in the database,
or theoretically, by using the derivations presented in this work. In principle, one could use
arbitrary values of t1 and t2 in Equations 56 and 57. However, it is clear that values too close
to t1 = 0 and t1 = 1 do not work and one must be careful to select values of t1 and t2
corresponding to the region where Fmax(t) = F(t)D is not flat (Figure 10). In practice, values
of t1 and t2 such that F(t1)D and F(t2)D are in the interval [0.01,0.99] give consistent results
and allow for a good fit by the Weibull distribution. Figure 10 shows the fit of Fmax by the
Weibull distribution and the corresponding [0.01,0.99] interval. When fitting the Weibull
parameters, one can condition F(t) in Equations 56 and 57 on A. This results in a family of
parameters ξ(A) and σ(A)) for each value A. These of values can be tabulated or one can try
to fit them using a simple regression model. Figure 11 shows how the parameter can be fit
with simple polynomial curves and Figure 12 shows Fmax as well as the Weibull distribution
for different values of A. For each A, the parameters are calculated using the polynomial
functions demonstrated in Figure 11.
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Figure 1.
Distributions of the number of 1-bits in fingerprints from the ChemDB (blue solid line) and
fingerprints from the matching Single-Parameter Bernoulli model (red solid line) with p ≈
205/1,024). Both distributions are constructed using a random sample of 100,000
fingerprints. Though both distributions have similar means, the standard deviations differ
significantly. The distributions are also fit using two Normal distributions, which
approximate the data well (dotted lines).
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Figure 2.
Results obtained with 100 molecules randomly selected from ChemDB used as queries
against a sample of 100,000 molecules randomly selected from ChemDB. The two upper
figures correspond to fingerprints of length 1,024 with modulo OR lossy compression, while
the two lower figures correspond to fingerprints with lossless compression (equivalent to
uncompressed fingerprints). The figures in the left column display the histograms of the
sizes of the intersections and unions and their direct Normal approximations in blue and
green respectively. The figures in the right column display the histograms of the Tanimoto
scores (blue bars), while the solid black line shows the corresponding approximation derived
using the ratio of correlated Normal random variables approach.
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Figure 3.
Empirical (left) and predicted (right) heat maps corresponding to the distribution of the
intersections (top), unions (middle), and Tanimoto scores (bottom). The distribution is
conditioned on the size of the query molecule, A, shown on the vertical axis. The empirical
results are obtained by using for each A 100 molecules randomly selected from the
molecules in ChemDB with size A. The theoretical results of the intersection and union
distributions use the Conditional Normal Uniform model. At each value of A, the mean and
variance of the intersection and union are obtained from Equations 29, 30, 33, and 36
respectively. The theoretical score distribution is a result of the ratio of correlated Normal
random variables approximation given by Equations 2–6
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Figure 4.
The empirical and theoretical covariance Cov(I,U) between the intersection and the union,
conditioned on the size A of the query molecule, shown in blue and green respectively.
Empirical results are obtained by using, for each A, 100 molecules randomly selected from
the molecules in ChemDB with size A. A is shown on the vertical axis for consistency with
the previous heat map figures. Theoretical predictions are derived with the Conditional
Normal Uniform Model conditioned on A (Equation 39).
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Figure 5.
The first row shows four query molecules. The second row considers four corresponding
potential “hits” in the corresponding columns. The table shows the size A of the four query
molecules followed by the corresponding Tanimoto scores, Z-scores, E-scores, and p-values
observed empirically or predicted from the theory with and without conditioning on the size
A of the query molecule. Molecules are represented by Daylight-style fingerprints of length
1024 with OR lossy compression.
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Figure 6.
Empirical score distributions for 100 query molecules satisfying A = 220. Each black curve
is associated with one of the molecules and is obtained by scoring the molecule against a
random sample of 100,000 molecules from the ChemDB. The red curve corresponds to the
mean of the 100 curves and is essentially identical to the predicted distribution of scores
conditioned on A = 220. The green curve corresponds to a molecule in the group that is
typical and the blue curve to a molecule that is atypical. The difference between the
distributions is measured here in terms of Kullback-Leibler (KL) divergence or relative
entropy.
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Figure 7.
Left: 55 Estrogen Receptor ligands are used to query a sample of 100,000 molecules
randomly selected from the ChemDB. Horizontal axis represents Tanimoto threshold scores.
Vertical axis represents number of scores above the threshold (hits). Each dot represents a
query’s number of hits above the corresponding threshold on the horizontal axis.
Superimposed dots are indistinguishable (see text). The solid red line represents the
predicted E-values based on the ratio of two correlated Normal random variables
approximation integrated over all values of A in the sample. Right: Dots associated with the
Estrogen Receptor ligand with the largest A (cyan) and the smallest A (green) are isolated.
The solid lines show predicted E-values based on the ratio of two correlated Normal random
variables conditioned on the size of the two query molecules: A = 305 (cyan) and A = 64
(green).
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Figure 8.
ROC curves for six data sets of active molecules (from left to right and top to bottom): (1)
55 Estrogen receptor ligands; (2) 17 Neuraminidase inhibitors; (3) 24 p38 MAP Kinase
inhibitors; (4) 40 Gelatinase A and general MMP ligands; (5) 36 Androgen receptor ligands;
and (6) 28 steroids with Corticosteroid Binding Globulin (CBG) receptor affinity. Empirical
ROC curves are in black. Various approximations of the negative molecule scores
distribution are used to get the theoretical curves, including a ratio of two correlated Normal
random variables distribution (red), a single Normal distribution (blue), a single Gamma
distribution (green), and a single Beta distribution (cyan), using a random sample of 100,000
molecules from the ChemDB.
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Figure 9.
Results obtained using 100 query fingerprints to search 100,000 fingerprints. All finger-
prints have length N = 1,024 and are generated using a Single-Parameter Bernoulli model
with p = 205/1,024 to fit the average values in the actual ChemDB fingerprints. Left:
histograms for the size of the intersections (blue) and the unions (green), together with their
Normal approximations (solid black lines). Right: histogram for the corresponding Tanimoto
scores (red), together with the corresponding ratio of correlated Normal random variables
approximation (solid black line).
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Figure 10.
Plot of Fmax(t), the cumulative distribution of the maximum score, computed on a random
sample of 100,000 molecules from the ChemDB in three different ways. The solid blue
curve represents the approach of Equation 50. The dashed red line represents that Poisson
approach of Equation 53. The green solid line shows the Weibull distribution approach of
Equation 54. The left and right brackets on the curve indicate the acceptable boundary
within which t1 and t2 ought to be selected (Equations 56 and 57).
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Figure 11.
Polynomial fitting of the parameters σ (left) and ξ (right) of the Weibull distribution
(Equation 54) using a first and third degree polynomial respectively (in red) as a function of
the size A of the query. The empirical values (black) are obtained using a random sample of
D=100,000 molecules from the ChemDB. The range of A used for fitting is [70,520]. The
polynomials are σ = −0.00044423A + 0.26429116 and ξ = 0.00000009A3 − 0.00007387A2 +
0.01643368A +2.12103400.
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Figure 12.
Cumulative extreme value distribution Fmax(t) computed on a random sample of D =
100,000 molecules from the ChemDB, conditioned on different values of A, using 100 query
molecules at each value of A. The solid blue curve represents the values obtained using
Equation 50 applied with the empirical distribution F(t) of the scores. The dashed red line
shows the corresponding Weibull distribution obtained using the polynomial fit for the
parameters σ and ξ as a function of A (solid red line in Figure 11).
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