Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 12;64(Pt 1):m177. doi: 10.1107/S1600536807065634

N′-Ferrocenyl-2-hydroxy­benzohydrazide

Ying Xu a, Chun-Ling Chen a, Jing Zhou a, Ming-Xue Li a,*
PMCID: PMC2915112  PMID: 21200525

Abstract

The title complex, [Fe(C5H5)(C13H11N2O3)], was prepared via self-assembly using ferrocenyl hydrazide and ethyl salicylate. The compound is potentially a tridentate ferrocene-based ligand. The conformation of the mol­ecule allows the formation of an intra­molecular N—H⋯O hydrogen bond involving the hydroxyl group. The CONHNHCO unit and the rings bonded to it are nearly coplanar. The crystal structure is stabilized by inter­molecular O—H⋯O(carbon­yl) and N—H⋯O(carbon­yl) hydrogen bonds.

Related literature

For related literature about applications of ferrocene complexes, see: Beer (1992); Beer & Smith (1997); Long (1995); Miller & Epstein (1994); Nguyen et al. (1999).graphic file with name e-64-0m177-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C13H11N2O3)]

  • M r = 364.18

  • Monoclinic, Inline graphic

  • a = 20.680 (3) Å

  • b = 9.9673 (15) Å

  • c = 16.941 (3) Å

  • β = 121.704 (3)°

  • V = 2970.8 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.820, T max = 0.852

  • 7479 measured reflections

  • 2611 independent reflections

  • 1053 reflections with I > 2σ(I)

  • R int = 0.129

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.086

  • S = 0.57

  • 2611 reflections

  • 230 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a ); molecular graphics: SHELXTL (Sheldrick, 1997b ); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065634/bh2153sup1.cif

e-64-0m177-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065634/bh2153Isup2.hkl

e-64-0m177-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3 0.860 (10) 1.95 (2) 2.631 (4) 135 (3)
O3—H3B⋯O1i 0.822 (10) 1.908 (15) 2.705 (4) 163 (4)
N1—H1B⋯O2ii 0.871 (10) 2.03 (2) 2.810 (4) 148 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was financially supported by the Foundation of the Educational Department of Henan Province (No. 2007150012).

supplementary crystallographic information

Comment

The synthesis, isolation and characterization of ferrocene in 1951 marked an important milestone in the evolution of modern organometallic chemistry. Potential applications in material sciences, such as molecular sensors (Beer, 1992; Beer & Smith, 1997), molecular magnetic materials (Miller & Epstein, 1994), and nonlinear optical materials (Nguyen et al., 1999; Long, 1995) attracted much attention. We report here the crystal structure of the title compound, (I), a new ferrocene-based complex (Fig. 1).

The title compound belongs to space group C2/c. The bond lengths O1?C11 and O2?C12 are 1.240 (5) and 1.233 (4) Å, respectively, as excepted for double bonds. The bond length O3—C18, 1.349 (5) Å, corresponds to a single bond. The N1—C11 and N2—C12 bond distances are 1.340 (5) and 1.343 (5) Å, respectively, which make clear they are in the normal range for N—C single bonds. The bond length N1—N2 = 1.381 (4) Å is also consistent with a single N—N bond. An intramolecular N2—H2B···O3 hydrogen bond is observed in the molecular structure.

In the crystal, molecules are connected by intermolecular hydrogen bonds involving carbonyl O atoms O2 and O3 as acceptor and N—H or O—H groups as donors.

Experimental

All reagents were commercially available and of analytical grade. Ferrocenyl hydrazide (1.22 g, 5 mmol) and ethyl salicylate (0.83 g, 5 mmol) were mixed in ethanol and refluxed for 7 h. The resulting red solid was filtered, washed with ethanol and dried under reduced pressure. Anal. Calc. for C18H16FeN2O3: C 59.37, H 4.43, N 7.69%. Found: C 59.48, H 4.31, N 7.52%.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined as riding on their carrier atoms, with C—H bond lengths fixed to 0.93 (benzene ring) or 0.98 Å (Cp rings), and Uiso(H) = 1.2Ueq(carrier C). H atoms bonded to heteroatoms N1, N2 and O3 were located in a difference map and were freely refined as isotropic atoms, with restricted bond lengths: N—H = 0.87 (1) Å and O—H = 0.82 (1) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Crystal data

[Fe(C5H5)(C13H11N2O3)] F000 = 1504
Mr = 364.18 Dx = 1.628 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 397 reflections
a = 20.680 (3) Å θ = 2.3–28.0º
b = 9.9673 (15) Å µ = 1.04 mm1
c = 16.941 (3) Å T = 293 (2) K
β = 121.704 (3)º Block, red
V = 2970.8 (8) Å3 0.20 × 0.18 × 0.16 mm
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2611 independent reflections
Radiation source: fine-focus sealed tube 1053 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.129
T = 293(2) K θmax = 25.0º
0.3° wide ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −24→18
Tmin = 0.820, Tmax = 0.852 k = −11→11
7479 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086   w = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3
S = 0.57 (Δ/σ)max < 0.001
2611 reflections Δρmax = 0.48 e Å3
230 parameters Δρmin = −0.34 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.94540 (4) 0.77786 (6) 0.86429 (4) 0.03507 (19)
O1 0.83150 (16) 0.4726 (3) 0.79890 (19) 0.0410 (9)
O2 0.92978 (15) 0.2865 (3) 0.63670 (17) 0.0437 (8)
O3 0.75985 (16) 0.1341 (3) 0.6733 (2) 0.0417 (8)
H3B 0.7289 (10) 0.099 (3) 0.683 (2) 0.060 (9)*
N1 0.9235 (2) 0.3971 (3) 0.7765 (2) 0.0308 (10)
H1B 0.9700 (8) 0.387 (4) 0.790 (2) 0.058 (16)*
N2 0.87479 (18) 0.2969 (4) 0.7205 (2) 0.0340 (9)
H2B 0.8365 (9) 0.276 (3) 0.7248 (17) 0.034 (5)*
C1 0.8498 (3) 0.8152 (5) 0.7406 (3) 0.0489 (14)
H1A 0.8151 0.7473 0.6970 0.059*
C2 0.8456 (3) 0.8730 (4) 0.8133 (3) 0.0432 (13)
H2A 0.8071 0.8530 0.8287 0.052*
C3 0.9052 (3) 0.9656 (4) 0.8594 (3) 0.0451 (14)
H3A 0.9161 1.0216 0.9126 0.054*
C4 0.9463 (3) 0.9629 (4) 0.8144 (3) 0.0454 (14)
H4A 0.9919 1.0160 0.8322 0.055*
C5 0.9131 (3) 0.8688 (5) 0.7419 (3) 0.0529 (15)
H5A 0.9302 0.8462 0.6995 0.064*
C6 1.0186 (3) 0.6269 (4) 0.8847 (3) 0.0376 (13)
H6A 1.0360 0.6011 0.8430 0.045*
C7 1.0541 (2) 0.7191 (4) 0.9589 (3) 0.0415 (13)
H7A 1.1002 0.7706 0.9767 0.050*
C8 1.0106 (3) 0.7288 (4) 1.0008 (3) 0.0444 (13)
H8A 1.0216 0.7865 1.0533 0.053*
C9 0.9489 (3) 0.6410 (4) 0.9538 (3) 0.0337 (12)
H9A 0.9093 0.6261 0.9681 0.040*
C10 0.9534 (3) 0.5776 (4) 0.8825 (3) 0.0304 (12)
C11 0.8976 (3) 0.4797 (4) 0.8161 (3) 0.0302 (12)
C12 0.8800 (2) 0.2468 (4) 0.6504 (3) 0.0272 (11)
C13 0.8246 (2) 0.1417 (4) 0.5917 (3) 0.0269 (11)
C14 0.8305 (3) 0.0933 (4) 0.5195 (3) 0.0388 (13)
H14A 0.8674 0.1284 0.5097 0.047*
C15 0.7828 (3) −0.0064 (4) 0.4615 (3) 0.0490 (15)
H15A 0.7875 −0.0372 0.4129 0.059*
C16 0.7285 (3) −0.0601 (4) 0.4754 (3) 0.0422 (14)
H16A 0.6968 −0.1283 0.4371 0.051*
C17 0.7214 (2) −0.0123 (4) 0.5463 (3) 0.0375 (13)
H17A 0.6845 −0.0485 0.5556 0.045*
C18 0.7675 (3) 0.0877 (4) 0.6038 (3) 0.0300 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0332 (4) 0.0339 (3) 0.0390 (4) 0.0019 (4) 0.0195 (3) −0.0003 (4)
O1 0.0258 (18) 0.0442 (19) 0.058 (2) −0.0049 (17) 0.0251 (17) −0.0128 (15)
O2 0.0409 (17) 0.061 (2) 0.0440 (17) −0.0154 (18) 0.0328 (15) −0.0120 (16)
O3 0.0369 (18) 0.052 (2) 0.0518 (19) −0.0128 (17) 0.0345 (16) −0.0080 (16)
N1 0.026 (2) 0.029 (2) 0.043 (2) 0.000 (2) 0.022 (2) −0.0085 (17)
N2 0.029 (2) 0.038 (2) 0.043 (2) −0.005 (2) 0.0246 (18) −0.0056 (19)
C1 0.043 (3) 0.058 (3) 0.031 (3) 0.006 (3) 0.010 (3) 0.001 (2)
C2 0.044 (3) 0.037 (3) 0.056 (3) 0.013 (3) 0.031 (3) 0.010 (2)
C3 0.049 (3) 0.031 (3) 0.059 (3) −0.007 (3) 0.031 (3) −0.007 (2)
C4 0.042 (3) 0.036 (3) 0.066 (4) 0.002 (3) 0.034 (3) 0.011 (3)
C5 0.051 (3) 0.069 (4) 0.048 (3) 0.019 (3) 0.032 (3) 0.021 (3)
C6 0.033 (3) 0.044 (3) 0.033 (3) 0.010 (3) 0.016 (2) −0.003 (2)
C7 0.021 (2) 0.033 (3) 0.048 (3) 0.011 (3) 0.002 (2) 0.005 (3)
C8 0.049 (3) 0.039 (3) 0.040 (3) 0.000 (3) 0.020 (3) −0.006 (2)
C9 0.039 (3) 0.029 (3) 0.038 (3) 0.002 (2) 0.024 (2) −0.002 (2)
C10 0.028 (3) 0.027 (2) 0.037 (3) −0.001 (2) 0.018 (2) −0.005 (2)
C11 0.033 (3) 0.028 (3) 0.027 (3) 0.001 (3) 0.013 (2) 0.003 (2)
C12 0.024 (2) 0.030 (3) 0.031 (2) 0.005 (2) 0.016 (2) 0.008 (2)
C13 0.025 (3) 0.023 (2) 0.032 (3) 0.000 (2) 0.014 (2) 0.002 (2)
C14 0.038 (3) 0.042 (3) 0.046 (3) 0.000 (3) 0.028 (3) 0.000 (2)
C15 0.052 (4) 0.056 (3) 0.045 (3) −0.006 (3) 0.030 (3) −0.014 (3)
C16 0.038 (3) 0.043 (3) 0.044 (3) −0.017 (3) 0.021 (3) −0.019 (2)
C17 0.033 (3) 0.040 (3) 0.041 (3) −0.012 (2) 0.020 (3) −0.007 (2)
C18 0.034 (3) 0.030 (3) 0.031 (3) 0.005 (2) 0.020 (2) 0.002 (2)

Geometric parameters (Å, °)

Fe1—C2 2.008 (4) C3—H3A 0.9800
Fe1—C9 2.013 (4) C4—C5 1.405 (6)
Fe1—C10 2.014 (4) C4—H4A 0.9800
Fe1—C1 2.021 (4) C5—H5A 0.9800
Fe1—C5 2.028 (5) C6—C7 1.412 (5)
Fe1—C6 2.031 (4) C6—C10 1.416 (6)
Fe1—C3 2.031 (4) C6—H6A 0.9800
Fe1—C8 2.031 (4) C7—C8 1.412 (6)
Fe1—C4 2.033 (4) C7—H7A 0.9800
Fe1—C7 2.045 (4) C8—C9 1.400 (5)
O1—C11 1.240 (5) C8—H8A 0.9800
O2—C12 1.233 (4) C9—C10 1.410 (5)
O3—C18 1.349 (5) C9—H9A 0.9800
O3—H3B 0.822 (10) C10—C11 1.478 (5)
N1—C11 1.340 (5) C12—C13 1.484 (5)
N1—N2 1.381 (4) C13—C14 1.379 (6)
N1—H1B 0.871 (10) C13—C18 1.407 (6)
N2—C12 1.343 (5) C14—C15 1.381 (5)
N2—H2B 0.860 (10) C14—H14A 0.9300
C1—C5 1.402 (6) C15—C16 1.373 (6)
C1—C2 1.404 (6) C15—H15A 0.9300
C1—H1A 0.9800 C16—C17 1.370 (6)
C2—C3 1.403 (6) C16—H16A 0.9300
C2—H2A 0.9800 C17—C18 1.369 (5)
C3—C4 1.410 (6) C17—H17A 0.9300
C2—Fe1—C9 105.43 (18) C4—C3—H3A 126.6
C2—Fe1—C10 121.17 (19) Fe1—C3—H3A 126.6
C9—Fe1—C10 41.01 (16) C5—C4—C3 109.2 (4)
C2—Fe1—C1 40.79 (16) C5—C4—Fe1 69.5 (3)
C9—Fe1—C1 122.31 (19) C3—C4—Fe1 69.6 (3)
C10—Fe1—C1 107.34 (18) C5—C4—H4A 125.4
C2—Fe1—C5 68.7 (2) C3—C4—H4A 125.4
C9—Fe1—C5 159.32 (19) Fe1—C4—H4A 125.4
C10—Fe1—C5 123.77 (19) C1—C5—C4 107.0 (5)
C1—Fe1—C5 40.53 (17) C1—C5—Fe1 69.5 (3)
C2—Fe1—C6 158.24 (18) C4—C5—Fe1 70.0 (3)
C9—Fe1—C6 68.96 (18) C1—C5—H5A 126.5
C10—Fe1—C6 40.98 (16) C4—C5—H5A 126.5
C1—Fe1—C6 123.23 (18) Fe1—C5—H5A 126.5
C5—Fe1—C6 108.72 (19) C7—C6—C10 107.0 (4)
C2—Fe1—C3 40.66 (16) C7—C6—Fe1 70.3 (2)
C9—Fe1—C3 120.45 (18) C10—C6—Fe1 68.9 (2)
C10—Fe1—C3 156.7 (2) C7—C6—H6A 126.5
C1—Fe1—C3 68.42 (18) C10—C6—H6A 126.5
C5—Fe1—C3 68.83 (19) Fe1—C6—H6A 126.5
C6—Fe1—C3 160.36 (19) C8—C7—C6 108.7 (4)
C2—Fe1—C8 121.38 (19) C8—C7—Fe1 69.2 (2)
C9—Fe1—C8 40.51 (16) C6—C7—Fe1 69.2 (2)
C10—Fe1—C8 68.62 (17) C8—C7—H7A 125.6
C1—Fe1—C8 158.0 (2) C6—C7—H7A 125.6
C5—Fe1—C8 159.5 (2) Fe1—C7—H7A 125.6
C6—Fe1—C8 68.81 (18) C9—C8—C7 107.6 (4)
C3—Fe1—C8 106.29 (19) C9—C8—Fe1 69.0 (2)
C2—Fe1—C4 67.96 (18) C7—C8—Fe1 70.2 (2)
C9—Fe1—C4 157.47 (19) C9—C8—H8A 126.2
C10—Fe1—C4 160.9 (2) C7—C8—H8A 126.2
C1—Fe1—C4 67.63 (19) Fe1—C8—H8A 126.2
C5—Fe1—C4 40.48 (17) C8—C9—C10 108.4 (4)
C6—Fe1—C4 125.03 (19) C8—C9—Fe1 70.5 (2)
C3—Fe1—C4 40.59 (17) C10—C9—Fe1 69.5 (2)
C8—Fe1—C4 123.09 (19) C8—C9—H9A 125.8
C2—Fe1—C7 158.59 (19) C10—C9—H9A 125.8
C9—Fe1—C7 68.03 (18) Fe1—C9—H9A 125.8
C10—Fe1—C7 68.14 (18) C9—C10—C6 108.2 (4)
C1—Fe1—C7 159.89 (19) C9—C10—C11 124.8 (4)
C5—Fe1—C7 124.4 (2) C6—C10—C11 127.0 (4)
C6—Fe1—C7 40.55 (15) C9—C10—Fe1 69.5 (2)
C3—Fe1—C7 123.62 (18) C6—C10—Fe1 70.2 (2)
C8—Fe1—C7 40.54 (16) C11—C10—Fe1 124.7 (3)
C4—Fe1—C7 109.83 (19) O1—C11—N1 121.9 (4)
C18—O3—H3B 120 (3) O1—C11—C10 122.7 (4)
C11—N1—N2 116.7 (4) N1—C11—C10 115.3 (4)
C11—N1—H1B 128 (2) O2—C12—N2 120.7 (4)
N2—N1—H1B 114 (2) O2—C12—C13 121.8 (4)
C12—N2—N1 120.5 (3) N2—C12—C13 117.6 (4)
C12—N2—H2B 119 (2) C14—C13—C18 117.9 (4)
N1—N2—H2B 120 (2) C14—C13—C12 116.4 (4)
C5—C1—C2 108.5 (4) C18—C13—C12 125.7 (4)
C5—C1—Fe1 70.0 (3) C13—C14—C15 121.4 (5)
C2—C1—Fe1 69.1 (3) C13—C14—H14A 119.3
C5—C1—H1A 125.7 C15—C14—H14A 119.3
C2—C1—H1A 125.7 C16—C15—C14 120.1 (5)
Fe1—C1—H1A 125.7 C16—C15—H15A 120.0
C3—C2—C1 108.5 (4) C14—C15—H15A 120.0
C3—C2—Fe1 70.6 (3) C17—C16—C15 119.3 (4)
C1—C2—Fe1 70.1 (3) C17—C16—H16A 120.3
C3—C2—H2A 125.8 C15—C16—H16A 120.3
C1—C2—H2A 125.8 C18—C17—C16 121.4 (4)
Fe1—C2—H2A 125.8 C18—C17—H17A 119.3
C2—C3—C4 106.8 (4) C16—C17—H17A 119.3
C2—C3—Fe1 68.8 (2) O3—C18—C17 120.8 (4)
C4—C3—Fe1 69.8 (3) O3—C18—C13 119.2 (4)
C2—C3—H3A 126.6 C17—C18—C13 120.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O3 0.860 (10) 1.95 (2) 2.631 (4) 135 (3)
O3—H3B···O1i 0.822 (10) 1.908 (15) 2.705 (4) 163 (4)
N1—H1B···O2ii 0.871 (10) 2.03 (2) 2.810 (4) 148 (4)

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2153).

References

  1. Beer, P. D. (1992). Adv. Inorg. Chem.39, 79–157.
  2. Beer, P. D. & Smith, D. K. (1997). Prog. Inorg. Chem.46, 1–8.
  3. Bruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Long, N. J. (1995). Angew. Chem. Int. Ed. Engl.34, 21–38.
  5. Miller, J. S. & Epstein, A. J. (1994). Angew. Chem. Int. Ed. Engl.33, 385–415.
  6. Nguyen, P., Gómez-Elipe, P. & Manners, I. (1999). Chem. Rev.99, 1515–1548. [DOI] [PubMed]
  7. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  8. Sheldrick, G. M. (1997b). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065634/bh2153sup1.cif

e-64-0m177-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065634/bh2153Isup2.hkl

e-64-0m177-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES