

NIH Public Access

Author Manuscript

HIV Med. Author manuscript; available in PMC 2010 September 1

Published in final edited form as: *HIV Med.* 2010 September 1; 11(8): 519–529. doi:10.1111/j.1468-1293.2010.00822.x.

Measures of site resourcing predict virologic suppression, immunologic response and HIV disease progression following highly active antiretroviral therapy (HAART) in the TREAT Asia HIV Observational Database (TAHOD)

R Oyomopito^{1,2}, MP Lee³, P Phanuphak⁴, PL Lim⁵, R Ditangco⁶, J Zhou¹, T Sirisanthana⁷, YMA Chen⁸, S Pujari⁹, N Kumarasamy¹⁰, S Sungkanuparph¹¹, CKC Lee¹², A Kamarulzaman¹³, S Oka¹⁴, FJ Zhang¹⁵, CV Mean¹⁶, T Merati¹⁷, G Tau¹⁸, J Smith¹⁹, and PCK Li [on behalf of The TREAT Asia HIV Observational Database]³

¹National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, Australia ²School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia ³Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China ⁴HIV-NAT/Thai Red Cross AIDS Research Centre, Bangkok, Thailand ⁵Tan Tock Seng Hospital, Singapore ⁶Research Institute for Tropical Medicine, Manila, Philippines ⁷Research Institute for Health Sciences, Chiang Mai, Thailand ⁸AIDS Prevention and Research Centre, National Yang-Ming University, Taipei, Taiwan ⁹Institute of Infectious Diseases, Pune, India ¹⁰YRG Centre for AIDS Research and Education, Chennai, India ¹¹Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand ¹²Hospital Sungai Buloh, Kuala Lumpur, Malaysia ¹³University of Malaya, Kuala Lumpur, Malaysia ¹⁴International Medical Centre of Japan, Tokyo, Japan ¹⁵Beijing Ditan Hospital, Beijing, China ¹⁶National Center for HIV/AIDS, Dermatology & STDs, Phnom Penh, Cambodia ¹⁷Faculty of Medicine, Udayana University & Sanglah Hospital, Bali, Indonesia ¹⁸Port Moresby General Hospital, Port Moresby, Papua New Guinea ¹⁹The Foundation for AIDS Research, New York, NY, USA

Abstract

Objectives—Surrogate markers of HIV disease progression are HIV RNA in plasma viral load (VL) and CD4 cell count (immune function). Despite improved international access to antiretrovirals, surrogate marker diagnostics are not routinely available in resource-limited settings. Therefore, the objective was to assess effects of economic and diagnostic resourcing on patient treatment outcomes.

Methods—Analyses were based on 2333 patients initiating highly active antiretroviral therapy (HAART) from 2000 onwards. Sites were categorized by World Bank country income criteria (high/low) and annual frequency of VL (\geq 3, 1–2 or <1) or CD4 (\geq 3 or <3) testing. Endpoints were time to AIDS/death and change in CD4 cell count and VL suppression (<400 HIV-1 RNA copies/mL) at 12 months. Demographics, Centers for Disease Control and Prevention (CDC)

^{© 2010} British HIV Association

Correspondence: Rebecca Oyomopito, National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, NSW 2052, Australia. Tel: +61 2 9385 0900 (W), +61 41553 9188 (M); royomopito@nchecr.unsw.edu.au.

Potential conflicts of interest: PL Lim is an investigator on Tibotec study TMC 114-C211 (Artemis). There are no conflicts of interest to report for any of the other authors.

Role of the funding source: The funding source played no role in the study design, data collection, analysis, data interpretation or writing of the report.

classification, baseline VL/CD4 cell counts, hepatitis B/C coinfections and HAART regimen were covariates. Time to AIDS/death was analysed by proportional hazards models. CD4 and VL endpoints were analysed using linear and logistic regression, respectively.

Results—Increased disease progression was associated with site-reported VL testing less than once per year [hazard ratio (HR)=1.4; P=0.032], severely symptomatic HIV infection (HR=1.4; P=0.003) and hepatitis C virus coinfection (HR=1.8; P=0.011). A total of 1120 patients (48.2%) had change in CD4 cell count data. Smaller increases were associated with older age (P<0.001) and `Other' HIV source exposures, including injecting drug use and blood products (P=0.043). A total of 785 patients (33.7%) contributed to the VL suppression analyses. Patients from sites with VL testing less than once per year [odds ratio (OR)=0.30; P<0.001] and reporting `Other' HIV exposures experienced reduced suppression (OR=0.28; P<0.001).

Conclusion—Low measures of site resourcing were associated with less favourable patient outcomes, including a 35% increase in disease progression in patients from sites with VL testing less than once per year.

Keywords

antiretroviral therapy; Asia; CD4 counts; diagnostic monitoring; viral load

Introduction

Highly active antiretroviral therapy (HAART) suppresses HIV viral load (VL) resulting in enhanced patient immune function and reduced risk of opportunistic infections and death [1,2]. Disparities remain in patient access to antiretrovirals (ARVs), however, the challenges of treatment coverage and health system capacity are being progressively addressed [3]. As a result, more HIV-infected patients in developing and transitional economies have the opportunities of decreased morbidity and longer survival as have been observed in developed economies [4–6].

Predictive biomarkers of disease progression are HIV RNA in plasma (VL) and CD4 cell count (immune function) [7]. HIV RNA informs knowledge of trends in viral replication and gives advance notice of non-adherence, treatment regimen failure and HIV drug resistance (HIVDR) [8,9]. CD4 cell counts provide quantitative measures of immunocompetence and current clinical status [10]. Furthermore, international patient management guidelines recommend periodic collection of HIV RNA and CD4 cell counts to determine indications for treatment and the monitoring of therapeutic response [11,12].

Still, in developing countries access to disease staging diagnostics has lagged considerably behind the availability of anti-HIV medications [13]. Consequently, monitoring of patient status via surrogate markers, thereby identifying optimal therapy initiation periods and when treatment should be changed, is not available in resource-limited settings at a level comparable to that found in developed economies [13–15]. Plasma VL commercial assay kits and CD4 reagents remain expensive. Assays require dedicated space and equipment and infrastructure costs are prohibitive. Further, the lack of physical resources, such as uninterrupted electricity and water, and the cost and availability of maintenance impact upon whether valid results of patient prognostic status are obtained even when infrastructure is in place [13,16]. Currently, there is little information on how the lack of economic and, particularly, diagnostic resourcing affects patient health outcomes. Therefore, our objective was to determine whether clinical resourcing, measured as country income and site-reported frequencies of CD4 and VL diagnostic testing, impacted on patient treatment outcomes.

Methods

Sites

The TREAT Asia (Therapeutics Research, Education, and AIDS Training in Asia) HIV Observational Database (TAHOD) is a multicentre prospective cohort of HIV-infected patients, established since September 2003. Data are shared with the International Epidemiologic Databases to Evaluate AIDS (IeDEA). One objective of TAHOD is to evaluate the natural history of HIV disease in ARV-experienced and -naïve patients in the Asia-Pacific region. Seventeen clinical sites (see Appendix A) are included in TAHOD based upon capacity to fulfil data submission requirements and with a view to retaining sites representative of the region [5]. Ethics approvals were obtained from local Institutional Review Boards and each site sequentially enrolled approximately 200 patients. Where available, sites provided retrospective data for enrollees and clinical interventions and testing procedures were implemented according to local practices.

Patient data

Average follow-up for TAHOD patients in the 12-month period from September 2005 to September 2006 was 86%.

Since not all TAHOD patients are taking ARVs, our sampling frame was HIV-infected patients initiating HAART, any combination of three or more ARVs, from 2000 onwards. Eligible patients were also required to have at least one subsequent clinical visit or result recorded in the database, post-therapy, at the time of analysis. Patient covariates included demographics (age at entry to cohort, gender, HIV source exposure), indices of illness severity [Centers for Disease Control and Prevention (CDC) classification, baseline CD4 lymphocyte count and HIV RNA], hepatitis B and C coinfections and prescribed HAART regimen. Retrospective and prospective data were included.

The CDC classification for TAHOD was modified from the 1993 Center for Disease Control and Prevention case definition in that it does not differentiate between presumptive and definitive diagnoses [17]. The most severe pre-HAART CDC category recorded was used as the baseline clinical status. Hepatitis B (C) positive status was defined as being HBsAg (HCV-Ab) positive and patients were assumed to be coinfected for the duration of followup. HIV RNA copies/mL and CD4 cell counts up to 91 days prior to HAART initiation were considered for inclusion as baseline values. Where multiple assay results existed, the value closest to the target date was selected.

Resource covariates

For classifying TAHOD sites with respect to clinical site resourcing, the four-category World Bank criterion (gross national income per capita) was dichotomized into high (uppermiddle and upper: >USD 3705) and low (lower-middle and lower: ≤USD 3705) [18]. The annual frequencies of VL and CD4 monitoring of patients reported between December 2006 and February 2007 were also included as measures of site resourcing. VL monitoring was classified into three categories: at least three times per year, one to two times per year and less than once per year. Since most sites reported that patients were CD4 tested at least annually, CD4 monitoring was classified into two categories: at least three times and fewer than three times per year. The two exceptions monitored patients at least annually when resources were available to do so.

Endpoints

Clinical disease progression was determined as a new diagnosis of an AIDS-defining illness (CDC category C) or death from any cause. Patient follow-up commenced at HAART

initiation and ended at date of death, AIDS-defining illness or most recent contact, whichever was the earliest. Surrogate endpoints were HIV RNA viral suppression (<400 copies/mL) and change in CD4 cell count from baseline at 12 months post-HAART. Surrogate marker values closest to the target date were selected from windows of 9–15 months.

Statistical analysis

Patients contributing data to each analysis are shown in Fig. 1. For eligible patients, baseline comparisons by country income (χ^2 , Fisher's exact or Cochrane – Armitage test for trend) were performed as appropriate. Determinants of 12-month HIV RNA suppression and change in CD4 cell count were assessed via logistic regression and linear regression, respectively. Proportional hazards models were used to evaluate predictors of time to progression to new AIDS-defining illness or death. Analyses were based on an intention to continue treatment approach in that we did not take into account regimen changes, interruptions or failure post-HAART. Forward stepwise techniques were used to determine the best fitting models. To identify significant variables and important confounders, binary covariate *P*-values and multi-categorical parameter *P*-values (from tests for trend/ heterogeneity) of <0.2, in univariate analyses, were considered for inclusion in multivariate models. Final multivariate models consisted of covariates remaining significant at the 0.05 level.

For each endpoint, a base predictive patient model was determined from significant patient covariates. Then, because of our *a priori* interest in the role of site resourcing on outcomes, individual estimates of country income and reported frequencies of VL and CD4 testing were assessed for statistical significance after adjustment for the base patient model. Analyses were performed using sas software version 9.1.3 (SAS Institute Inc., Cary, NC, USA) and STATA software version 8.2 (STATA Corp., College Station, TX, USA).

Results

Of 3346 patients recruited to TAHOD, 2333 (69.7%) fulfilled the inclusion criteria. Of these, 79% had at least 6 months of retrospective data available and 13% were mono- or dual-ARV experienced. Patient demographics, clinical parameters and prescribed HAART regimen are summarized in Table 1. One hundred and seventy-six of the monoand dual-experienced patients recycled one or two previously used ARVs in the HAART regimen. Thirteen of these patients reported a virological or clinical treatment failure on the previous regimen.

Due to small numbers of injecting drug users (IDUs), patients infected by blood products or having unknown exposure, these modes of infection were collapsed into an `Other' exposures category. Transgender patients were included in the male category. For regression analyses, seven patients with unknown ages were excluded. Of eligible patients, 2326 (99.7%) were included in disease progression analyses while 1120 (48.2%) and 785 (33.7%) patients contributed data to multivariate linear and logistic regressions, respectively.

As shown in Table 1, low-income sites contributed 61% of eligible patients. For country income comparisons at baseline, HIV RNA results were dichotomized as `Unknown' (low, 83.1%; high, 49.3%) or `Available'. Patients with unknown CD4 cell counts were excluded from trend tests. Significant differences existed for all patient covariates. Patients from high-income countries had significantly higher proportions of male patients (low, 64.8%; high, 79.8%; P<0.0001), HIV exposure reported as homosexual contact (low, 4.5%; high, 36.8%; P<0.0001) and patients older than 40 years (low, 29.4%; high, 41.0%; P<0.0001). Patients from low-income countries demonstrated poorer baseline health status in that more patients

had CD4 counts of 100 cells/ μ L or less (low, 38.8%; high, 28.7%; *P*<0.0001) and fewer were asymptomatic (CDC A) (low, 38.4%; high, 56.6%; *P*<0.0001). Low-income country patients were also less likely to have been tested for coinfection with hepatitis B (low, 69.5%; high, 35.8%; *P*<0.0001) or hepatitis C (low, 75.7%; high, 36.0%; *P*<0.0001). Higher proportions of patients in low-income countries did not have access to VL testing prior to being prescribed a first-line regimen (low, 83.1%; high, 49.3%; *P*<0.0001) and although the most frequently prescribed HAART regimens were based on nonnucleoside reverse transcriptase inhibitors, more patients in high-income countries were prescribed a protease inhibitor (PI)-based regimen (low, 8.4%; high, 30.5%; *P*<0.0001). High-income country sites reported that patients were monitored virologically at least annually and CD4 tested at least three times per year (Table 2).

Progression to AIDS or death

The 2326 patients included in disease progression analyses (Table 3) contributed 5872.4 person-years of retrospective and prospective follow-up (median 2.4; interquartile range 1.2–3.7 person-years). During this time, there were a total of 393 events (347 AIDS diagnoses and 46 deaths) giving an event rate of 6.7 per 100 person-years. Significant univariate patient parameter associations were maintained after adjustment and formed the base patient model. Patients coinfected with hepatitis C [hazard ratio (HR)=1.8; *P*=0.011] and with a pre-HAART diagnosis of CDC category C illness (HR=1.4; *P*=0.003) had a higher level of disease progression. Female gender (HR=0.8; *P*=0.040) and a baseline CD4 count >100 cells/µL were shown to have a protective effect (100–200 cells/µL, HR=0.5; >200 cells/µL, HR=0.4; *P*<0.001). In univariate analyses, patients at low-income sites and with sites reporting less frequent VL testing had a poorer prognosis. After adjustment for the patient model, only less-than-annual frequency of VL testing was significantly associated with higher rates of disease progression (HR=1.4; *P*=0.032). Although there was a higher risk of disease progression for RNA testing one to two times per year compared with at least three times per year, the increase in risk was not significantly different.

The first HAART regimen, after adjustment, was not found to be associated with disease progression for our patients. The overall (trend or heterogeneity) *P*-value must be significant before category effects can be interpreted as contributing. Dichotomizing the first HAART regimen to PI use Yes/No did not change final model interpretations.

Change in CD4 cell count at 12 months following HAART

For immunologic analyses, 1120 patients had CD4 counts available at baseline and at 12 months following HAART initiation with a mean increase of 161 cells/ μ L over the period (Table 4). Unadjusted estimates for age at enrolment, HIV exposure, HAART regimen, baseline HIV RNA and CD4 cell counts were associated with the outcome. After patient covariate adjustment, smaller increases in CD4 counts were associated with age older than 40 years (*P*=0.001), HIV exposure (*P*=0.043) and baseline CD4 counts >200 cells/ μ L (*P*=0.020). Univariate estimates for country income effects and VL testing frequency were associated with 12-month change in CD4 cell count.

After adjustment for the base patient model, less than annual VL testing frequency was significantly associated with higher mean 12-month increases in CD4 cell count (P<0.001). To investigate if this result was associated with patients who were experiencing acute CD4 pre-therapy decline, an unadjusted Kruskal-Wallis test was performed on the 25% of patients who had CD4 cell counts 6 (± 3) months pre-HAART. Patients from sites with less than annual VL testing had steeper pre-therapy median CD4 decline compared with patients from the most resourced sites (CD4 count decline less than once per year, -50 cells/µL; one

to two times per year, $-49 \text{ cells/}\mu\text{L}$; at least three times per year, $-18 \text{ cells/}\mu\text{L}$; P < 0.008). Higher mean CD4 increases were also noted for patients from low-income sites (P < 0.001).

HIV RNA at 12 months following HAART

Due to the heterogeneity of virology assays and associated dynamic ranges across sites, we defined the lower limit of detection (LLD) as 400 copies/mL. Analyses included 785 patients who had an HIV RNA result available at 12 months and 83% of patients were virologically suppressed below the LLD. In univariate analyses (Table 5), hepatitis C coinfection, baseline CD4 cell count and HIV exposure were associated with virologic suppression. After adjustment, patients reporting IDU, receipt of blood products or `Other', undefined exposure were significantly disadvantaged [odds ratio (OR)=0.28; P<0.001] while female patients had a higher odd of being suppressed (OR=1.69; P=0.040). Therefore, HIV exposure and gender formed the base patient model.

Unadjusted estimates of the frequency of VL and CD4 testing were associated with 12month virologic suppression. After adjustment for the base patient model, only the frequency of VL testing remained significant. Patients at sites reporting less than annual VL testing had lower odds of being virologically suppressed at 12 months than those at sites reporting VL testing frequencies of three times per year or more (OR=0.30, *P*<0.001).

Discussion

In our cohort of predominantly ARV-naïve patients, a previous diagnosis of an AIDSdefining illness, lower pre-HAART CD4 cell counts and HIV/HCV coinfection were predictive of higher rates of HIV disease progression, consistent with other studies [19–23]. Smaller increases in CD4 cell count were associated with older age and higher baseline CD4 cell counts, similar to prognostic factors reported elsewhere [24,25]. Patients reporting IDU, receipt of blood products or undefined exposure experienced less immunologic and virologic benefit. Female patients in our cohort were more likely to be virologically suppressed and had a lower risk of disease progression. As the modified World Bank high/low criterion may not be a sensitive measure of an individual site's resourcing, we also categorized sites according to routine frequencies of VL and CD4 testing.

In the patient outcomes we assessed, site-reported VL testing was an important determinant. Our results showed an increased risk of disease progression for patients at sites reporting less than annual VL testing. This is possibly attributable to lower pretreatment CD4 cell count nadirs and diminished lymphocyte proliferative capacity from delayed initiation of HAART [26]. The magnitude of the increase in risk was similar to that seen in patients having a pre-therapy diagnosis of severely symptomatic HIV disease. Larger CD4 increases post-HAART were found in patients from sites with low levels of resourcing. Although group summary responses do not reflect individual variation, immunologically suppressed patients generally experience more rapid increases in CD4 cell count during the first 12 months post-HAART [27,28]. This is consistent with persons initiating HAART in advanced stages of HIV infection and experiencing acute pre-therapy CD4 decline [29]. Steeper pre-therapy CD4 decline was noted in our patients from sites with less than annual VL testing, in an unadjusted analysis based on limited data.

Patients from sites with lower levels of resourcing showed most rapid preliminary CD4 increases and higher rates of disease progression, however, both findings are consistent with patients having a higher disease burden. Less than annual reported VL testing was associated with reduced odds of virologic suppression. We believe that this reflects sites with low capacity identifying patients at high risk of failure for VL testing. Use of VL diagnostics to confirm treatment failure rather than to monitor treatment efficacy implies

that the technology is not being used for treatment management and this could impact negatively on long-term patient outcomes.

Only those patients with diagnostic results contribute data for virologic and immunologic analysis, therefore, missing baseline CD4 cell counts or HIV RNA data could have introduced bias into our model estimates. As we are unable to test for any potential bias, this should be taken into account when interpreting the results of analyses. Patients being VL tested may be retained on failing regimens when second-line therapies are not available. Alternatively, clinicians may not expend scarce resources on diagnostically monitoring patients who are failing clinically and for whom no viable treatment options exist. Consequently, we may be either under- or overestimating the proportion of patients who were virologically suppressed. We did not distinguish between AIDS-related and non-AIDS-related deaths, possibly leading to an overestimation of the number of patients having clinical progression. Patient socio-economic and adherence to therapy data were unavailable.

Timely access to CD4 and VL results is crucial for monitoring the efficacy of ARV treatment. These staging data are frequently unavailable in resource-limited settings, and their lack compromises the generalizability of published results and trends. Our analyses included 70% of TAHOD enrollees in disease progression analyses, and 75% (80%) of sites reported that TAHOD patients' access to VL (CD4) testing did not differ to that routinely available in their respective countries. Consequently, our estimates of diagnostic resource allocation should be fairly representative of the Asia-Pacific region. However, TAHOD sites are self-selected and patients may differ from other HIV-infected patients within a specific country. Still, our findings highlight challenges for less resourced sites in the region and potential negative effects on patient outcomes.

The United Nations General Assembly report for the sixty-second session stated that 3 million people from low-income and middle-income countries had access to ARVs in 2007 and that coverage had increased to approximately 30% of those in need [30]. Despite the importance of surrogate laboratory markers in evaluating ARV treatment efficacy, estimates of the availability of diagnostic testing lagged behind treatment access at between 3 and 6% [13]. While recent modelling of HIV infection suggests modest benefits to patient survival from VL monitoring [31], our results show that low levels of site VL testing are associated with poorer treatment outcomes. Further, lack of VL testing increases the risk of patients being maintained on failing regimens and developing highly resistant HIV which may be transmitted to other individuals [32,33].

The World Health Organization has recommended supporting and extending diagnostic technologies to monitor the response to antiretroviral therapy (ART) and to aid in the prevention of emergence and transmission of HIVDR [34,35]. To assess the extent of HIVDR in the Asia-Pacific, the TREAT Asia network has developed the TREAT Asia Studies to Evaluate Resistance (TASER) programme [36]. The programme includes a monitoring protocol (TASER-M), a surveillance protocol (TASER-S) and a laboratory component, the TREAT Asia Quality Assurance Scheme (TAQAS). Patients eligible for TASER-M are those initiating first-line ART or switching to second-line ART. Objectives are to assess the prevalence and incidence of emerging HIVDR and to produce evidence-based recommendations to inform treatment guidelines. The objective of TASER-S is to evaluate the prevalence and changes in prevalence of HIVDR in treatment-naïve, recently infected HIV-positive individuals. TAQAS is a laboratory network building capacity for the genetic analysis of clinical specimens and participating laboratories provide genotypic results for the TASER protocols.

In summary, less-than-annual site-reported VL testing was associated with less favourable patient outcomes, in particular, a 35% increased risk of AIDS and death. Outcomes for patients at sites reporting VL testing one to two times annually did not differ substantially from those of patients at sites reporting more frequent monitoring. Our findings emphasize the need to partner the expanded international access to ARVs with appropriate levels of VL diagnostic testing and to address the critical lack of second- and third-line treatment regimens in resource-limited settings.

Acknowledgments

The TREAT Asia HIV Observational Database is part of the Asia Pacific HIV Observational Database and is an initiative of TREAT Asia, a programme of amfAR, The Foundation for AIDS Research, with support from the National Institute of Allergy and Infectious Diseases (NIAID) of the US National Institutes of Health (NIH) as part of the International Epidemiologic Databases to Evaluate AIDS (IeDEA) (grant no. U01AI069907), and from the Dutch Ministry of Foreign Affairs through a partnership with Stichting Aids Fonds. The National Centre in HIV Epidemiology and Clinical Research is funded by the Australian Government Department of Health and Ageing, and is affiliated with the Faculty of Medicine, The University of New South Wales. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of any of the institutions mentioned above.

Appendix A

The TREAT Asia HIV Observational Database

V. Saphonn*, C.V. Mean and K. Vohith, National Center for HIV/AIDS, Dermatology & STDs, Phnom Penh, Cambodia;

F.J. Zhang*, H.X. Zhao and N. Han, Beijing Ditan Hospital, Beijing, China;

P.C.K. Li*[†] and M.P. Lee, Queen Elizabeth Hospital, Hong Kong, China;

N. Kumarasamy* and S. Saghayam, YRG Centre for AIDS Research and Education, Chennai, India;

S. Pujari* and K. Joshi, Institute of Infectious Diseases, Pune, India;

T.P. Merati* and F. Yuliana, Faculty of Medicine Udayana University & Sanglah Hospital, Bali, Indonesia;

S. Oka* and M. Honda, International Medical Centre of Japan, Tokyo, Japan;

J.Y. Choi* and S.H. Han, Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea;

C.K.C. Lee* and R. David, Hospital Sungai Buloh, Kuala Lumpur, Malaysia;

A. Kamarulzaman* and A. Kajindran, University of Malaya, Kuala Lumpur, Malaysia;

G. Tau*, Port Moresby General Hospital, Port Moresby, Papua New Guinea;

R. Ditangco* and R. Capistrano, Research Institute for Tropical Medicine, Manila, Philippines;

Y.M.A. Chen*, W.W. Wong and Y.W. Yang, Taipei Veterans General Hospital and AIDS Prevention and Research Centre, National Yang-Ming University, Taipei, Taiwan;

P.L. Lim*, O.T. Ng and E. Foo, Tan Tock Seng Hospital, Singapore;

S. Sungkanuparph* and B. Piyavong, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand;

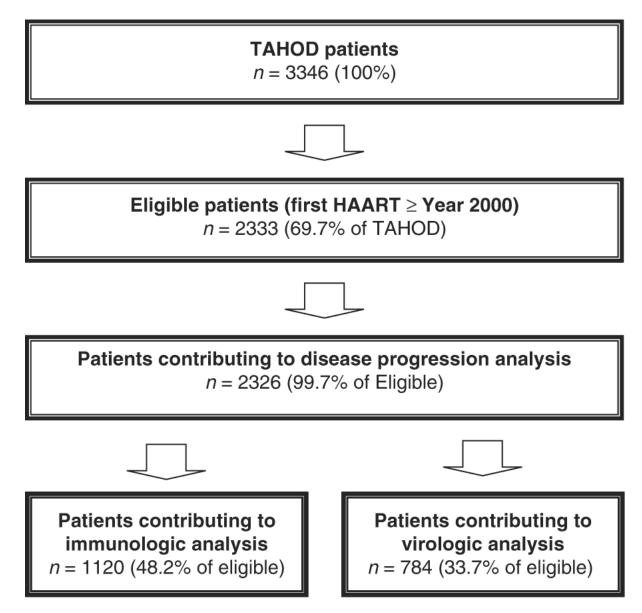
T. Sirisanthana^{*‡} and W. Kotarathititum, Research Institute for Health Sciences, Chiang Mai, Thailand;

J. Chuah*, Gold Coast Sexual Health Clinic, Miami, Queensland, Australia;

A. Sohn*, J. Smith*, K. Frost and B. Nakornsri, TREAT Asia/amfAR, The Foundation for AIDS Research, NY, USA;

D.A. Cooper, M.G. Law*, R. Oyomopito and J. Zhou*, National Centre in HIV Epidemiology and Clinical Research, The University of New South Wales, Sydney, Australia.

*TAHOD Steering Committee member; [†]Current Steering Committee chair; [‡]co-chair.


References

- Robbins GK, De Gruttola V, Shafer RW, et al. Comparison of sequential three-drug regimens as initial therapy for HIV-1 infection. N Engl J Med 2003;349:2293–2303. [PubMed: 14668455]
- Shafer RW, Smeaton LM, Robbins GK, et al. Comparison of four-drug regimens and pairs of sequential three-drug regimens as initial therapy for HIV-1 infection. N Engl J Med 2003;349:2304–2315. [PubMed: 14668456]
- 3. UNAIDS. AIDS epidemic update: special report on HIV/AIDS. 2006. Available at www.unaids.org/en/KnowledgeCentre/HIVData/EpiUpdate/EpiUpdArchive/2006/default.asp
- Egger M, Boulle A, Schechter M, Miotti P. Antiretroviral therapy in resource-poor settings: scaling up inequalities? Int J Epidemiol 2005;34:509–512. [PubMed: 15941732]
- Zhou J, Kumarasamy N, Ditangco R, et al. The TREAT Asia HIV Observational Database: baseline and retrospective data. J Acquir Immune Defic Syndr 2005;38:174–179. [PubMed: 15671802]
- Sow PS, Otieno LF, Bissagnene E, et al. Implementation of an antiretroviral access program for HIV-1-infected individuals in resource-limited settings: clinical results from 4 African countries. J Acquir Immune Defic Syndr 2007;44:262–267. [PubMed: 17146376]
- 7. Hughes MD. Evaluating surrogate endpoints. Controlled Clin Trials 2002;23:703–707. [PubMed: 12505247]
- Mellors JW, Munoz A, Giorgi JV, et al. Plasma viral load and CD4 + lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 1997;126:946–954. [PubMed: 9182471]
- Hammer SM, Saag MS, Schechter M, et al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society – USA panel. JAMA 2006;296:827–843. [PubMed: 16905788]
- Hughes MD, Johnson VA, Hirsch MS, et al. Monitoring plasma HIV-1 RNA levels in addition to CD4 + lymphocyte count improves assessment of antiretroviral therapeutic response. ACTG 241 protocol virology substudy team. Ann Intern Med 1997;126:929–938. [PubMed: 9182469]
- Panel on antiretroviral guidelines for adults and adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services; 2008 [accessed 21 April 2008]. p. 1-128.Available at www.aidsinfo.nih.gov
- European AIDS Clinical Society (EACS). Guidelines for the clinical management and treatment of HIV infected adults in Europe. [accessed 21 April 2008]. Available at www.europeanaidsclinicalsociety.org
- Cohen GM. Access to diagnostics in support of HIV/AIDS and tuberculosis treatment in developing countries. AIDS 2007;21(Suppl. 4):S81–S87. [PubMed: 17620757]

- 14. Freedberg KA, Losina E, Weinstein MC, et al. The cost effectiveness of combination antiretroviral therapy for HIV disease. N Engl J Med 2001;344:824–831. [PubMed: 11248160]
- Goldie SJ, Yazdanpanah Y, Losina E, et al. Cost-effectiveness of HIV treatment in resource-poor settings – the case of Côte d'Ivoire. N Engl J Med 2006;355:1141–1153. [PubMed: 16971720]
- Fiscus SA, Cheng B, Crowe SM, et al. HIV-1 viral load assays for resource-limited settings. PLoS Med 2006;3:e417. doi: 10.1371/journal.pmed.0030417. [PubMed: 17032062]
- CDC. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep 1992;41:1–19.
- World Bank. World Bank list of economies. [accessed July 2007]. Available at http://go.worldbank.org/K2CKM78CC0
- Egger M, May M, Chene G, et al. Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet 2002;360:119–129. [PubMed: 12126821]
- Braitstein P, Brinkhof MW, Dabis F, et al. Mortality of HIV-1-infected patients in the first year of antiretroviral therapy: comparison between low-income and high-income countries. Lancet 2006;367:817–824. [PubMed: 16530575]
- Braitstein P, Zala C, Yip B, et al. Immunologic response to antiretroviral therapy in hepatitis C virus-coinfected adults in a population-based HIV/AIDS treatment program. J Infect Dis 2006;193:259–268. [PubMed: 16362890]
- Klein MB, Lalonde RG, Suissa S. The impact of hepatitis C virus coinfection on HIV progression before and after highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2003;33:365– 372. [PubMed: 12843748]
- 23. Greub G, Ledergerber B, Battegay M, et al. Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: the Swiss HIV Cohort Study. Lancet 2000;356:1800–1805. [PubMed: 11117912]
- Bosch RJ, Bennett K, Collier AC, Zackin RB. Pretreatment factors associated with 3-year (144week) virologic and immunologic responses to potent antiretroviral therapy. J Acquir Immune Defic Syndr 2007;44:268–277. [PubMed: 17146370]
- 25. Mocroft A, Phillips AN, Gatell J, et al. Normalisation of CD4 counts in patients with HIV-1 infection and maximum virological suppression who are taking combination antiretroviral therapy: an observational cohort study. Lancet 2007;370:407–413. [PubMed: 17659333]
- 26. Lange CG, Lederman MM, Medvik K, et al. Nadir CD4 + T-cell count and numbers of CD28 + CD4 + T-cells predict functional responses to immunizations in chronic HIV-1 infection. AIDS 2003;17:2015–2023. [PubMed: 14502004]
- 27. Wu H, Connick E, Kuritzkes DR, et al. Multiple CD4 + cell kinetic patterns and their relationships with baseline factors and virological responses in HIV type 1 patients receiving highly active antiretroviral therapy. AIDS Res Hum Retroviruses 2001;17:1231–1240. [PubMed: 11559422]
- Lawn SD, Myer L, Bekker LG, Wood R. CD4 cell count recovery among HIV-infected patients with very advanced immunodeficiency commencing antiretroviral treatment in sub-Saharan Africa. BMC Infect Dis 2006;6:59. [PubMed: 16551345]
- 29. Lederman MM, Valdez H. Immune restoration with antiretroviral therapies: implications for clinical management. JAMA 2000;284:223–228. [PubMed: 10889597]
- United Nations General Assembly. Declaration of Commitment on HIV/AIDS and Political Declaration on HIV/AIDS: midway to the Millennium Development Goals. 2008 [accessed 18 May 2008]. Available at www.un.org/ga/president/62/issues/hiv/A-62-780.pdf
- Phillips AN, Pillay D, Miners AH, Bennett DE, Gilks CF, Lundgren JD. Outcomes from monitoring of patients on antiretroviral therapy in resource-limited settings with viral load, CD4 cell count, or clinical observation alone: a computer simulation model. Lancet 2008;371:1443– 1451. [PubMed: 18440426]
- Cozzi-Lepri A, Phillips AN, Ruiz L, et al. Evolution of drug resistance in HIV-infected patients remaining on a virologically failing combination antiretroviral therapy regimen. AIDS 2007;21:721–732. [PubMed: 17413693]
- 33. Kumarasamy N, Madhavan V, Venkatesh KK, et al. High frequency of clinically significant mutations after first-line generic highly active antiretroviral therapy failure: implications for

second-line options in resource-limited settings. Clin Infect Dis 2009;49:306–309. [PubMed: 19522657]

- 34. World Health Organisation. Towards universal access: scaling up priority HIV/AIDS interventions in the health sector. 2008 [accessed 2 July 2008]. Available at www.who.int/hiv/pub/towards_universal_access_report_2008.pdf
- World Health Organisation. Technical Working Group for the development of an HIV/AIDS diagnostic support toolkit. 2002 [accessed 23 January 2009]. Available at www.who.int/bct
- Bennett DE, Bertagnolio S, Sutherland D, Gilks CF. The World Health Organization's global strategy for prevention and assessment of HIV drug resistance. Antivir Ther 2008;13(Suppl. 2):1– 13. [PubMed: 18578063]

Fig. 1.

Patients contributing data for disease progression, immunologic and virologic analyses. Note: A total of 531 (23%) of the eligible patients contributed data to both the immunologic and virologic analyses.

Table 1

Patient characteristics at highly active antiretroviral therapy (HAART) initiation by country income

	Low income [<i>n</i> (%)]	High income [n (%)]
Age (years) at entry		
Median (range)	35.5 (6.8–70.9)	37.7 (18.6–81.6)
< 30 years	292 (20.4)	163 (18.0)
30-40 years	709 (49.6)	371 (41.0)
>40 years	420 (29.4)	371 (41.0)
Unknown	7 (0.5)	-
Gender		
Male	926 (64.8)	722 (79.8)
Female	500 (35.0)	182 (20.1)
Transgender	2 (0.1)	1 (0.1)
HIV exposure		
Heterosexual contact	1138 (79.7)	510 (56.4)
Homosexual contact	64 (4.5)	333 (36.8)
Other*	226 (15.8)	62 (6.9)
CDC classification		
Category A	548 (38.4)	512 (56.6)
Category B	219 (15.3)	37 (4.1)
Category C	661 (46.3)	356 (39.3)
Hepatitis B		
Negative	386 (27.0)	528 (58.3)
Positive	50 (3.5)	53 (5.9)
Not tested	992 (69.5)	324 (35.8)
Hepatitis C		
Negative	286 (20.0)	544 (60.1)
Positive	61 (4.3)	35 (3.9)
Not tested	1081 (75.7)	326 (36.0)
First HAART regimen ^{\dagger}		
NNRTI₽	1296 (90.8)	569 (62.9)
PI	120 (8.4)	276 (30.5)
NNRTI/PI	10 (0.7)	45 (5.0)
NRTI	2 (0.1)	15 (1.7)
Baseline HIV-1 viral load [§] (copies/mL)		
Median (range)	125 399 (49–6531 200)	97 600 (49–1100 000
< 10 000 copies/mL	41 (2.9)	81 (9.0)
< 10 000 copies/inL ≥ 10 000	201 (14.1)	378 (41.8)
2 10 000 Unknown	1186 (83.1)	446 (49.3)
	1100 (03.1)	++0 (+7.3)
Baseline CD4 count [#] (cells/µL)	01 (0, 000)	121 (2, 222)
Median (range)	91 (0-886)	131 (0–922)

Low income $[n (\%)]$	High income [n (%)]
554 (38.8)	260 (28.7)
287 (20.1)	178 (19.7)
193 (13.5)	176 (19.4)
394 (27.6)	291 (32.2)
1428 (61.2)	905 (38.8)
	287 (20.1) 193 (13.5) 394 (27.6)

* The HIV exposure category `Other' includes injecting drug users (IDUs), patients infected by blood products and unknown exposures.

[†]HAART was a combination of three or more antiretrovirals (ARVs) with or without an NRTI backbone. NNRTI/PI included at least one PI and one NNRTI. PI included ritonavir-boosted regimens.

 ‡ Of the NNRTI regimens, lamivudine/stavudine/nevirapine and lamivudine/zidovudine/efavirenz were the most frequently prescribed for low (58%)- and high (41%)-income countries, respectively.

[§]Dichotomized for country income comparison.

^{//} Unknown' category excluded for test of trend. CDC, Centers for Disease Control and Prevention; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor.

Table 2

Country income by site frequency of diagnostic testing

	CD4 assay (per year)	Viral load assay (per year)	n (%)
Low income	≥3	≥3	171 (12.0)
		<1	190 (13.3)
	<3	1–2	271 (19.0)
		<1	796 (55.7)
High income	≥3	≥3	530 (58.6)
		1–2	375 (41.4)

Table 3

Factors associated with progression to Centers for Disease Control and Prevention (CDC) class C event or death after initiating highly active antiretroviral therapy (HAART)

Oyomopito et al.

					Univaria	Univariate analysis	Multivariate analysis	nalysis
	u	Follow-up (years)	Number of events	Rate per 100 person-years	HR	Р	HR (95% CI)	Р
Patient covariates								
Age (years) at entry								
<30	455	1036.6	69	6.7		0.626		0.743
30-40	1080	2727.9	198	7.3	1.17	0.272	1.12 (0.9–1.5)	0.413
>40	161	2107.9	126	6.0	0.98	0.885	0.99 (0.7–1.3)	0.939
Gender								
Male	1646	4134.0	303	7.3				
Female	680	1738.5	90	5.2	0.71	0.004	0.78 (0.6–1.0)	0.040
HIV exposure								
Heterosexual contact	1644	4349.4	292	6.7				0.167
Homosexual contact	397	995.8	53	5.3	0.76	0.070	$0.76\ (0.6{-}1.0)$	0.084
Other	285	527.3	48	9.1	1.12	0.483	$1.09\ (0.8-1.5)$	0.635
CDC classification								
Category A	1055	2891.6	136	4.7		0.000		0.002
Category B	255	511.3	34	6.6	1.21	0.328	1.06 (0.7–1.6)	0.759
Category C	1016	2469.5	223	9.0	1.84	0.000	1.42 (1.1–1.8)	0.003
Hepatitis B								
Negative	914	2228.2	151	6.8				
Positive	103	239.7	18	7.5	1.08	0.751	1.02 (0.6–1.7)	0.935
Not tested	1309	3404.5	224	6.6	0.99	0.944	0.87 (0.6–1.2)	0.364
Hepatitis C								
Negative	830	2018.9	125	6.2				
Positive	96	206.2	24	11.6	1.79	0.009	1.76 (1.1–2.7)	0.011
Not tested	1400	3647.3	244	6.7	1.12	0.324	1.11 (0.9–1.4)	0.334
First HAART regimen								
NNRTI	1860	4647.7	325	7.0		0.056		0.071
PI	394	1021.9	50	4.9	0.70	0.021	0.73 (0.5–1.0)	0.041

NIH-PA Author Manuscript

NIH-PA Author Manuscript

							erefining and minimize	ere f m
	u	Follow-up (years)	Number of events	Rate per 100 person-years	HR	Ч	HR (95% CI)	Ч
NNRTI/PI	55	153.2	14	9.1	1.40	0.219	1.43 (0.8–2.4)	0.190
NRTI	17	49.7	4	8.0	1.21	0.704	1.44 (0.5–3.9)	0.466
Baseline HIV-1 viral load (copies/mL)	-							
< 10 000	122	369.6	14	3.8				
≥ 10 000	577	1608.2	86	5.3	1.36	0.287	1.19 (0.7–2.1)	0.555
Unknown	1627	3894.6	293	7.5	1.78	0.035	1.46 (0.8–2.5)	0.180
Baseline CD4 count (cells/mL)								
≤100	813	1902.8	185	9.7		0.000		0.000
100-200	462	1184.3	47	4.0	0.42	0.000	0.48 (0.3–0.7)	0.000
> 200	367	964.4	31	3.2	0.34	0.000	0.41 (0.3–0.6)	0.000
Unknown	684	1820.9	130	7.1	0.77	0.022	0.81 (0.6–1.0)	0.079
Resource covariates								
World Bank income								
Low income	1421	3211.3	251	7.8				
High income	905	2661.1	142	5.3	0.78	0.017	0.80 (0.6–1.0)	0.066
Frequency of RNA testing								
≥3 times per year	701	1986.8	98	4.9		0.002		0.033
1–2 times per year	646	1934.5	123	6.4	1.35	0.028	1.22 (0.9–1.6)	0.155
< 1 time per year	679	1951.1	172	8.8	1.49	0.002	1.35 (1.0–1.8)	0.032
Frequency of CD4 testing								
\geq 3 times per year	1265	3560.2	229	6.4				
< 3 times per year	1061	2312.2	164	7.1	0.95	0.638	0.83 (0.7–1.0)	0.097
Total	2326	5872.4	393	6.7				

HIV Med. Author manuscript; available in PMC 2010 September 1.

CI, confidence interval; HR, hazard ratio; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor.

Table 4

Factors associated with 12-month change in CD4 cell counts from initiation of highly active antiretroviral therapy (HAART)

P 0.000 0.848 0.001 0.848 0.001 0.358 0.358 0.358 0.358 0.021 0.033 0.217 0.217 0.233 0.358 0.021 0.021 0.033 0.163 0.163 0.163 0.163 0.163 0.163 0.164 0.010 0.010 0.010 0.040				Univariate analysis	alysis	Multivariate analysis	
205 178.4 0.000 531 176.0 -2.44 0.848 531 176.0 -2.44 0.848 384 131.4 -46.98 0.001 384 131.4 -46.98 0.001 796 164.8 1.31.4 0.033 796 164.8 1.32.1 -12.76 0.217 796 152.1 -12.76 0.217 797 152.1 -12.76 0.238 109 156.0 164.8 0.021 109 126.3 -36.67 0.021 109 126.3 -36.67 0.238 1140 155.6 -5.39 0.163 1241 0.358 170.2 14.20 0.163 140 150.6 -5.39 0.718 533 174.4 31.20 0.001 65 167.6 25.14 0.010 53 174.4 31.20 0.010 618 174.0 25.14 0.010 618 174.0 25.14 0.010 044 15.1 -12.00 0.409 132 132.1 -12.00 0.409		u	Change in CD4 (cells/mL)	Coefficient*	Ъ	Coefficient (95% CI)	Ч
205 178.4 0.000 331 176.0 -2.44 0.848 384 131.4 -46.98 0.001 384 131.4 -46.98 0.001 384 131.4 -46.98 0.001 384 132.4 152.1 -12.76 0.217 324 159 152.1 -12.76 0.033 109 159 175.4 12.41 0.358 109 150 -5.39 0.163 100 159 170.2 14.20 0.163 110 522 150.6 -5.39 0.163 110 523 156.0 -5.39 0.163 110 523 156.0 -5.39 0.163 1100 523 170.2 14.20 0.163 1100 524 170.2 14.20 0.163 1100 533 174.4 31.20 0.014 1101 534 115.1 -33.76 0.140 1115.1 -33.76 0.140 0.140 1122 113.1 124.0 0.140 1123 113.1 123.1 0.140	Patient covariates						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Age at entry						
531 176.0 -2.44 0.848 384 131.4 -46.96 0.001 796 164.8 0.001 732 152.1 -12.76 0.031 324 152.1 -12.76 0.031 126 159 152.1 0.1276 0.033 100 159 152.1 -12.76 0.031 109 159 152.1 -12.76 0.031 109 159 152.1 $0.167.6$ 0.167 100 126.3 126.3 0.142 $0.167.6$ 140 150.6 -5.39 0.718 $0.167.6$ 462 170.2 143.2 143.2 $0.167.6$ 462 174.4 31.20 0.010 523 167.6 23.441 $0.238.6$ 668 174.4 31.20 0.010 618 174.6 23.441 0.010 618 174.6 23.441 0.010 618 $174.$	<30 years	205	178.4		0.000		0.000
384 131.4 -46.98 0.001 796 164.8 0.01 796 164.8 0.217 324 152.1 -12.76 0.135 324 152.1 -12.76 0.033 1contact 159 152.1 0.033 1contact 159 152.4 0.033 1contact 159 175.4 12.41 0.358 109 126.3 -36.67 0.021 109 126.3 -36.67 0.021 109 126.3 126.3 0.167 100 522 156.0 -5.39 0.163 140 170.2 142.2 0.157 0.167 140 170.2 143.2 143.2 0.167 53 167.6 24.41 0.238 53 167.6 24.41 0.238 53 167.6 25.14 0.010 52 153.1 -33.76 0.140 153.1 174.0 25.14 0.010 153.1 153.1 123.0 0.140	30–40 years	531	176.0	-2.44	0.848	-2.69 (-27.8, 22.4)	0.833
796 164.8 324 152.1 -12.76 0.217 324 152.1 -12.76 0.033 1 contact 852 162.9 0.033 1 contact 159 175.4 12.41 0.033 1 contact 199 126.3 -36.67 0.021 1 contact 199 126.3 -36.67 0.021 1 contact 140 126.6 -45.67 0.021 1 do 126.3 -36.67 0.021 1 do 126.3 167.6 -5.39 0.163 1 do 150.6 -5.39 0.163 1 do 170.2 14.20 0.157 1 do 174.4 31.20 0.001 1 do 174.4 31.20 0.010 1 do 174.0 25.14 0.010 1 do 174.0 25.14 0.010 regimen 174.0 153.1 -12.00 0.400	>40 years	384	131.4	-46.98	0.001	-47.22 (-73.6, -20.8)	0.001
796 164.8 324 152.1 -12.76 0.217 324 152.1 -12.76 0.217 1 contact 852 162.9 0.033 1 contact 159 175.4 0.358 1 contact 159 175.4 0.358 1 contact 169 126.3 -36.67 0.021 109 126.3 -36.67 0.021 100 126.3 -36.67 0.021 140 170.2 14.20 0.163 140 170.2 14.20 0.163 140 170.2 14.20 0.163 65 147.4 31.20 0.010 533 174.4 31.20 0.010 65 148.8 -33.76 0.140 52 115.1 -33.76 0.140 618 174.0 25.14 0.010 132 132 153.1 -12.00 0.400	Gender						
324 152.1 -12.76 0.217 Il contact 852 162.9 0.033 Icontact 159 175.4 0.031 109 126.3 -36.67 0.031 109 126.3 -36.67 0.031 109 126.3 -36.67 0.031 109 126.0 -5.39 0.718 140 150.0 -5.39 0.718 140 170.2 14.20 0.163 140 170.2 14.20 0.163 150.0 170.2 14.20 0.163 65 177.2 14.20 0.173 65 167.6 24.41 0.238 65 174.4 31.20 0.010 65 174.4 31.20 0.140 7 115.1 -33.76 0.140 7 115.1 -33.76 0.140 7 115.1 -33.76 0.140 7 174.0 25.14 0.010 7 115.1 -33.76 0.140 7 115.1 -33.76 0.140 7 115.1 -12.00 0.040 132 153.1 -12.00 0.40 <	Male	796	164.8				
l contact 852 162.9 0.033 l contact 159 175.4 12.41 0.358 109 126.3 -36.67 0.021 109 126.3 0.021 140 126.0 -5.39 0.718 140 150.6 -5.39 0.718 150.6 -5.39 0.718 170.2 14.20 0.157 65 167.6 24.41 0.238 65 167.6 24.41 0.238 174.4 31.20 0.001 53 174.0 115.1 -33.76 0.140 e18 174.0 25.14 0.010 regimen 165.1 -12.00 0.409	Female	324	152.1	-12.76	0.217	-15.40 (-36.3, 5.6)	0.151
kual contact852162.90.033ual contact159 175.4 12.41 0.358 log109 126.3 -36.67 0.021 fication126.0 -36.67 0.021 A522 156.0 -5.39 0.163 B140 150.6 -5.39 0.718 C458 1702 14.20 0.157 C458 17702 14.20 0.157 d593 174.4 31.20 0.001 d593 174.4 31.20 0.001 d593 174.4 31.20 0.010 d618 174.0 25.14 0.010 d132 153.1 -12.00 0.040	HIV exposure						
ual contact159175.412.410.358109126.3 -36.67 0.021fication126.0 -5.39 0.163A522150.6 -5.39 0.718B140150.6 -5.39 0.718C458170.214.200.157C458177.214.200.157d593174.431.200.001d593174.431.200.001d618174.025.140.010d618174.025.140.010d618174.025.140.010d618174.025.140.010d618175.00.35.140.010d618175.00.35.140.040132153.1 -12.00 0.409	Heterosexual contact	852	162.9		0.033		0.043
109 126.3 -36.67 0.021 fication 522 156.0 -5.39 0.163 A 522 150.6 -5.39 0.718 B 140 150.6 -5.39 0.718 C 458 170.2 14.20 0.157 C 458 1770.2 14.20 0.157 d 593 167.6 24.41 0.238 d 593 174.4 31.20 0.001 d 593 174.4 31.20 0.001 d 593 174.4 31.20 0.001 d 593 174.4 31.20 0.0140 f 593 174.4 25.14 0.010 d 618 174.0 25.14 0.010 d 618 175.1 -33.76 0.140 d 52 115.1 -33.76 0.140 f 174.0 25.14 0.010 d 618 175.1 -31.20 0.040 f 153.1 -12.00 0.400	Homosexual contact	159	175.4	12.41	0.358	19.11 (-8.1, 46.3)	0.169
fication 156.0 0.163 A 522 156.0 0.163 B 140 150.6 -5.39 0.718 C 458 170.2 14.20 0.157 C 462 143.2 14.20 0.157 d 593 174.4 31.20 0.001 d 593 174.4 31.20 0.001 d 593 174.4 31.20 0.010 d 593 174.4 31.20 0.010 d 593 174.4 31.20 0.010 d 593 174.0 25.14 0.010 d 618 174.0 25.14 0.010 d 618 174.0 25.14 0.010 d 513 174.0 25.14 0.010 d 513 175.0 0.35.14 0.010 d 1732 133.1 -12.00 0.409	Other	109	126.3	-36.67	0.021	-29.37 (-60.5, 1.7)	0.064
A522156.0 \sim 0.163B140150.6 -5.39 0.718C458170.214.200.157C462143.214.200.157d593174.431.200.001d593174.431.200.001d593174.431.200.001d593174.431.200.001d618174.025.140.010d618174.025.140.010d132153.1-12.000.040	CDC classification						
B 140 150.6 -5.39 0.718 C 458 170.2 14.20 0.157 462 143.2 14.20 0.157 65 167.6 24.41 0.238 65 167.6 24.41 0.238 6 53 174.4 31.20 0.001 6 53 174.4 31.20 0.001 6 52 115.1 -33.76 0.140 6 618 174.0 25.14 0.010 d 618 175.1 -33.76 0.140 at regimen 115.1 -33.76 0.140 132 132 155.1 0.010 132 155.1 155.1 0.010	Category A	522	156.0		0.163		0.343
C 458 170.2 14.20 0.157 462 462 143.2 0.157 65 167.6 24.41 0.238 65 167.6 24.41 0.238 65 174.4 31.20 0.001 450 148.8 174.0 25.14 0.140 618 174.0 25.14 0.010 $cT regimen$ 165.1 -12.00 0.040	Category B	140	150.6	-5.39	0.718	-4.20 (-33.8, 25.4)	0.780
462 143.2 65 167.6 24.41 0.238 65 167.6 24.41 0.238 65 174.4 31.20 0.001 7 174.4 31.20 0.001 65 148.8 -33.76 0.140 66 115.1 -33.76 0.140 618 174.0 25.14 0.010 61 618 174.0 25.14 0.010 61 132 132.1 -12.00 0.409	Category C	458	170.2	14.20	0.157	10.40 (-11.1, 31.8)	0.343
462 143.2 65 167.6 24.41 0.238 6 593 174.4 31.20 0.001 7 7 174.4 31.20 0.001 6 148.8 174.0 25 115.1 -33.76 0.140 6 618 174.0 25.14 0.010 6 618 174.0 25.14 0.010 7.1 regimen 944 165.1 -12.00 0.409	Hepatitis B						
65 167.6 24.41 0.238 d 593 174.4 31.20 0.001 4 50 148.8 148.8 151 -33.76 0.140 52 115.1 -33.76 0.140 165.1 25.14 0.010 d 618 174.0 25.14 0.010 kT regimen 944 165.1 -12.00 0.409	Negative	462	143.2				
d 593 174.4 31.20 0.001 450 148.8 52 148.8 52 115.1 -33.76 0.140 174.0 25.14 0.010 tTregimen 944 165.1 -12.00 0.409 132 153.1 -12.00 0.409	Positive	65	167.6	24.41	0.238	16.70 (-23.5, 57)	0.415
450 148.8 52 148.8 52 115.1 -33.76 0.140 174.0 25.14 0.010 tTregimen 944 165.1 -12.00 0.400 132 153.1 -12.00 0.409	Not tested	593	174.4	31.20	0.001	27.70 (8.8, 46.6)	0.004
450 148.8 52 115.1 -33.76 0.140 618 174.0 25.14 0.010 944 165.1 0.040 132 153.1 -12.00 0.409	Hepatitis C						
52 115.1 -33.76 0.140 618 174.0 25.14 0.010 944 165.1 0.040 132 153.1 -12.00 0.409	Negative	450	148.8				
618 174.0 25.14 0.010 944 165.1 0.040 132 153.1 -12.00 0.409	Positive	52	115.1	-33.76	0.140	-27.10 (-73.3, 19.1)	0.251
944 165.1 0.040 132 153.1 -12.00 0.409	Not tested	618	174.0	25.14	0.010	27.00 (7.9, 46.0)	0.006
vRTI 944 165.1 0.040 132 153.1 -12.00 0.409	First HAART regimen						
132 153.1 -12.00 0.409	NNRTI	944	165.1		0.040		0.057
	PI	132	153.1	-12.00	0.409	-14.40 (-44.1 , 15.4)	0.344

			Univariate analysis	larysis	Multivariate analysis	
	u	Change in CD4 (cells/mL)	Coefficient*	Р	Coefficient (95% CI)	Р
NNRTI/PI	32	114.1	-51.02	0.070	-36.80 (-91.6, 18.0)	0.188
NRTI	12	65.3	-99.83	0.028	-104.90(-193.2, -16.5)	0.020
Baseline HIV-1 viral load						
< 10 000 copies/mL	87	113.9				
≥ 10 000 copies/mL	417	150.6	36.71	0.046	34.20 (-1.5, 70.0)	0.060
Unknown	616	174.9	61.06	0.001	55.70 (20.2, 91.2)	0.002
Baseline CD4 count						
≤ 100 cells/mL	567	163.4		0.082		0.003
100–200 cells/mL	308	176.4	13.02	0.239	16.60 (-4.9, 38.1)	0.130
> 200 cells/mL	245	136.6	-26.81	0.025	-29.45 (-53.4, -5.5)	0.020
Resource covariates						
World Bank income						
Low income	613	174.9				
High income	507	144.5	-30.46	0.001	-32.05 (-51.7, -12.4)	0.001
Frequency of RNA testing						
≥ 3 times per year	328	139.0		0.000		0.000
1-2 times per year	307	148.2	9.22	0.455	19.38 (-5.8, 44.6)	0.130
< 1 time per year	485	184.3	45.26	0.000	53.60 (29.5, 77.7)	0.000
Frequency of CD4 testing						
≥ 3 times per year	671	154.5				
<3 times per year	449	171.0	16.48	0.085	17.60 (-2.3, 37.5)	0.080
Total	1120	161.1				

NIH-PA Author Manuscript

CI, confidence interval; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor.

 $\overset{*}{\text{The difference compared with the reference category of each variable in the univariate analysis.$

Oyomopito et al.

Table 5

Factors associated with undetectable HIV at 12 months in patients initiating highly active antiretroviral therapy (HAART)

			Univaria	Univariate analysis	SIGGINITATION ATTAIN	
	u	Number HIV viral loads undetectable (%)	OR	Ρ	OR (95% CI)	Ρ
Patient covariates						
Age at entry						
<30 years	153	125 (81.7)		0.384		0.133
30-40 years	334	274 (82.0)	1.02	0.929	1.17 (0.7–2.0)	0.564
>40 years	298	252 (84.6)	1.23	0.437	1.48 (0.9–2.6)	0.155
Gender						
Male	596	487 (81.7)				
Female	189	164 (86.8)	1.47	0.109	1.69 (1.0–2.8)	0.038
HIV exposure						
Heterosexual contact	496	417 (84.1)		0.000		0.000
Homosexual contact	226	197 (87.2)	1.29	0.280	1.51 (0.9–2.4)	0.090
Other	63	37 (58.7)	0.27	0.000	0.28 (0.2–0.5)	0.000
CDC classification						
Category A	428	365 (85.3)		0.074		0.252
Category B	36	28 (77.8)	0.60	0.234	0.67 (0.3–1.6)	0.354
Category C	321	258 (80.4)	0.71	0.077	0.79 (0.5–1.2)	0.253
Hepatitis B						
Negative	382	326 (85.3)				
Positive	37	32 (86.5)	1.10	0.851	1.07 (0.4–2.9)	0.899
Not tested	366	293 (80.1)	0.69	0.057	$0.68\ (0.5{-}1.0)$	0.056
Hepatitis C						
Negative	384	330 (85.9)				
Positive	36	24 (66.7)	0.33	0.004	0.62 (0.3–1.4)	0.269
Not tested	365	297 (81.4)	0.72	0.092	0.75 (0.5–1.1)	0.168
First HAART regimen						
NNRTI	544	452 (83.1)		0.277		0.151
Ы	197	166 (84.3)	1.09	0.704	0.91 (0.6–1.5)	0.697
NNRTI/PI	34	27 (79.4)	0.79	0.582	0.72 (0.3–1.7)	0.464

			Univariat	Univariate analysis	Multivariate analysis	nalysis
	u	Number HIV viral loads undetectable (%)	OR	Р	OR (95% CI)	Ч
NRTI	10	6 (60.0)	0.31	0.070	0.23 (0.1–0.8)	0.027
Baseline HIV-1 viral load						
< 10 000 copies/mL	69	53 (76.8)				
≥ 10 000 copies/mL	334	277 (82.9)	1.47	0.231	1.37 (0.7–2.6)	0.338
Unknown	382	321 (84.0)	1.59	0.145	1.54 (0.8–2.9)	0.190
Baseline CD4 count						
≤ 100 cells/µL	242	190 (78.5)		0.029		0.058
100–200 cells/µL	152	125 (82.2)	1.27	0.369	1.22 (0.7–2.1)	0.467
>200 cells/μL	156	136 (87.2)	1.86	0.030	1.73 (1-3.1.0)	0.067
Unknown	235	200 (85.1)	1.56	0.064	1.47 (0.9–2.4)	0.127
Resource covariates						
World Bank income						
Low income	204	161 (78.9)				
High income	581	490 (84.3)	1.44	0.078	1.19 (0.8–1.8)	0.449
Frequency of RNA testing	F0					
≥ 3 times per year	403	349 (86.6)		0.000		0.000
1-2 times per year	297	251 (84.5)	0.84	0.435	0.91 (0.6–1.5)	0.709
< 1 time per year	85	51 (60.0)	0.23	0.000	0.30 (0.2–0.5)	0.000
Frequency of CD4 testing						
\geq 3 times per year	636	538 (84.6)				
<3 times per year	149	113 (75.8)	0.57	0.011	$0.68\ (0.4{-}1.1)$	0.108
Total	785	651 (82.9)				

for trend or homogeneity, as appropriate, evaluated by excluding classifications representing unavailable information. P-values for age (years) at entry, Centers for Disease Control and Prevention (CDC) classification, HIV exposure, fir

CI, confidence interval; OR, odds ratio; NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, nonnucleoside reverse transcriptase inhibitor; PI, protease inhibitor.

Oyomopito et al.

NIH-PA Author Manuscript