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Abstract
Identifying genetic variants that influence human height will further our understanding of skeletal
growth and development. A number of rare genetic variants have been convincingly and
reproducibly associated with height in Mendelian syndromes, and common variants in HMGA2
were recently found to be associated with variation in height in the general population1. Here, we
report genome-wide association analyses of 6,669 individuals from Finland and Sardinia, using
genotyped and imputed markers, and follow-up in an additional 28,801 individuals. We show that
common variants in the osteoarthritis-associated2 GDF5-BFZB locus are responsible for variation
in height (estimated additive effect of 0.44 cm, overall p<10−15). Our results suggest a link
between the genetic basis of height and osteoarthritis, potentially mediated through alterations in
bone growth and development.

Height is a complex trait influenced by genes and a variety of environmental factors,
including diet and the prenatal environment3. Heritability estimates suggest that ≥ 80% of
variation in height may be genetically determined3,4. Rare mutations with large effects on
height in Mendelian syndromes have been identified in FBN1, FGFR3, GH1, EVC1, and
GPC3 (MIM 154700, 134934, 262400, 604831, and 312870). Despite the high heritability,
numerous candidate gene and linkage studies to identify loci influencing height in
individuals of “normal stature” have been inconclusive5. Overall, variation in human height
is likely to be polygenic and heterogeneous. Recently, the first GWAS of height1 identified
common variants in HMGA2 associated with normal variation in height, both in adults (p=4
× 10−16) and children (p=1 × 10−6); the variants account for a small fraction (~0.3%) of the
overall variation in height.

To identify additional genetic variants associated with height, we analyzed genome-wide
SNP data on 2,371 Finns from the FUSION study6 and 4,298 Sardinians from the SardiNIA
study7 (Table 1). The two samples were originally genotyped with distinct sets of markers.
We used genotype imputation methods6,8 to facilitate comparison of the two studies and
evaluate association between height and ~2.28 million common genetic variants. After
verifying the overall accuracy of imputed genotypes in a subset of markers, we conducted
within-study analyses using a rapid variance components-based association test9 and then
carried out a meta-analysis of the two studies (Supplementary Figure 1).

Our results provided confirmatory evidence of association with rs1042725 and rs7968682,
the recently reported common variants in HMGA2 (p=.031 and .0093, respectively, both in
the same direction as the original report: Supplementary Table 1)1. The five loci showing the
most significant evidence of association in our study are shown in Supplementary Table 2.
To our knowledge, common variants in these loci have not been associated with height
previously.

The genes near our strongest signal (p<2 × 10−7), located on chromosome 20, have a
plausible biological role in human height. Rare variants in growth differentiation factor 5
(GDF5) have been associated with disorders of skeletal development (see below), and BFZB
(also known as C20orf44 and UQCC) encodes a ZIC-binding protein repressed by basic
fibroblast growth factor10.

We pursued the chromosome 20 signal because it was the single best result in our initial
scan, the surrounding region accounts for 40 of the 50 lowest p-values in our meta-analysis,
and it overlaps an osteoarthritis susceptibility locus2. We focused our follow-up efforts for
this locus on SNP rs6060369 (p = 9.7 × 10−7 in the initial meta-analysis, Table 2) because it
exhibited the strongest evidence for association among all Affymetrix Mapping 500K SNPs,
which had been genotyped in the majority of our GWAS samples; we favored genotyped
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over imputed SNPs for initial follow-up. The SNP most significantly associated with height
in the meta-analysis of imputed HapMap SNPs was rs725908, which is in strong LD with
rs6060369 (r2 = 0.96, Supplementary Table 2). SNP rs6060369 was initially imputed in the
FUSION GWAS, but direct genotyping sustained strong evidence of association (meta-
analysis p=1.5 × 10−6). In the GWAS samples, each copy of the C allele at rs6060369 was
associated with an increase in height of 0.3 to 0.7 cm (accounting for 0.3–0.6% of the
variance in height, after adjustment for age and sex).

Motivated by previous reports of sex differences at osteoarthritis-associated loci11, we
carried out an analysis stratified by sex. The stratified analyses show strong evidence of
association in both males and females with no evidence of heterogeneity (Supplementary
Table 3). We did not detect significant association of the SNP with other anthropometric
measures (p>.05 for weight, body mass index, waist circumference, hip circumference, and
waist-to-hip ratio).

We next tested the association of rs6060369 with height in nine follow-up samples,
comprising 23,684 individuals of European ancestry and 3,860 African American
individuals (Table 2). Six of the samples provided significant evidence of association (p<.
05) and the other three showed a trend (p<.20) in the same direction (Table 2). The p-value
for association in all 27,544 follow-up samples was 1.05 × 10−11, and in all 34,213 GWAS
and follow-up samples combined was 2.22 × 10−16 (Figure 1). In the follow-up samples,
each copy of the C allele at rs6060369 was associated with an increase in height of 0.2 – 0.6
cm (Table 2), and overall we estimate the SNP explains 0.3–0.5% of the variance in height,
both in males and females (Supplementary Table 3). Further independent evidence for
association between rs6060369 and adult height comes from the 1958 British Birth Cohort
for which rs6060369 is associated with height measured at 44–45 years of age (p = .0046,
explaining 0.5% of the variance) (http://www.b58cgene.sgul.ac.uk/, accessed October 2007).

Our association signal lies in a 136 kb stretch of linkage disequilibrium (LD) that contains
two genes, GDF5 and BFZB (Figure 1, Supplementary Table 4). BFZB is expressed in
differentiating chondrocytes12, starting at early stages of mesenchymal cell proliferation13.
Studies in mouse embryonic stem cells have shown that BFZB is down-regulated on addition
of FGF2 (bFGF)10, which acts in concert with bone morphogenic proteins and several Hox
gene products to initiate and promote morphogenesis and growth of the skeleton. Thus,
BFZB appears to be involved in a network of FGF2-regulated growth control. GDF5 is a
member of the TGF-beta superfamily involved in bone growth and differentiation, both in
adult and embryonic tissues14,15. GDF5 expression is typically restricted to the primordial
cartilage of long bones, with little expression in the vertebrae and ribs14. Mutations in GDF5
are associated with several disorders of skeletal development (MIM 201250, 200700,
112600, 113100, 228900, 185800 and 186500). Recombinant human GDF5 has been shown
to restore vertebral disc height in a rabbit disc degeneration model, perhaps through
enhanced extracellular matrix production15. Other nearby genes do not appear to be
involved in chondrocyte differentiation, bone growth, or development, but the locus that
includes GDF5 and BFZB is also interesting because it was highlighted as showing very
strong evidence for selection in a genome-wide search for regions that underwent recent
selection16. The target of selection is presently unknown.

A SNP located in the 5’ untranslated region of GDF5, rs143383, is strongly associated with
osteoarthritis2,17 and is estimated to be in very strong LD with rs6060369 in the HapMap,
FUSION, and SardiNIA samples (r2=.83–.90). The SNP appears to influence GDF5
expression2,17 and, we reasoned, might be a causal variant. Thus, we analyzed this SNP in
our screening samples and a subset of our follow-up samples. The rs143383 A allele
previously associated with increased risk of osteoarthritis was associated with decreased
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height in our studies (p=5.01 × 10−12 versus p=4.08 × 10−9 for rs6060369 in the same subset
of samples; Figure 1, Table 3). Analysis stratified by gender shows strong association in
both males and females (Supplementary Table 5).

Interestingly, the ARIC African American samples that showed only a trend toward
association with rs6060369 (p=.17) showed significant evidence of association with
rs143383 (p=.011), illustrating the utility of studying different ancestral groups in the fine-
mapping of complex disease genes18,19. In the ARIC African American samples, even
when rs6060369 was included in a regression model, rs143383 remained marginally
associated with height (p=.034, estimated additive effect = 0.579 cm), while the association
of rs6060369 disappeared (p=.92, estimated additive effect = −0.019 cm) when conditioning
on rs143383. These results suggest that GDF5 is more likely to influence height, although
other nonsynonymous SNPs present in GDF5 and BFZB may affect function instead or as
well.

Miyamoto and colleagues demonstrated that the A allele of rs143383 is associated with
decreased GDF5 transcriptional activity in chondrogenic cells2. Decreased expression of
GDF5 would logically lead to decreased limb bone growth, consistent with decreased
height, as we observed. Decreased transcription of GDF5 may influence the amount of
cartilage of the vertebrae, limb proportions, or joint angles, resulting both in a modest
decrease in stature and susceptibility to osteoarthritis.

To evaluate the impact of osteoarthritis as a confounding factor, we repeated the association
analysis restricted to younger individuals (age < 40). In SardiNIA, we analyzed 1,964
individuals and confirmed the association (p=.0018 for rs6060369, and p=.015 for rs143383)
with effect size similar to estimates as for the combined sample (0.70 cm per copy of the C
allele for rs6060369). In the Old Order Amish, the younger subgroup of 891 individuals
showed a trend toward association of allele C with increased height (0.60 cm per copy of the
C allele at rs6060369), but no significant association (p = .86), likely due to low statistical
power.

To compare the evidence of association with length of long bones compared to vertebrae
and skull, we tested rs6060369 and rs143383 for evidence of association with sitting height,
which was measured in the ARIC and BWHHS studies. In ARIC European Americans and
the BWHHS British sample, similar evidence of association was observed for both standing
and sitting height. In ARIC African Americans, only rs143383 was significantly associated
(p<.05) with height, and it was associated only with standing height, not with sitting height
(Table 3), perhaps suggesting a stronger effect on long bones than on vertebrae.

Multiple regression analysis of our data suggests that a single common variant in the region
may underlie the evidence of association. Specifically, multiple regression analysis in
GWAS samples showed that after including rs6060369, rs143383, or rs725908 as a
covariate, other association signals in the region become non-significant. One of these
common variants or another nearby unmeasured variant in LD may influence height through
expression of GDF5 2,17. However, either or both GDF5 and BFZB could be affected.
Thoroughly evaluating the contribution of this locus to human height will require re-
sequencing to catalog all genetic variants in the region and genotyping to evaluate their
effects.

Combined, the variants identified here and previously reported in HMGA2 account for <1%
of the variance in height, so that most of the 80% of variation in height estimated to be
genetic remains unexplained. Our GWAS provides suggestive evidence for several other
loci influencing height. For example, after excluding SNPs within 250 kb from GDF5, we
observed a slight excess of SNPs with p-value <10−5 (38 observed versus 23 expected,
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Supplementary Figure 2). Still, it appears likely that many of the common variants
influencing height will have only small effects. Follow-up of additional SNPs in larger
meta-analyses will be necessary to define these variants20, which may also be relevant not
only to normal variation in height but also to musculoskeletal or other diseases.

Methods
Study Subjects

Informed consent was obtained from all study participants and, in addition, ethics approval
was obtained from the participating institutions.

FUSION GWAS
The Finland-United States Investigation of NIDDM Genetics (FUSION) study GWAS
included 1,161 Finnish type 2 diabetes (T2D) cases, 1,174 normal glucose tolerant (NGT)
controls, and 122 offspring of case/control pairs6. Cases and controls were approximately
frequency matched, taking into account age, sex, and birth province within Finland6. For the
height analysis, our sample consisted of 1,084 T2D individuals and 1,287 NGT individuals
with height measurements from clinical exams. Samples were genotyped with the Illumina
Infinium II HumanHap300 BeadChip6 and with an Illumina GoldenGate Custom Panel
designed to improve genomic coverage around T2D candidate genes. The two imputed
SNPs selected for additional follow-up were subsequently genotyped using the TaqMan
allelic discrimination assay (Applied Biosystems, Foster City, CA).

SardiNIA GWAS
The SardiNIA GWAS examined a total of 4,305 related individuals participating in a
longitudinal study of aging-related quantitative traits in the Ogliastra region of Sardinia,
Italy. These individuals are distributed across 1,133 inter-related sibships, each with an
average of 3.9 phenotyped individuals. For this study, we analyzed phenotypes for 4,298
individuals, excluding 4 cases of short stature due to Morquio Syndrome (MIM 253000) and
3 individuals for whom height measurements were not available. Among the individuals
examined, 1,412 were genotyped with the Affymetrix Mapping 500K Array Set. Taking
advantage of the relatedness among individuals in the SardiNIA sample, we conducted a
second round of computational analysis to impute genotypes for analysis in an additional
2,893 individuals who were genotyped only with the Affymetrix Mapping 10K Array. In
this second round, we identified large stretches of chromosome shared within each family
and probabilistically “filled-in” genotypes within each stretch whenever one or more of its
carriers was genotyped with the 500K Array Set9,21. These 2,893 individuals were mostly
offspring and siblings of the 1,412 individuals genotyped at high density. For computational
efficiency, the second round of imputation was applied to sub-pedigrees, each including no
more than 20–25 individuals.

Follow-up Samples and Genotyping
Based on analysis of the combined SardiNIA and FUSION results, SNPs rs6060369 and
rs143383 were each examined in up to 28,801 additional individuals. These included
individuals of European ancestry from the FUSION study stage 2 samples (N = 2,466), the
Diabetes Genetics Initiative22 (N = 2,985), the Old Order Amish23,24 (N = 2,711), the
Atherosclerosis Risk in Communities (ARIC) Study25 (N = 11,370), the Caerphilly
Study26,27 (1,389 men), and the British Women’s Heart and Health Study28 (3,685
women). 4,195 African American individuals from the ARIC study were also examined.
Additional details of follow-up samples and genotyping methods are included in
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Supplementary Methods. Within each follow-up sample, SNP genotype success rates were
>90% and genotype counts were consistent with Hardy-Weinberg equilibrium (p>.05).

Genotype Imputation
Our initial screen was based on the meta-analysis of two genome-wide association studies.
Because the studies used two different genotyping platforms, we imputed genotypes for all
polymorphic HapMap SNPs in each study, using a Hidden Markov Model programmed in
MACH6,8. Details are provided in the Supplementary Methods.

GWAS Analysis
Within the FUSION and SardiNIA study samples, we carried out association analyses to
relate observed and estimated genotypes to height. At each SNP, height was related to allele
counts for a reference allele in a regression model that also included sex, age, and age2 as
covariates; FUSION covariates also included birth province and study6. For SNPs
genotyped in the laboratory, allele counts were discrete (0, 1, or 2), whereas for imputed
SNPs, allele counts were fractional (between 0.0 and 2.0, depending on the expected number
of copies of the allele for each individual). For FUSION, T2D and control individuals were
analyzed separately and results combined using the meta-analytic techniques described
below. To allow for relatedness, regression coefficients were estimated in the context of a
variance components model that can handle imputed genotypes and accounts for background
polygenic effects9. When evaluating significance, we applied quantile normalization to trait
values (SardiNIA) or to residuals after adjustment for covariates (FUSION), by ranking all
height values and then converting them to z-scores according to quantiles of the standard
normal distribution. In parallel to the analysis of quantile normalized data, we also analyzed
untransformed height (in centimeters) to estimate effect sizes.

Meta-Analysis
To summarize results for the three initial scans (1,084 T2D cases and 1,287 controls from
FUSION, and 4,298 individuals from Sardinia), we carried out a meta-analysis. We used
meta-analysis rather than an analysis of pooled data to avoid an increase in false positive
rates due to population stratification. The Sardinian and Finnish populations are genetically
and geographically distinct, with an average Fst of .025 among the 45,284 autosomal SNPs
genotyped in both samples, and clear differences in height. The genomic control parameter
for our meta-analysis, which estimates inflation in test statistics due to the combined effects
of population stratification, cryptic relatedness, and genotyping error29, was 1.02, suggesting
both that population stratification and unmodeled relatedness had a negligible impact on our
association results and that our meta-analysis of imputed genotypes resulted in appropriate
control of false-positive rates.

For each marker, we selected an arbitrary reference allele and calculated a z-statistic
characterizing the evidence for association in each study (summarizing both the p-value, in
its magnitude, and the direction of effect, in its sign). We then calculated an overall z-
statistic as a weighted average of the three individual statistics and calculated the
corresponding p-value20. Weights were proportional to the square-root of the number of
individuals examined in each sample and were selected such that the squared weights
summed to 1.0. An analogous strategy was used to summarize results of follow-up
genotyping.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Evidence of (A) association with height and (B) linkage disequilibrium around GDF5
and BFZB/C20orf44/UQCC
All genotyped or imputed SNPs in the SardiNIA and FUSION GWA studies are plotted with
association p-values (additive test) compared to genomic position in NCBI Build 35 (gray
circles, red circles for labeled SNPs). Yellow squares indicate p-values for SNPs analyzed in
a portion of follow up samples (FUSION Stage 1 and 2, SardiNIA, DGI, and ARIC studies).
The green triangle indicates rs6060369 analyzed in all GWAS and follow up samples.
Patterns of linkage disequilibrium (r2) for two of the HapMap populations (CEU, Utah
residents with European ancestry, and YRI, Yoruba)30 are plotted and colored with a 15
color red-green-blue scale, to represent values ranging from high (red), to intermediate
(green), to low (blue).
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