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Abstract

Background: Trichomonas vaginalis has an unusually large genome (,160 Mb) encoding ,60,000 proteins. With the goal of
beginning to understand why some Trichomonas genes are present in so many copies, we characterized here a family of
,123 Trichomonas genes that encode transmembrane adenylyl cyclases (TMACs).

Methodology/Principal Findings: The large family of TMACs genes is the result of recent duplications of a small set of
ancestral genes that appear to be unique to trichomonads. Duplicated TMAC genes are not closely associated with
repetitive elements, and duplications of flanking sequences are rare. However, there is evidence for TMAC gene
replacements by homologous recombination. A high percentage of TMAC genes (,46%) are pseudogenes, as they contain
stop codons and/or frame shifts, or the genes are truncated. Numerous stop codons present in the genome project G3
strain are not present in orthologous genes of two other Trichomonas strains (S1 and B7RC2). Each TMAC is composed of a
series of N-terminal transmembrane helices and a single C-terminal cyclase domain that has adenylyl cyclase activity.
Multiple TMAC genes are transcribed by Trichomonas cloned by limiting dilution.

Conclusions/Significance: We conclude that one reason for the unusually large genome of Trichomonas is the presence of
unstable families of genes such as those encoding TMACs that are undergoing massive gene duplication and concomitant
development of pseudogenes.
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Introduction

Trichomonas vaginalis, the most important sexually transmitted

protist, causes vaginitis in women and urethritis in men [1–3]. In

addition, Trichomonas increases the risk of HIV transmission, pelvic

inflammatory disease, and spontaneous abortion [4]. Trichomonas

lives under microaerophilic conditions in the lumen of the vagina

by means of fermentation enzymes that are present in a modified

mitochondrion called the hydrogenosome [5]. This organelle lacks

enzymes of oxidative phosphorylation but makes hydrogen, and

many of its fermentation enzymes were acquired from bacteria by

horizontal gene transfer [6]. Trichomonas causes vaginitis when the

protist adheres to the host epithelium and changes from a

flagellated to an ameboid form [7].

Recent whole genome sequencing showed an ,160-Mb

Trichomonas genome encoding ,60,000 proteins [8]. This genome

is bigger than those of many other medically important protists

but is characteristic of trichomonads. One reason for the large

Trichomonas genome is the presence of hundreds of DNA

transposons that include mariner elements and Mavericks [9,10].

Mavericks are of particular interest, because they are abundant,

are ,22-kb long, and so compose ,30% of the genome. In

addition, each Maverick contains 9 to 11 ORFs, such that

Maverick proteins compose more than 50% of the predicted

proteins of Trichomonas. Introns are rare and short, so the presence

of large non-coding regions in Trichomonas genes cannot be an

explanation for the large genome size [11].

We were interested in why some Trichomonas genes are present

in so many copies and focused on one a large family of predicted

transmembrane adenylyl cyclases (TMACs). These TMACs are of

particular note because (1) they have a predicted topology different

from those of other metazoan and protist transmembrane cyclases,

and they appear to have originated via gene duplication in

Trichomonas and closely related species (e.g. Tritrichomonas and

Paratrichomonas; see below) [12–15], and (2) we discovered

numerous in-frame stop codons and frame shifts in these genes,
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which made them a valuable dataset for exploring pseudogene

evolution [16–20]. In addition to characterizing TMAC gene

duplication and pseudogenes, we measured the mRNA levels of

the TMAC genes and pseudogenes in trophozoites, and we

determined whether recombinant cyclase domains from represen-

tative TMACs have adenylyl cyclase or guanylyl cyclase activity.

Materials and Methods

Bioinformatic identification of Trichomonas genes
encoding putative transmembrane cyclases

The genome of Trichomonas vaginalis strain G3 has been

sequenced to ,66 redundancy, so that it is likely that the

majority of genes have been predicted [8]. The predicted proteins

of Trichomonas present at the NCBI or at TrichDB [21] were

searched using BLASTP and cyclase domains from TMACs of

Dictyostelium discoideum, Homo sapiens, and Trypanosoma brucei, as well

as those of the TMGCs of Homo sapiens [12–14,22]. We also used a

full-length Trichomonas TMAC protein sequence (TVAG_350120)

and BLASTP to search the predicted proteins of Trichomonas or

used this TMAC and TBLASTN to search Trichomonas scaffolds in

the database at J. Craig Venter Institute (JCVI) or the WGS

database at the NCBI. Intact TMAC genes, apparent TMAC

pseudogenes (see below), and partially sequenced TMAC genes

due to assembly problems are listed in Data S1. The full length

TMAC protein sequence and TBLASN was also used to search

EST sequences at the NCBI from Tritrichomonas foetus and

Pentatrichomonas hominis.

Transmembrane helices (TMHs) of TMACs were predicted

using the Phobius combined transmembrane topology and signal

peptide predictor [23]. Predicted proteins were examined for

conserved domains using the CD search at the NCBI [24]. A

representative set of 70 TMACs was aligned, and the conservation

of sequences across the entire alignment was plotted using

WebLogo [25]. Cyclase domains were aligned using MUSCLE

(Multiple Sequence Comparison by Log-Expectation) [26]. The

alignment was manually refined, and gaps were removed using

BioEdit. The finished alignment was used to construct the

phylogenetic tree using TREE-PUZZLE, a program to recon-

struct phylogenetic trees from molecular sequence data by

maximum likelihood method [27]. Additional trees were drawn

using Parsimony (Paup 4.0) or Bayesian methods [28,29].

Methods to determine the mechanisms of duplication of
Trichomonas TMAC genes

As described above, phylogenetic trees were drawn using cyclase

domains to determine the number of ancestors for the present set

of TMAC genes. To determine whether duplication of segments of

chromosomes contributed to the large number of copies of TMAC

genes, we aligned whole scaffolds (average size is ,70,000 bp)

containing TMAC genes with each other [8]. In the rare instances

where there was extensive overlap in flanking sequences, we

discriminated sequences that contained open reading frames

versus those that contained repetitive elements. We also looked

among the flanking sequences (as much as 40 kb on the two sides)

for repetitive families, mobile elements, and microsatellites, as

defined in the NCBI annotation of the Trichomonas scaffolds [8].

We looked for examples of gene conversion using the set of 11

programs included in the Recombination Detection Program

(RDP) [30]. We also used the program GeneConv to detect gene

conversion [31]. Gene conversion events were called when the

majority of the different programs identified the event.

Methods to identify pseudogenes among TMAC genes
and other Trichomonas gene families

To identify TMAC pseudogenes, we took advantage of the

absence of introns in any of the TMAC genes and the strict

conservation of N-terminal TMHs and C-terminal cyclase domain

in the predicted transmembrane cyclases [8,11]. Most of the

TMAC pseudogenes were identified using the complete TMAC

protein sequence (TVAG_350120) and TBLASTN to search the

scaffolds or contigs of Trichomonas at the JCVI or NCBI.

Pseudogenes contained in-frame stop codons (nonsense mutation)

and/or frame shifts that we could confirm by examining multiple

independent primary sequence reads. In addition, we amplified

the DNA around numerous of these stop codons by PCR to

confirm their presence in the genome project G3 strain and to

assess their occurrence in the B7RC2 and S1 strains. We also

mapped the location of the various stop codons and frame shifts to

determine whether any of them were present in more than one

TMAC gene. This result would suggest that a pseudogene was

duplicated. TMAC genes that were incomplete because they were

at the edge of a contig were not considered pseudogenes.

Additional pseudogenes were identified using the paralog and

ortholog function at TrichDB [21]. Briefly, ,175 predicted

proteins of Trichomonas, many of which were given different names

(e.g. adenylate cyclase, guanylate cyclase, conserved hypothetical

protein, etc.), were identified as paralogs or orthologs of the

complete TMAC (TVAG_350120). TMAC pseudogenes were

strongly suggested when these paralogs were present in an array of

short proteins that spanned the length of a complete TMAC gene.

In this case, the in-frame stop codons and/or frame shifts could be

inferred by the prediction of multiple short proteins rather than a

single full-length protein. Because stop codons and frame shifts in

these pseudogenes identified using the paralog data base were not

checked versus single reads, these pseudogenes are listed as

putative in File S1.

While TMAC pseudogenes were identified by inspection,

pseudogenes in cyclic nucleotide phosphodiesterases and other

proteins in Table 1 were identified using a custom BLASTX and

FASTX program that uses a protein template to look for in-frame

stop codons or frame shifts in genomic DNA. In each case, we

confirmed the stop codon or frame shift by examining multiple

Author Summary

Trichomonas vaginalis is the only medically important
protist (single-cell eukaryote) that is sexually transmitted.
The ,160-Mb Trichomonas genome contains more pre-
dicted protein-encoding genes (,60,000) than the human
genome. To begin to understand why there are so many
copies of some genes, we chose here to study a large
family of genes encoding unique transmembrane cyclases.
Our most important results include the following. More
than 100 transmembrane cyclase genes do not result from
chromosomal duplications, because for the most part only
the coding regions of the genes, rather than flanking
sequences, are duplicated. Almost half of the transmem-
brane cyclase genes are pseudogenes, and these pseudo-
genes are polymorphic among laboratory strains of
Trichomonas. Messenger RNAs for numerous transmem-
brane cyclases are expressed simultaneously, and repre-
sentative cyclase domains have adenylyl cyclase activity. In
summary, the large family of Trichomonas genes encoding
transmembrane adenylyl cyclases results from massive
gene duplication and concomitant development of
pseudogenes.

Genomics of Trichomonas Transmembrane Cyclases
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independent primary sequence reads in the GSS database at

NCBI.

Growth and cloning of Trichomonas
The S1 strain of Trichomonas vaginalis, was received from Dr. B.

N. Singh (SUNY Health Science Center, Syracuse, New York),

while the genome project G3 strain and B7RC2 strain were from

Patricia Johnson (UCLA). Trichomonas was grown at 37uC and sub-

cultured every 24 hr in TYI-S-33 medium containing 10% adult

bovine serum [32]. Trichomonas was diluted in medium to 102–3

cells/ml and cloned on plates containing 0.6% agarose [33].

Trichomonas was grown for seven days under anaerobic conditions.

Individual clones were picked and sub-cultured in liquid medium

in 48-well tissue culture plates, and RNA was isolated as described

in the next section.

RNA isolation and qRT-PCR
Total Trichomonas RNA isolated using the RNAqueous-4PCR kit

(Ambion) was treated with DNAse1 for 1 hr at 37uC. First strand

cDNA synthesis was performed with RETROscript (Ambion),

using oligo dT primers for 1 hr at 42uC on ,1 g RNA. PCR of

Trichomonas cDNAs was performed using SYBR Green Master Mix

with Rox from Roche Applied Science. Reverse transcriptase and

template were separately omitted from negative controls, while

primers to an actin gene (TVAG_094140) were positive controls

for RT-PCR. For primer sequences used in the RT-PCRs, please

see Data S2.

Recombinant expression of Trichomonas cyclases and
measurement of cyclase activities

Genomic DNA was isolated from one confluent flask (,26106)

of Trichomonas, using the Wizard Genomic DNA purification kit

(Promega). PCR primers were designed to isolate representative

DNAs encoding cyclase domains of two Trichomonas TMACs

(TVAG_013980 and TVAG_456550). These PCR products

were cloned into the pGEX-6p vector (Amersham Biosciences)

[34]. Escherichia coli BL21 cells transformed with pGEX-6p were

grown in LB medium and induced with 1 mM IPTG for 3 hrs

at 30uC. Recombinant glutathione-S-transferase (GST)-cyclase

fusion-proteins were purified with glutathione-agarose beads and

released with 10 mM glutathione.

Cyclase activities of GST-fusion enzymes were measured as

described in [35], and the colorimetric readout was measured

according to manufacturer’s instructions contained in adenosine

39,59-cyclic monophosphate (cAMP) and guanosine 39,59-cyclic

monophosphate (cGMP) direct immunoassay kits (Biovision

Research products, CA). Each reaction contained 4 mg of GST-

fusion protein and 2 mM ATP and 0.2 mM GTP when assaying

for cAMP, or 2 mM GTP and 0.2 mM ATP when assaying

for cGMP. A positive control was the manufacturer’s enzyme,

while a negative control was GST alone. Reactions were diluted

and measured versus cAMP or cGMP standards according to

manufacturer’s instructions.

Bioinformatic identification of Trichomonas genes
encoding cAMP phosphodiesterases

Putative Trichomonas cyclic nucleotide phosphodiesterases were

searched using Homo sapiens sequences [22,36]. Many of these

putative phosphodiesterases were already predicted at TrichDB

[21]. Cyclic nucleotide phosphodiesterase trees were made based

on the amino acid sequences of conserved domain using the same

methods as for the cyclase trees.

Results

Identification of a large family of Trichomonas genes
encoding transmembrane cyclases

Using cyclase domains from TMACs of Dictyostelium discoideum,

Homo sapiens, and Trypanosoma brucei, we identified ,123 putative

transmembrane cyclases in the predicted proteins of Trichomonas

(Data S1) [8,12–14,21]. The few Trichomonas cyclases that lack a set

of TMHs appear to be truncated versions of the same gene family

or to be present at the edge of a contig (and so are incomplete

because of assembly issues) [8]. Each complete transmembrane

cyclase is ,1450 to ,1700 amino acids long and contains a series

of six or eight TMHs at the N-terminus (Fig. S1) [23]. These

TMHs are followed by an ,300-aa domain that is relatively

well conserved and predicted to be cytosolic. Four or six TMHs

Table 1. Presence of pseudogenes in representative families of duplicated genes of Trichomonas.

protein family
average
length in aa

family
size

assembly
boundary

genes with
stops or FSa

truncated
genesb

percentage of
pseudogenesc

Dynein heavy chain family protein 3937 22 1 0 1 5%

transmembrane adenylyl cyclases 1550 123 12 56 4 46%

cyclic nucleotide phosphodiesterase 1134 41 2 1 7 18%

Clan SB, family S8, subtilisin-like serine peptidase 868 31 6 2 2 16%

Adaptin N terminal region family protein 811 51 2 3 1 6%

ABC transporter family protein 614 64 7 11 8 32%

Dolichol-phosphate-mannose-protein mannosyltransferase 479 31 0 1 1 6%

major facilitator superfamily protein 403 48 1 9 1 21%

Clan CA, family C1, cathepsin L-like cysteine peptidase 286 44 2 1 6 17%

small Rab GTPase 203 184 3 3 3 3%

small GTP-binding protein 193 39 0 1 2 5%

ADP-ribosylation factor 181 24 0 2 0 8%

aFS: frame shift.
btruncated genes: those whose length is between 30% to 70% of the length of a complete gene.
cpseudogenes: those containing stops and/or frame shifts and/or truncations that cannot be explained by assembly issues.
doi:10.1371/journal.pntd.0000782.t001

Genomics of Trichomonas Transmembrane Cyclases

www.plosntds.org 3 August 2010 | Volume 4 | Issue 8 | e782



separate two extracellular domains. Finally, a microbial type 3

cyclase domain is present at the C-terminus in the cytosol [12].

Very similar cyclase domains are also present at the 39 ends of

ESTs of Tritrichomonas foetus and Paratrichomonas hominis (data not

shown). Because the 59 ends of these ESTs were not sequenced, it

is not possible to confirm that the entire TMAC genes are

conserved in these other trichomonads. With the exception of the

cyclase domain, there is no similarity between the predicted

transmembrane cyclases of Trichomonas and the transmembrane

cyclases of metazoans and protists unrelated to Trichomonas (e.g.

Trypanosoma or Plasmodium) [12–15]. We conclude that all the

duplications of the transmembrane cyclase genes likely occurred in

trichomonads rather than in a common ancestor to all eukaryotes.

The large TMAC gene family results from the recent
duplication of a small set of ancestral genes in
trichomonads

We used phylogenetic methods to show that representative

TMAC genes fall into two major groups of roughly equal size

(Fig. 1). Trichomonas TMAC genes in A9 sub-group are more

recently duplicated (i.e. show shorter branch lengths) than other

members of group A and those of group B. While we used

maximum likelihood methods to make the tree shown in Fig. 1,

similar trees were produced using parsimony and Bayesian treeing

methods [28,29]. For numerous reasons, we think group A and

group B TMACs are similar. The topology of groups A and B

TMACs each matches that shown in Fig. 2A and Fig. S1, and

groups A and B TMACs have similar percentages of pseudogenes

and similar patterns of expression by RT-PCR (see below). In

addition, recombinant cyclase domains from each group both

have adenylyl cyclase activity (see below).

For comparison, we used the same phylogenetic methods to

align 41 predicted cyclic nucleotide phosphodiesterases of

Trichomonas, which are cytosolic enzymes that likely hydrolyze

cAMP produced by TMACs (Fig. S2) [8,21,36]. Many of the

putative cyclic nucleotide phosphodiesterase genes of Trichomonas

appear to be the result of recent duplication of a single ancestral

gene (group A in Fig. S2).

Evidence for gene conversion in Trichomonas TMAC
genes

We wished to determine, if possible, the mechanism(s) for

duplication of the TMAC genes. For the most part, there is only a

single TMAC gene on a contig. Multiple TMAC genes are present

on the same contig in just 12 of 90 instances, and the TMAC genes

are tandemly repeated in just four cases. Other Trichomonas genes

are not repeated in these contigs, so they do not resemble the

subtelomeric regions of Plasmodium chromosomes, where more

than one gene family is repeated [37].

There is strong evidence for a single gene conversion or a

crossover event, in which both parent genes can be identified

(Fig. 3A) [30,31,38]. In addition, there is indirect evidence for gene

conversion, wherein the conserved cyclase domains of numerous

TMAC pseudogenes have many fewer stop codons than non-

conserved domains (Fig. 2 and see next section).

In about a dozen occasions, two TMAC genes each have the

same flanking sequences that contain multiple open reading

frames and short segments of repetitive DNA (Fig. 3B). In the vast

majority of cases, however, only the coding sequences of the

TMAC genes are duplicated. There are no particular microsat-

ellites, repetitive DNAs, or mobile elements closely associated with

the duplicated TMAC genes (Fig. S3) [8]. We identified a single

occasion where a TMAC gene is interrupted by the insertion of a

mobile element (Fig. 3C). The duplication of Trichomonas cAMP

phosphodiesterase genes also appears to be independent of

flanking sequences or repetitive elements (data not shown).

A surprising number of Trichomonas TMAC genes
contain stop codons and/or frame shifts and so appear to
be pseudogenes

A high percentage of Trichomonas TMAC genes (,46%) are

pseudogenes, as they contain stop codons and/or frame shifts (the

vast majority) or are truncated (the minority) (Figs. 1 and 2,

Table 1, and Data S1). With one possible exception, these stop

codons and frame shifts are unique, indicating that pseudogenes

did not get duplicated. Conversely, the paucity of TMAC

pseudogenes with many stop codons, frame shifts, and deletions

suggests the possibility that older TMAC pseudogenes have been

completely deleted from the Trichomonas genome. Similarly, the

high percentage of synonymous versus non-synonymous mutations

in the TMAC pseudogenes is consistent with the presence of

recent purifying selection on these genes before they became

pseudogenes [39]. The difference between the Poisson distribution

and the actual distribution of the stop codons in TMAC genes

suggests there is selection against the first in-frame stop, when

protein-coding would be disturbed for the first time (Fig. 2C).

TMAC pseudogenes are frequent in both group A and group B.

Stop codons in both groups A and B are less frequent in regions

of the TMAC genes that encode the conserved domain of

unknown function and cyclase domain (Fig. 2D). A possible

explanation is gene conversion, wherein a segment of a wild-type

sequence replaces the corresponding segment of a homologous

pseudogene sequence [30,31].

While the transmembrane cyclases have the highest percentage

of pseudogenes (46%), 32% of ABC family transporters appear to

be pseudogenes (Table 1). Other gene families have 16 to 18%

pseudogenes (cathepsin L-like cysteine peptidases, subtilisin-like

serine proteases, and cyclic nucleotide phosphodiesterases), while

numerous gene families have ,8% pseudogenes (Table 1). We did

not attempt to estimate the overall rate of pseudogenes in the

60,000 predicted protein-encoding genes of Trichomonas [8],

because many of these genes derive from Mavericks (giant

transposable elements) [10] and we were unable to make protein

models for many of the genes encoding hypothetical proteins.

Stop codons in the TMAC genes are polymorphic among
lab isolates of Trichomonas

Many of the stop codons in the G3 TMAC genes (22 of 33

examined) are present in orthologous genes of two other

Trichomonas strains (S1 and B7RC2) (Fig. 4A). This result suggests

that these TMAC pseudogenes were present in the common

ancestor of all three Trichomonas strains. In contrast, five stop

codons are only present in the G3 strain, suggesting these stop

codons have arisen more recently (Fig. 4B). Finally, there are six

stop codons that are missing in either S1 or B7RC2, so the order

of their divergence from the common ancestor is not resolved

(Figs. 4C and 4D). Strict clonality, the presumed mode of

reproduction in Trichomonas [40], cannot explain this pattern of

stop codons in the three lineages.

Multiple TMAC mRNAs (including those of pseudogenes)
are expressed by cloned Trichomonas

Because there are so many different TMAC genes, we

wondered whether multiple TMAC genes are expressed at the

same time or whether a single TMAC gene is expressed at a time

(variant expression). Variant expression has been described for

Genomics of Trichomonas Transmembrane Cyclases
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Figure 1. Transmembrane cyclase genes of Trichomonas form two groups. A phylogenetic tree constructed by maximum likelihood methods
shows the cyclase domains of representative Trichomonas TMACs form two groups (A and B). A subgroup of A (A9) is most recently duplicated (shows
very short branch lengths that are proportional to differences between sequences). Pseudogenes (marked in red) are present in both groups A and B.
Incomplete genes due to assembly issues are marked in grey. Numbers at nodes indicate boot strap support for 100 iterations, while nodes with less
than 50% support are collapsed. Similar results were obtained when trees were drawn using parsimony or Bayesian methods.
doi:10.1371/journal.pntd.0000782.g001
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Figure 2. The distribution of stop codons (nonsense mutations) in TMAC genes differs from chance in multiple ways. A. Each
transmembrane adenylyl cyclase (TMAC) has a similar topology predicted by Phobius. There is a series of N-terminal TMHs (green), followed by a conserved
cytosolic domain (tan) and a C-terminal cyclase domain (grey) [23]. B. With one exception that may reflect an assembly error, none of the stops and frame
shifts is in the same place in 40 aligned TMAC pseudogenes. This result suggests that the stop codons and frame shifts occurred after gene duplication. Note
that the alignment technique, which introduces gaps, makes the TMACs appear longer than 1600 amino acids. Green line marks the beginning of the
conserved cyclase domain. C. The actual distribution of stop codons among TMAC pseudogenes differs from a Poisson distribution. This result suggests
there is selection against the first stop codon (disabling the protein coding capacity of the gene) but not against subsequent stop codons. D. Average
number of stops and frame shifts are calculated using a window size of 300 aa in the aligned sequences of group A and B. Stop codons are more abundant
in TMAC from the more recently duplicated group A than from group B. Stop codons are also more frequent in less conserved parts of the TMAC genes.
doi:10.1371/journal.pntd.0000782.g002

Genomics of Trichomonas Transmembrane Cyclases
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Figure 3. Rare examples of gene conversion of a Trichomonas TMAC gene, duplication of TMAC flanking sequences, and a repetitive
element interrupting a TMAC gene. In A, the so-called daughter sequence (TVAG_052960 marked in red) is composed of two parts. The major
portion of the daughter (green) derives from the so-called major parent (TVAG_373640), while the minor portion of the daughter (blue) derives from
the so-called minor parent (TVAG_127610). In the tree on the left (representing the major portion), the daughter is more similar to the major parent
than the minor parent. Conversely, the tree on the right (representing the minor portion), the daughter is more similar to the minor parent than the
major parent. In B, predicted transmembrane cyclase genes (green) on two different scaffolds have similar flanking sequences on one side (marked
with yellow lines). These flanking sequences including multiple ORFs (black) as well as repetitive elements (blue). Note there is a gap in the cyclase
gene in scaffold 92915. This figure shows that a small segment of the chromosome that contains a transmembrane cyclase has been duplicated. In C,
a single transmembrane cyclase (green) has been interrupted by a segment of DNA that contains predicted ORFs (black), repetitive elements (blue),
and an inverted repeat (d and d9 at its ends).
doi:10.1371/journal.pntd.0000782.g003

Genomics of Trichomonas Transmembrane Cyclases
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surface antigens of Giardia, Plasmodium, and Trypanosoma [37,41,42].

In Giardia and Plasmodium variant expression occurs in part because

there are different adherence functions to the surface proteins.

Similarly, Trichomonas TMACs may have different functions in

signal transduction. To begin to answer this question, we prepared

mRNAs from two clones of Trichomonas that were isolated on soft

agar [33]. RT-PCRs showed that 4 of 5 TMAC genes tested are

expressed by each Trichomonas clone (Fig. 5A and Data S2). We

used qRT-PCR to show that the abundance of TMAC mRNAs

isolated from an uncloned population of Trichomonas varies widely

(Fig. 5B). We found that there are greater differences between the

expressions of mRNAs within a group (A or B) of TMACs than

between groups A and B of TMACs. The expressions of 12

TMAC pseudogenes do not differ statistically from those of 53

intact TMAC genes. This result is consistent with the idea that

nonsense mutations and frame shifts happened recently, so the

promoters are still intact.

Cyclase domains of representative Trichomonas
transmembrane cyclases have adenylyl cyclase activity

Two cyclase domains from Trichomonas transmembrane cyclases,

one arbitrarily chosen from group A (TVAG_456550) and one

from group B (TVAG_013980), were expressed as glutathione-S-

transferase (GST)-fusion enzymes in bacteria and incubated with

ATP or GTP [34,35]. Each recombinant Trichomonas cyclase

showed adenylyl cyclase activity but no measurable guanylyl

cyclase activity. For the group A cyclase, the Km for ATP is

520610 mM, and the specific activity is 6.1610212 mol/min/mg.

For the group B cyclase, the Km for ATP is 710610 mM, and the

specific activity is 8.5610212 mol/min/mg. We conclude that the

Trichomonas transmembrane cyclases are adenylyl cyclases and

have similar kinetics.

Discussion

Summary of the most important new findings
The very large genome of Trichomonas [8] may be partially

explained by the presence of large, unstable families of genes such

as those encoding TMACs that are undergoing massive gene

duplication and concomitant development of pseudogenes (Figs. 1

and 2 and Data S1). Gene duplication and pseudogene formation

both appear to be recent, as many TMAC genes are very similar

to each other; numerous stop codons present in the genome

project strain are not present in TMAC genes of other laboratory

strains (Fig. 4); and mRNAs for many pseudogenes are still

abundant (Fig. 5) [16–20].

Because we were unable to make good models for many of the

unique Trichomonas proteins, we could not determine an overall rate

of pseudogenes in Trichomonas. Based on the data in Table 1, though,

it appears that the rate of Trichomonas pseudogenes is at least 5%. In

GenBank there are 1354 Trichomonas genes annotated as pseudo-

genes (,2% of the total 60,000 genes predicted) [8]. Trichomonas

pseudogenes include 97 BspA genes, 42 kinases, 227 ankyrin repeat

proteins, and 696 hypotheticals. However, only 5 of the 56 TMAC

pseudogenes identified here are annotated as such in GenBank,

suggesting the number of Trichomonas pseudogenes has been grossly

underestimated. Regardless, the percentage of pseudogenes in

Trichomonas is much greater than the percentages of pseudogenes

(,0.1% in each) of protists with a similar microaerophilic life-style

(Giardia and Entamoeba) [43]. Very high rates of pseudogenes,

however, have been noted in proteins of Trypanosoma cruzi and

Trypanosoma brucei that show variant expression [44,45].

Stop-codons of TMAC pseudogenes are surprisingly polymor-

phic (Figs. 2 and 4) might be a useful target for studying the

population biology of Trichomonas. The TMAC pseudogene

sequences provide more precise information than methods that

use restriction fragment length polymorphisms or pulse-field gel

electrophoresis [46–48]. The TMAC pseudogene PCRs also

demonstrate reassortment of polymorphic loci that cannot be

explained by a strictly clonal reproduction of Trichomonas strains, as

has been suggested [40]. While sexual reproduction (consistent

with reassortment of genetic markers) has not been demonstrated

in Trichomonas, the protist appears to have some of the conserved

machinery for meiosis [8,49]. Recent studies of Giardia, another

microaerophilic protist, suggest there is reassortment of markers

consistent with sex [50].

The Trichomonas cAMP-mediated signal transduction system

predicted here differs in two fundamental ways from those of

metazoans and Dictyostelium [12,13,51,52]. First, the sequences the

Trichomonas TMACs and cyclic nucleotide phosphodiesterases are

unique. Second, Trichomonas TMACs and cyclic nucleotide

phosphodiesterases are present in more copies than in metazoans,

while predicted Trichomonas G protein-coupled receptors (GPCRs)

are fewer than in metazoans (data not shown) [21,53]. While the

large number of TMACs in Trichomonas may be explained by their

rapid duplication and concomitant conversion to pseudogenes, we

cannot easily explain the relative paucity of GPCRs in Trichomonas.

One possible explanation for the low rate of GPCRs is that the

heterotrimeric G-proteins are activated independent of GPCRs, as

has been noted in Caenorhabditis elegans [54]. Finally, there is genetic

and biochemical evidence for heterotrimeric G-proteins that likely

interact with Trichomonas TMACs [55,56].

Figure 4. Phylogenetic trees or lines based upon polymor-
phisms at stop codons in TMAC genes of the Trichomonas
genome project strain G3 demonstrate reassortment of
markers. PCR products flanking 33 stop codons in TMAC genes were
sequenced from S1 and B7RC2 strains of Trichomonas with the results
graphed as follows. A. In 22 cases that are not informative concerning
the history of the three strains, S1 and B7RC2 had the same stop codon
as G3. This result indicates that the pseudogene was present in the
common ancestor of all three strains, and we are unable to determine
the wild-type sequence. In 11 cases that are historically informative (B
to D) S1 and/or B7RC2 strains did not share the stop codon with G3. In
these cases, we assume that the amino acid replacing the stop is the
wild-type sequence. Interestingly, tree B suggests S1 and B7RC2 are
more like each other than G3; tree C suggests B7RC2 is more like G3
than S1; while tree D suggests S1 is more like G3 than B7RC2. These
findings that demonstrate reassortment of markers are inconsistent
with clonal reproduction by Trichomonas, as has been suggested [40].
doi:10.1371/journal.pntd.0000782.g004
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Unresolved issues
The absence of synteny around most TMAC genes (Fig. 3)

suggests gene duplication is not secondary to duplication of

chromosomes or portions of chromosomes. The absence of

repetitive elements around TMAC genes (Fig. S3) suggests these

elements are not involved or are so unstable that they have been

lost. Because only coding sequences of most TMAC genes are

duplicated, it is possible that retrotransposition is involved.

However, the absence of introns in duplicated TMAC genes

cannot be used as an argument for retrotransposition, because the

vast majority of Trichomonas genes lack introns [8,11]. As many of

the TMAC genes were recently duplicated, it was disappointing

that we were unable to find a ‘‘smoking gun’’ that would provide

the mechanism of duplication. In contrast, some of the 911

Trichomonas BspA genes are arranged in clusters with as many as 17

genes, consistent with several tandem duplication events [57].

The present studies cannot determine whether the TMAC

pseudogenes are ‘‘junk’’ or have some function [16]. For example,

by gene conversion (for which there is both direct and indirect

evidence in Trichomonas) (Figs. 2 and 3), TMAC pseudogenes may

be a source of alternative cyclase sequences for intact TMAC

genes. Alternatively, TMAC pseudogene mRNAs (Fig. 5) may be

involved in regulating expression of intact TMAC genes.

Most Trichomonas gene families do not have nearly the

percentage of pseudogenes (46%) observed in TMAC genes

(Table 1). Indeed some rather large gene families (e.g. Rab

GTPases and small GTP-binding proteins) have very few

pseudogenes. While these large families of Trichomonas genes

certainly contribute to the enormous size of the genome, we do not

know why there are so many copies of these genes.

The results of the RT-PCR (Fig. 5) suggest that multiple TMAC

genes are expressed at the same time. We cannot rule out the

possibility that some organisms under some conditions differen-

tially express TMAC mRNAs, as these assays were performed with

mRNA from single colonies containing a few thousand Trichomonas

rather than mRNA of a single Trichomonas. We also tested the

majority of TMAC mRNAs on uncloned protists, and trichomo-

nads were all growing under similar culture conditions. However,

variant expression, where each Trichomonas parasite expresses a

single TMAC gene at a given time, seems unlikely.

Because there are so many TMAC genes, we assume that they

play a role in pathogenesis [3,7,8,58]. However, we do not know

Figure 5. Messenger RNAs for numerous Trichomonas TMACs are expressed at the same time. A. RT-PCR shows that 4 of 5 TMACs are
expressed by uncloned Trichomonas and by two clones of Trichomonas isolated on soft agar. B. qRT-PCR of uncloned Trichomonas shows that mRNAs
vary in quantity more within particular group (A or B) of TMACs than they do between groups. The average abundance of mRNAs for TMACs
pseudogenes is not statistically different than those for intact genes in either group A or group B (see Data S2 for gene and primer identifications).
doi:10.1371/journal.pntd.0000782.g005
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what signals are being transduced by TMACs. The whole genome

sequence of Trichomonas also predicts a set of histidine kinases like

those of bacteria and fungi [8,59] but does not predict receptor-

kinases that phosphorylate Ser, Thr, or Tyr (like those of

metazoans and Entamoeba) [60,61].

In summary, while the bioinformatic and experimental methods

here have generated numerous novel findings concerning gene

duplication and pseudogene development in Trichomonas, we are a

long way from relating these findings to pathogenesis.

Supporting Information

Data S1 Best estimate of the number of TMAC genes and

pseudogenes.

Found at: doi:10.1371/journal.pntd.0000782.s001 (0.04 MB

DOC)

Data S2 Primers used for RT-PCR of Trichomonas TMAC genes.

Found at: doi:10.1371/journal.pntd.0000782.s002 (0.03 MB XLS)

Figure S1 Sequence logo of aligned Trichomonas TMACs shows

conserved domains. Seventy TMAC sequences were aligned, and

the amino acid conservation (shown by the height of each position)

was determined using WebLogo [29]. In particular, the C-

terminal cyclase domain (grey) and conserved cytosolic domain of

unknown function (tan) are well-conserved, indicating their

importance for the function of the TMACs.

Found at: doi:10.1371/journal.pntd.0000782.s003 (1.20 MB TIF)

Figure S2 This figure, which complements Figure 1 in the main

text, shows a phylogenetic tree constructed by maximum

likelihood methods of cyclic nucleotide phosphodiesterases of

Trichomonas. Pseudogenes are marked in red, while incomplete

genes due to assembly issues are marked in grey. Branch lengths

are proportional to differences between sequences, while numbers

at nodes indicate boot strap support for 100 iterations. Nodes with

less than 50% support are collapsed.

Found at: doi:10.1371/journal.pntd.0000782.s004 (0.37 MB TIF)

Figure S3 This figure, which complements Figure 2 in the main

text, shows the relative paucity of microsattelites, repetitive

elements, and mobile elements as defined in ref. [7] in sequences

flanking Trichomonas transmembrane cyclase genes.

Found at: doi:10.1371/journal.pntd.0000782.s005 (0.23 MB TIF)

Acknowledgments

We thank Steven Sullivan and Jane Carlton for help answering numerous

questions concerning the Trichomonas whole genome sequence [8].

Preliminary results from this work were presented by Jike Cui at the 7th

International Annual Student Workshop on Bioinformatics and Systems

Biology held in August 2007 at the Human Genome Center, Institute of

Medical Science, University of Tokyo.

Author Contributions

Conceived and designed the experiments: JC SD TFS JS. Performed the

experiments: JC SD. Analyzed the data: JC SD TFS JS. Wrote the paper:

JC TFS JS.

References

1. Johnston VJ, Mabey DC (2008) Global epidemiology and control of Trichomonas

vaginalis. Curr Opin Infect Dis 21: 56–64.

2. Glasier A, Gülmezoglu AM, Schmid GP, Moreno CG, Van Look PF (2006)

Sexual and reproductive health: a matter of life and death. Lancet 368:
1595–1607.

3. Schwebke JR, Burgess D (2004) Trichomoniasis. Clin Microbiol Rev 17:

794–803.

4. Van Der Pol B, Kwok C, Pierre-Louis B, Rinaldi A, Salata RA, et al. (2008)

Trichomonas vaginalis infection and human immunodeficiency virus acquisition in

African women. J Infect Dis 197: 548–554.

5. Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and
reductive evolution of mitochondria among microbial eukaryotes. Philos

Trans R Soc Lond B Biol Sci 365: 713–727.

6. Alsmark UC, Sicheritz-Ponten T, Foster PG, Hirt RP, Embley TM (2009)
Horizontal gene transfer in eukaryotic parasites: a case study of Entamoeba

histolytica and Trichomonas vaginalis. Methods Mol Biol 532: 489–500.

7. Arroyo R, Gonzalez-Robles A, Martinez-Palomo A, Alderete JF (1993)
Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion

synthesis follows cytoadherence. Mol Microbiol 7: 299–309.

8. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, et al. (2007) Draft

genome sequence of the sexually transmitted pathogen Trichomonas vaginalis.
Science 315: 207–212.

9. Silva JC, Bastida F, Bidwell SL, Johnson PJ, Carlton JM (2005) A potentially

functional mariner transposable element in the protist Trichomonas vaginalis. Mol
Biol Evol 22: 126–134.

10. Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant

transposable elements widespread in eukaryotes and related to DNA viruses.

Gene 390: 3–17.
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57. Noël CJ, Diaz N, Sicheritz-Ponten T, Safarikova L, Tachezy J, et al. (2010)

Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity

from structural organisation and transcriptomics. BMC Genomics 11: 99.

58. Garcia AF, Alderete J (2007) Characterization of the Trichomonas vaginalis surface-

associated AP65 and binding domain interacting with trichomonads and host

cells. BMC Microbiol 7: 116.

59. Wolanin PM, Thomason PA, Stock JB (2002) Histidine protein kinases: key

signal transducers outside the animal kingdom. Genome Biol 3: reviews

3013.1–3013.8.

60. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:

355–365.

61. Beck DL, Boettner DR, Dragulev B, Ready K, Nozaki T, et al. (2005)

Identification and gene expression analysis of a large family of transmembrane

kinases related to the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryot Cell 4:

722–732.

Genomics of Trichomonas Transmembrane Cyclases

www.plosntds.org 11 August 2010 | Volume 4 | Issue 8 | e782


