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Abstract
Consistent but indirect evidence has implicated genetic factors in smoking behavior1,2. We report
meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics
Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic
Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15
most significant regions (n > 140,000). We identified three loci associated with number of cigarettes
smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor
gene CHRNA3 (rs1051730[A], β = 1.03, standard error (s.e.) = 0.053, P = 2.8 × 10−73). Two 10q25
SNPs (rs1329650[G], β = 0.367, s.e. = 0.059, P = 5.7 × 10−10; and rs1028936[A], β = 0.446, s.e. =
0.074, P = 1.3 × 10−9) and one 9q13 SNP in EGLN2 (rs3733829[G], β = 0.333, s.e. = 0.058, P = 1.0
× 10−8) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight
SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP
in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04–
1.08, P = 1.8 × 10−8). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12,
95% Cl 1.08–1.18, P = 3.6 × 10−8) was significantly associated with smoking cessation.

Previous genome-wide association studies (GWAS) for smoking behavior (Supplementary
Table 1) have identified a chromosome-15 nicotinic acetylcholine receptor gene cluster as
being associated with smoking quantity3. The Tobacco and Genetics (TAG) Consortium
conducted GWAS meta-analyses across 16 studies originally designed to evaluate other
phenotypes (for example, cardiovascular disease and type 2 diabetes). We examined four
carefully harmonized smoking phenotypes (see Online Methods)—smoking initiation (ever
versus never been a regular smoker), age of smoking initiation, smoking quantity (number of
cigarettes smoked per day, CPD) and smoking cessation (former versus current smokers)—
among people of European ancestry (Table 1). Smoking cessation contrasted former versus
current smokers, where current smokers reported at interview that they presently smoked and
former smokers had quit smoking at least 1 year before interview. Smokers who had quit
smoking for less than 1 year at interview were excluded from the analysis to minimize
misclassification, as relapse after initial smoking cessation occurs in 70% to 80% of former
smokers within the first year4.

The 16 TAG studies performed their own genotyping, quality control and imputation (see
Supplementary Tables 2 and 3 and Online Methods). Studies ranged in size from n = 585 to
n = 22,037 and were genotyped on six different platforms. Genotype imputation5 resulted in
a common set of ~2.5 million SNPs (Supplementary Table 3). Imputed allele dosages for each
SNP (that is, the number of copies of the minor allele) were tested for association with each
smoking phenotype, using an additive model.

We performed a fixed-effect meta-analysis for each smoking phenotype by computing pooled
inverse variance–weighted β coefficients, s.e. values and z-scores for each SNP6. Fixed-effects
analyses are regarded as the most efficient method for discovery in the GWAS setting7,8.
Heterogeneity across studies was investigated using the I2 statistic9. Random-effects analyses
are presented in Supplementary Table 4. We used a significance threshold of P < 5 × 10−8

(refs. 10,11).

In the initial TAG meta-analysis, only one locus contained SNPs that exceeded genome-wide
significance for one of the four phenotypes (Fig. 1 and Supplementary Table 4). A total of 130
SNPs in the 15q25.1 nicotinic receptor gene cluster were significantly associated with CPD
(n = 38,181, minimum P = 4.2 × 10−35 at rs12914385 in CHRNA3). One SNP approached
significance for smoking cessation (n = 41,278, minimum P = 5.5 × 10−8 for rs7872903, located
~17 kb 5′ of DBH on chromosome 9). No SNPs were significantly associated with ever versus
never regular smokers (n = 74,035, minimum P = 2.2 × 10−7 at rs16941640 in CDC27) or age
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of smoking initiation (n = 24,114, minimum P = 1.6 × 10−6 at rs2806464, located 3′ of
DISC1) in the initial TAG meta-analysis.

To follow up associations identified in the TAG Consortium analyses, we partnered with the
ENGAGE and Oxford-GlaxoSmithKline (Ox-GSK) consortia and conducted a reciprocal
exchange of summary results for the 15 most significant genetic regions for three smoking
phenotypes12,13. Our regions were defined by clusters of P values < 10−4 (that is, where the
correlations (r2) were >0.5 and/or the SNPs were located <50 kb apart; Supplementary Table
5). Sample sizes across the three consortia were n = 143,023 for smoking initiation, n = 73,853
for CPD and n = 64,924 for smoking cessation (data on age of smoking initiation were not
available in ENGAGE or Ox-GSK).

Results of the most significant SNPs for each smoking phenotype across the three consortia
are summarized in Table 2. We identified three loci associated with CPD. The synonymous
SNP rs1051730 in CHRNA3 showed the strongest association: each copy of the A allele
corresponded to an increase in smoking quantity of 1 CPD (β = 1.03, s.e. = 0.056, P = 2.8 ×
10−73, I2 = 0.66; Fig. 2) and accounted for 0.5% of the variance in CPD. The SNP rs16969968
[G], which has been proposed as a causal variant in this region14, was the second most
significant SNP associated with CPD (P = 5.57 × 10−72; Supplementary Fig. 1). In tests of
association for SNPs within the 15q25.1 region conditional on rs1051730, we observed residual
associations, with the most significant signals at rs684513[G] (P = 6.3 × 10−9), in CHRNA5,
and rs9788682[G] (P = 1.06 × 10−8) and rs7163730[G] (P = 1.22 × 10−8), in LOC123688
(Supplementary Fig. 2 and Supplementary Table 6). Our results suggest that several markers
within this region may influence CPD independently. Fine mapping and the use of the 1000
Genomes Project data should help refine these signals. We investigated whether the 15q25.1
region was associated with smoking initiation and smoking cessation as well, but no SNP in
that region exceeded genome-wide significance (smoking initiation minimum P = 0.98;
smoking cessation minimum P = 1.75 × 10−5).

In addition, markers within regions on chromosomes 10q23 and 19q13 were significantly
associated with CPD. The SNPs rs1329650[G] (β = 0.367, s.e. = 0.059, P = 5.7 × 10−10; Fig.
2) and rs1028936[A] (β = 0.446, s.e. = 0.074, P = 1.3 × 10−9; Supplementary Fig. 1) are located
in a noncoding RNA (LOC100188947), where each additional copy of a risk allele
corresponded to an increase in smoking quantity of ~0.5 CPD. Linkage disequilibrium (LD)
between these SNPs is moderate (r 2 = 0.46), suggesting that they may represent one signal.
To our knowledge, this region has not been previously investigated in relation to smoking
behavior or other addiction phenotypes.

The third locus identified for CPD lies in the first intron of EGLN2 on chromosome 19q13, 40
kb from the 3′ end of CYP2A6. One SNP, rs3733829, exceeded genome-wide significance, and
each copy of the G allele corresponded to an increase in smoking quantity of <0.5 CPD (β =
0.333, s.e. = 0.058, P = 1.0 × 10−8; Fig. 2). CYP2A6 is an established candidate gene for
smoking, as it encodes for an enzyme involved in the metabolic inactivation of nicotine to
cotinine15. Many allelic variants of CYP2A6 result in slower metabolism of nicotine16 and are
associated with lower prevalence of smoking and lower amounts of cigarette use16,17. We
interpret this finding with caution, as only one SNP upstream of CYP2A6 was observed and
the strength of its association was moderate. However, the 19q13 region merits continued
investigation given its biological plausibility as involved in nicotine metabolism and because
several markers within this region were identified in the ENGAGE Consortium12. The SNP
identified in our study (rs3733829) lies directly between, and shows moderate LD with, the
two most significant markers identified in ENGAGE.
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Eight SNPs around BDNF exceeded genome-wide significance for smoking initiation analyses
across the three consortia (Fig. 3). The minimum P value was at the missense variant rs6265
(P = 1.8 × 10−8) located in the first exon of BDNF on chromosome 11. Each copy of rs6265
[C] conferred a 6% increase in the relative risk of regular smoking (OR = 1.06, 95% c.i. 1.04–
1.08); rs6265 accounted for 0.03% of the variance. BDNF belongs to a family of neurotrophins
that regulate synaptic plasticity and survival of cholinergic and dopaminergic neurons18. The
eight SNPs overlap an antisense transcript (BDNFos). BDNF is expressed at high levels in the
prefrontal cortex and hippocampus, which are brain regions implicated in the cognitive-
enhancing effects of nicotine19. Although the molecular mechanisms underlying this
association have yet to be elucidated, it is plausible that genetic variation at BDNF could alter
the rewarding effects of nicotine through modulation of dopamine reward circuits and could
contribute to the salience of nicotine’s effects by altering formation of drug-related memories
that promote continued use after initial exposure. The SNP rs6265 has been found to be
associated with substance-related disorders, eating disorders and schizophrenia20. Most
recently, it was identified in a GWAS for body mass index21; the allele associated with a greater
body mass index was the same allele associated with regular smoking in our study.

For smoking cessation, one SNP, located 23 kb 5′ of DBH on chromosome 9, achieved genome-
wide significance: rs3025343[G] was associated with former smoking status (OR = 1.12, 95%
c.i. 1.08–1.18, P = 3.6 × 10−8; Fig. 3) and accounted for 0.19% of the variance in smoking
cessation. Because DBH catalyzes conversion of dopamine to norepinephrine, there has been
interest in DBH as a candidate gene for various psychiatric phenotypes, including smoking
behavior22. Although the SNP identified in this study does not cause amino acid residue
changes in DBH, gene expression may be modified either directly or through other variant(s)
in strong LD. This view is supported by evidence that a genetic variant (C1021T or rs1611115),
located upstream of the DBH translational start site, accounts for 51% of the variation in
plasma-DBH activity in European-Americans22. Alternatively, the SNP identified in our study
or a variant in LD may influence expression of other genes nearby (ADAMTSL2, FAM163B or
SARDH), which would introduce new pathways to our current understanding of addiction
biology.

To our knowledge, the sample sizes for the TAG Consortium alone and combined with the
ENGAGE and Ox-GSK consortia are among the largest genetic meta-analyses yet
conducted23. Notably, most of the loci identified in this study reside in or near known candidate
genes involved in the neurobiology of smoking, which differs from the results of previous
GWAS, in which variants identified have generally not been in regions previously suspected.
The lack of findings for smoking initiation and cessation is noteworthy in light of considerable
genetic epidemiological data suggesting a role for genetic factors in different aspects of
smoking behavior (for example, heritability estimates are often >0.50)1, and we note that the
loci identified do not of themselves account for more than small fractions of the phenotypic
heritability. Additional smoking behavior loci may be identified with improved genomic
coverage and analysis of gene-gene and gene-environment interaction, copy number variation
or epigenetic effects. We acknowledge that imprecision in phenotypic assessment and
differences across studies could have added noise sufficient to blur all but the most prominent
genetic signals. Smoking behavior obtained by questionnaires may be subject to phenotypic
misclassification. Recent work24 has shown that genetic variation at 15q25.1 influences
cotinine (the main and long-lived metabolite of nicotine) measurements more strongly than it
influences CPD values obtained by means of a questionnaire. Future smoking GWAS that use
biomarkers or longitudinal assessments that refine phenotypic assessments by incorporating
time to quitting or relapsing to smoking may be required. In addition, inclusion of multiple
ethnic groups will enhance the investigation of the genetics of smoking.
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Notably, the five significant loci identified in these meta-analyses were each associated with
only one specific smoking phenotype. Our findings suggests that separate genetic loci
contribute modestly to phenotypic variability in each aspect of smoking behavior, which, in
turn, may have implications for the way in which smoking cessation therapies and tobacco
control efforts are designed and targeted.

Methods
Methods and any associated references are available in the online version of the paper at
http://www.nature.com/naturegenetics/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Genome-wide association results for the TAG Consortium. Manhattan plots showing
significance of association of all SNPs in the TAG Consortium meta-analyses for four smoking
phenotypes. (a–d) Manhattan plots show SNPs plotted on the x axis according to their position
on each chromosome against, on the y axis (shown as −log10 P value), the association with
CPD (a), former versus current smoking (b), ever versus never smoking (c) and age of smoking
initiation (d).
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Figure 2.
Forest and regional plots of significant associations for CPD from meta-analyses of the TAG,
Ox-GSK and ENGAGE consortia. (a–f) Regional association plots show SNPs plotted by
position on chromosome against −log10 P value with each smoking phenotype. Estimated
recombination rates (from HapMap-CEU) are plotted in light blue to reflect the local LD
structure on a secondary y axis. The SNPs surrounding the most significant SNP (red diamond)
are color coded to reflect their LD with this SNP (using pairwise r 2 values from HapMap-
CEU): blue, r 2 ≥ 0.8–1.0; green, 0.5–0.8, orange, 0.2–0.5; gray, <0.2. The gray bars at the
bottom of the plot represent the relative size and location of genes in the region.
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Figure 3.
Forest and regional plots of significant associations for smoking behavior. (a–d) Shown are
plots for smoking initiation (a,b) and smoking cessation (c,d) from meta-analyses of the TAG,
Ox-GSK and ENGAGE consortia. Regional association plots show SNPs plotted by position
on the chromosome against −log10 P value with each smoking phenotype. Estimated
recombination rates (from HapMap-CEU) are plotted in light blue to reflect the local LD
structure on a secondary y axis. The SNPs surrounding the most significant SNP (red diamond)
are color coded to reflect their LD with this SNP (using pairwise r2 values from HapMap CEU):
blue, r2 ≥ 0.8–1.0; green, 0.5–0.8; orange, 0.2–0.5; gray, <0.2. The gray bars at the bottom of
the plot represent the relative size and location of genes in the region.
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