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SRC: A Century of Science

Brought to the Clinic

Abstract

The SRC family kinases are the largest family of nonreceptor tyrosine kinases and one of the best-studied targets for
cancer therapy. SRC, arguably the oldest oncogene, has been implicated in pathways regulating proliferation,
angiogenesis, invasion and metastasis, and bone metabolism. More recently, researchers have proposed that the
transforming ability of SRC is linked to its ability to activate key signaling molecules in these pathways, rather than
through direct activity. It has been hypothesized that blocking SRC activation may inhibit these pathways, resulting in
antitumor activity. However, successfully targeting SRC in a clinical setting remains a challenge, and SRC inhibitors
have only recently begun to move through clinical development. Preclinical studies have identified specific mo-
lecular “subgroups” and histologies that may be more sensitive to SRC inhibition. In addition, other studies have
demonstrated synergistic interactions between SRC inhibitors and other targeted therapies and cytotoxics. In
this review, we summarize SRC biology and how it has been applied to the clinical development of SRC inhibitors.
The status of SRC inhibitors, including dasatinib, saracatinib, and bosutinib, which are in phase 1, 2, and 3 trials,

is highlighted.
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Introduction
The SRC family of tyrosine kinases (SFKs) has nine members: LYN,
FYN, LCK, HCK, FGR, BLK, YRK, YES, and c-SRC. Of these, c-SRC
is the best studied and most frequently implicated in oncogenesis [1].

Almost 100 years have elapsed since Peyton Rous first described
a filterable agent (i.e., virus) that could induce solid tumors in birds.
Arguably ahead of his time, Rous’ discovery would linger on the fringes
of the scientific establishment for more than 50 years. It took the
advent of modern molecular biology techniques in the 1960s and
1970s for Rous’ filterable agent, now renamed the Rous sarcoma virus,
to ignite research that would help elucidate our current understand-
ing of cancer biology. Studies into the molecular biology and genetics
of Rous sarcoma virus identified »-SRC as the viral oncogene re-
sponsible for cellular transformation. Shortly thereafter, Bishop and
Varmus demonstrated that »-SRC had a cellular counterpart, the
proto-oncogene ¢-SRC [2].

¢-SRC (henceforth referred to as SRC) encodes a nonreceptor tyro-
sine kinase that, when activated, is involved in cellular proliferation,
survival, migration, and angiogenesis. When deregulated, these pro-
cesses represent four of the six so-called “hallmarks of cancer” [1,3].
Furthermore, numerous human malignancies display increased SRC
expression and activity, suggesting that SRC may be intimately in-
volved in oncogenesis [4]. Despite this, SRC alone is insufficient in

transforming human cells i vitro, and so far, only rare cases of activat-
ing SRC mutations have been identified in human cancers [5,6]. Al-
though numerous questions regarding the role of SRC in cancer
remain unanswered, SRC’s involvement in intracellular signaling path-
ways and overexpression in many human malignancies has renewed
interest in developing SRC inhibitors. In this review, we highlight
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the rationale for SRC as a therapeutic target in cancer medicine and
examine the preclinical and clinical data relevant to SRC inhibitors
in development.

SRC Structure and Function

Proteins in the SRC family have a conserved organization consisting
of four SRC homology (SH) domains and a C-terminal segment con-
taining a negative regulatory tyrosine residue (Tyr530) (Figure 1).
SRC exists in both active and inactive conformations. Negative reg-
ulation occurs through phosphorylation of Tyr530, resulting in an
intramolecular association between phosphorylated Tyr530 and the
SH2 domain of SRC, thereby locking the protein in a closed confor-
mation. Further stabilization of the inactive state occurs through in-
teractions between the SH3 domain and a proline-rich stretch of
residues within the kinase domain. Conversely, dephosphorylation
of Tyr530 allows SRC to assume an open conformation. Full activity
requires additional autophosphorylation of the Tyr419 residue within
the catalytic domain. Loss of the negative-regulatory C-terminal seg-
ment, as occurs in v-Src, has been shown to result in increased ac-
tivity and transforming potential [1,7]. However, similar activating
mutations are rare in human tumors, with just one published report
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that found activating SRC mutations in approximately 12% of human
colon cancers [5].

The intramolecular activity of SRC is regulated by a balance be-
tween kinases and phosphatases that act at the C-terminal Tyr530 resi-
due. Phosphorylation by C-terminal SRC kinase (CSK) and CSK
homology kinase results in increased intramolecular interactions and
consequent SRC inactivation. Indeed, CSK overexpression suppresses
metastasis in animal models of colon cancer, suggesting a possible
tumor suppressor role [8]. By contrast, CSK levels are decreased in
hepatocellular carcinoma compared with matched cirrhotic controls
[9]. Less evidence exists relating to the involvement of specific phos-
phatases in SRC activation. Protein tyrosine phosphatase o (PTPo)
and the SH-containing phosphatases SHP1/SHP2 are the most-studied
examples, showing SRC-specific dephosphorylation activity in vitro
and in vivo [1]. Furthermore, the SRC-specific PTP1 is upregulated
in certain breast cancers [10].

SRC is also activated by direct binding of focal adhesion kinase
(FAK) and CRK-associated substrate (CAS) to the SH2 domain
[11]. When bound, these molecules activate SRC by disrupting inhib-
itory intramolecular interactions. Interestingly, both FAK and CAS
are principal regulators of focal adhesion complex formation and actin
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Figure 1. Methods of SRC activation and inactivation. Phosphorylation of Tyr530 at the C-terminus locks the protein in a closed, inactive
conformation stabilized through interactions between the SH3 and kinase domains. Dephosphorylation of Tyrb30 and autophosphoryla-
tion of Tyr419 within the catalytic domain allow SRC to assume an open, active conformation. SRC activity is also regulated by receptor

tyrosine kinases and direct binding of FAK to the SH2 domain.
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cytoskeleton dynamics, essential processes for cell adhesion and
migration [12]. In addition, SRC activity can be regulated by numer-
ous receptor tyrosine kinases (RTKs), such as epidermal growth factor
receptor (EGFR), HER?2, fibroblast growth factor receptor, platelet-
derived growth factor receptor (PDGFR), and vascular endothelial
growth factor receptor (VEGFR) [13].

SRC Activation in Normal and Malignant Cells

Cell Adbesion and Invasion

Dynamic turnover of cell-cell (adherens junctions) and cell-matrix
(focal adhesions) junctions is crucial for normal cellular adhesion, mi-
gration, and division. SRC plays a key role in regulating the assembly
and disassembly of these junctions [1]. The subcellular localization of
SRC is critical to its function [14]. SRC associates with the plasma
membrane through an N-terminal fatty acid moiety and when acti-
vated, translocates to sites of membrane-cytoskeletal interface where
it acts to promote turnover of adherens junctions and focal adhe-
sions [15].

Adherens junctions are maintained by homotypic interactions be-
tween E-cadherin molecules present on neighboring cells. Loss of
E-cadherin is a key event in the epithelial-to-mesencymal transition
and is associated with enhanced invasive and metastatic potential. In-
creased SRC signaling correlates with decreased E-cadherin expres-
sion and decreased cell-cell adhesion [16,17]. At the cell periphery,
activated SRC forms complexes with cytoplasmic proteins such as
FAK and CAS [15,18]. In association with FAK, SRC mediates sig-
nals from extracellular matrix—integrin complexes to the cell interior,
thereby influencing cell motility, survival, and proliferation. The
SRC-FAK complex interacts with a multitude of substrates, including
CAS, paxillin, and p190RhoGAP, which play critical roles in promot-
ing actin remodeling and cellular migration [19,20]. In cancer, dys-
regulated focal adhesion signaling has been implicated in increased
invasion and metastasis, in addition to decreased patient survival [21].

Receptor-Mediated Activation

Growth factor signaling through RTKs can also activate SRC, most
likely by disrupting inhibitory intramolecular forces. Many tumors
that overexpress or have constitutively activated RTK signaling also
have upregulated SRC expression or activity. Furthermore, experi-
ments using epithelial and fibroblast cell lines suggest that SRC and
EGFR act synergistically to increase cellular proliferation and invasion
[22,23]. Direct phosphorylation of EGFR by SRC is required for ef-
ficient EGF-induced DNA synthesis and signal transducer and activa-
tor of transcription 5B (STAT5b) activation [24]. In addition, SRC
overexpression increases ERBB2 (HER2) and ERBB3 (HER3) hetero-
dimer formation and potentiates downstream signaling [25]. SRC
also associates with PDGFR through its SH2 domain and is required
for efficient PDGF-induced mitogenic signaling and DNA synthesis
[26]. PDGEFR seems to exert an activating effect on SRC through
phosphotyrosines at Tyr579 and Tyr581 because replacement of these
residues decreases SRC-mediated signaling [27].

Cell Proliferation and Mitogenesis

Increasing evidence suggests that SRC is intimately involved in reg-
ulating cell cycle progression and mitogenesis. For example, SRC over-
expression abrogates MYC requirement for Go/G;, but not G,/S,
phase transition [28]. Furthermore, SRC inhibition is associated with
decreased B-catenin binding to cyclin D1 and MYC promoters and

decreased expression of these mediators [29]. SRC is transiently acti-
vated during G,/M transition and is required for efficient cellular
division [30]. Downstream substrates of SRC seem to act largely in
parallel to increase cell proliferation and survival because simultaneous
inhibition of PI3K and RAS signaling abrogates SRC-induced trans-
formation, but inhibition of either pathway alone does not [2].

Regulation of Angiogenesis

Angiogenesis is frequently dysregulated in cancer, and antiangio-
genics are approved for the treatment of several solid tumors. Angio-
genesis is regulated by multiple cytokines that trigger a cellular cascade
favoring endothelial cell migration and proliferation. SRC activation is
associated with increased expression of proangiogenic cytokines such
as VEGF and interleukin 8 (IL-8) [31]. In hypoxia-induced models of
angiogenesis, SRC activation and antisense SRC inhibition positively
and negatively regulate VEGF expression, respectively. Treatment with
4-amino-5-(4-chlorophenyl)-7-(¢-butyl)pyrazolo[3,4-4 ] pyrimidine
(PP2), a potent and selective inhibitor of SFKs, inhibits angiogenesis
in vivo and blocks endothelial cell differentiation iz vitro [32]. SRC is
also involved in regulating IL-8 expression, with v-SRC~transformed
cells showing enhanced IL-8 expression [33]. Conversely, inhibiting
SRC blocks IL-8-mediated VEGFR?2 activation and decreases vascular
permeability [34]. Furthermore, SFKs are implicated in endothelial
cell function, with inhibition of SRC, FYN, and YES decreasing
VEGF-induced endothelial cell migration [35].

Metastasis and Bone Remodeling

Bone metastases often occur in patients with lung, prostate, colorec-
tal, or breast carcinoma and often lead to pathologic fracture and bone
pain. Metastatic cancer affects bone remodeling, which is normally
regulated by the dynamic process of osteoblast-mediated bone forma-
tion and osteoclast-mediated bone resorption. SRC is implicated as a
central regulator of bone remodeling, demonstrated by SRC-/- mice
being highly prone to developing osteopetrosis, a disease characterized
by decreased bone resorption [306]. In addition, SRC is increased in
functioning osteoclasts, and disrupted SRC signaling prevents osteo-
clast migration and bone resorption activity [37,38].

Notably, nude mice injected with SRC-overexpressing MDA-231
breast cancer cells preferentially developed osteolytic bone metastases
[39]. In a similar model of breast cancer, SRC inhibition decreased
metastatic disease burden and overall lethality, reduced osteoclast
bone resorption, and impaired function of osteoblasts iz vitro [40].

Clinical Development of SRC Inhibitors

Given the critical role of SRC in promoting cell proliferation, invasion,
and metastasis and in regulating bone remodeling, molecular inhibi-
tors of SFKs are being developed and evaluated. Evidence discussed
previously suggests that inhibiting SRC may slow disease progression
and help control the formation of distant metastases, in addition to
reducing concomitant lytic bone lesions.

Successful development of targeted therapeutics often depends on
identifying reliable molecular and clinical markers associated with
clinical benefit. Experience with oncologic agents such as trastuzumab,
gefitinib, and cetuximab demonstrates that clinical efficacy may prove
elusive if predictive markers of response and/or resistance are not iden-
tified. We now recognize that molecular heterogeneity exists even
within a particular cancer type, and therefore targeted agents may only
benefit select cohorts of patients. Consequently, biomarker identifi-
cation is a focus of development for many new agents. Preclinical and
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clinical data for the three most-studied SRC inhibitors (dasatinib,
bosutinib, and saracatinib) are reviewed in the next sections.

SRC Inhibitors: Preclinical Data

Dasatinib

Dasatinib (Sprycel; Bristol Myers-Squibb) is an orally available,
small-molecule SRC/ABL inhibitor that has robust antitcumor and
antiproliferative activity against numerous hematologic and solid tu-
mor cell lines [41,42]. In addition to inhibiting SRC and BCR-ABL
in the subnanomolar range, dasatinib also variably inhibits other SFKs,
c-KIT, PDGFR, and ephrin A2 [41]. The mechanism of SRC inhibi-
tion results from a hydrogen bond—mediated association with the ATP
binding site, resulting in competitive restriction of ATP binding by
SRC [42].

In preclinical studies, dasatinib was active in numerous cancer cell
lines and in vivo tumor models. Studies of dasatinib in prostate [43]
and colon cancer cell lines [44] showed inhibition of cellular adhesion,
migration, and invasion. Breast cancer cell lines belonging to the basal/
“triple—negative” subtype were particularly sensitive to dasatinib. Breast
cancers within this subgroup express basal cell cytokeratins (CK5 and
CK17), do not express estrogen (ER) or progesterone receptors (PRs)
or HER2 [45,46], and are notorious for poor prognosis [47]. Interest-
ingly, in EGFR-overexpressing breast cancer cell lines, dasatinib inhib-
ited cell growth, invasion, and angiogenesis, and stimulated apoptosis
by activating caspase 8 and 9 [48]. Similarly, in lung cancer cells, da-
satinib seemed to inhibit EGFR-dependent cell lines preferentially,
whereas having a minimal effect on their wild-type EGFR-expressing
counterparts. Moreover, dasatinib inhibited cell growth by promoting
G1/S cell cycle arrest, with associated changes in the levels of cyclin D
and p27 [49].

Dasatinib can also reduce metastatic disease and osteoclast-mediated
bone resorption. In animal models of pancreatic and prostate cancer,
dasatinib significantly reduced tumor size and incidence of metastases
[50,51]. In addition, recent data showed that dasatinib inhibits osteo-
clast activity in vitro, in part by inhibiting the macrophage colony-
stimulating factor receptor (c-FMS), which may act in concert with
SRC to potentiate osteoclast activation [52,53]. Signaling through
c-EMS is critical for osteoclast survival and activity, with disruption
resulting in an osteopetrotic phenotype, much like that observed in
SRC-/- deficient mice [54]. In a recent study using osteoclast precur-
sors obtained from ovarian tumor ascites, dasatinib inhibited osteoclast
production at concentrations less than 1 nM; this effect may be medi-
ated by the concerted inhibition of ¢-FMS and SRC because imatinib
(a known c-FMS, but not SRC, inhibitor) produced inhibition, albeit
at much higher concentrations [55].

Bosutinib

Bosutinib (previously SKI-606; Wyeth) is a dual SRC/ABL kinase in-
hibitor that inhibits SRC with an 50% inhibitory concentration (ICs)
of 1.2 nM and SRC-dependent fibroblasts in suspension with an 1Cs,
of 100 nM. Bosutinib does not inhibit RTKs (KIT or PDGFR) at any
appreciable level, but it does have activity against other SFKs [56,57].

In cellular assays, bosutinib treatment resulted in a dose-dependent
reduction in proliferation, invasion, and migration of breast cancer cells
[58,59]. Furthermore, in a murine model of breast carcinoma, bosutinib
inhibited tumor growth and significantly reduced the number of liver,
spleen, and lung metastases. These effects correlated with reduced phos-
phorylation of AKT, FAK, and MAPK and with an increase in apoptosis

and E-cadherin expression [58]. In addition, bosutinib inhibited colo-
rectal cancer cell adhesion and motility. Interestingly, this effect seemed
to result from reduced SRC-dependent B-catenin activation, with small
interfering RNA—driven knockdown of B-catenin abrogating the effects
of bosutinib on cell-cell adhesion [60]. Furthermore, bosutinib showed
modest activity in xenograft models of colon cancer and had an oral
bioavailability of 18% and a plasma half-life of 8.6 hours [61].

Recent work has shown that SFKs are activated in 33% of non—
small cell lung cancers (NSCLCs), with up-regulation correlating with
male gender, active smoker status, and squamous cell histology. Treat-
ment of NSCLC cell lines with bosutinib had an antiproliferative and
proapoptotic effect, particularly in cell lines with increased Tyr419
SRC autophosphorylation at baseline [62]. Recent work has also
showed that some human-derived pancreatic tumor xenografts were
sensitive to bosutinib and sensitivity correlated with caveolin 1 expres-
sion, previously identified as a predictor of response to dasatinib in
breast cancer cell lines [45,63].

Saracatinib

Saracatinib (formerly AZD0530; AstraZeneca) is another ATP-
competitive inhibitor of SRC and SFKs, with activity against ABL
and activated mutant forms of EGFR (L858R and 1L861Q) [64,65].
In a panel of 13 human cancer cell lines treated with saracatinib, there
was submicromolar growth inhibition in four cell lines (derived from
colon, prostate, and lung tumors) and inhibitory effects on migration
and invasion [29,66]. In vivo, saracatinib inhibited the growth of 3
of 16 human-derived pancreatic cancer xenografts, with associated
decreases in FAK, paxillin, and STAT3 activation. The authors also
identified and validated a gene expression profile, based on the expres-
sion of LRRCI19 and IGFBP2, which achieved 100% sensitivity and
83% specificity at predicting growth inhibition in an independent
sample of eight xenografts [67]. In addition, saracatinib showed activ-
ity in in vitro and in vivo models of castration-resistant prostate cancer

(CRPC) [68].

SRC Inhibitors: Preclinical Data Evaluating
Novel Combinations

Dysregulated SRC signaling has been implicated in the development
of resistance to numerous anticancer agents, including cetuximab,
oxaliplatin, and gemcitabine [69-71]. Given these findings, and the
involvement of SRC in modulating multiple signaling pathways, there
is considerable interest in studying SRC inhibitors in conjunction with
chemotherapeutic and biologic agents.

Combination with Antiestrogen Therapies

Current antihormonal treatments for ER-positive breast cancer in-
clude selective ER modulators (e.g., tamoxifen) and aromatase inhib-
itors (e.g., anastrozole), which decrease ER signaling and estrogen
production, respectively. SRC potentiates ER signaling by phosphor-
ylating the ER on Tyr537, and when complexed with estrogen, the ER
associates with SRC to promote cellular proliferation [72,73]. This cross
talk suggests possible synergy between antiestrogens and SRC inhibitors,
with recent data supporting this supposition. In ER-overexpressing
breast cancer cell lines, saracatinib and tamoxifen synergistically inhib-
ited cell growth [74] and prevented the development of tamoxifen re-
sistance [75]. Similarly, saracatinib and anastrozole in combination
reduced both the development of drug resistance and tumor growth
in vivo [76]. Furthermore, treating tamoxifen-resistant cells with
PP2 restores tamoxifen sensitivity [77].
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Combination with Cytotoxic Therapies

In an in vitro study of 5-fluorouracil (5-FU)-resistant pancreatic
cancer cells, PP2 reversed 5-FU chemoresistance and restored 5-FU-
induced apoptosis. Furthermore, 5-FU and PP2 in combination de-
creased iz vivo tumor growth and metastatic disease [78]. In pancreatic
adenocarcinoma cell lines, the level of SRC expression correlated
with increased resistance to gemcitabine, and small interfering RNA—
mediated SRC inhibition potentiated gemcitabine-induced caspase-
mediatedapoptosis [69]. In ovarian and colon carcinoma cells, dasatinib
restored paclitaxel sensitivity and acted synergistically with oxaliplatin,
respectively [70,79].

Combination with Anti-EGFR Therapies

Recent work using an iz vitro model of colorectal cancer showed
that combination of a monoclonal antibody to EGFR and a SRC in-
hibitor synergistically inhibited cell proliferation and colony forma-
tion [80]. Similarly, recent findings indicate that both dasatinib and
saracatinib can restore the sensitivity of resistant head and neck squa-
mous cell carcinoma cell lines to the EGFR inhibitors cetuximab and
gefitinib [71,81].

SRC Inhibitors: Preliminary Clinical Activity

In light of promising preclinical studies, dasatinib, bosutinib, and sar-
acatinib have entered clinical trials. Preliminary data suggest that the
agents are well tolerated at doses that achieve clinically meaningful
plasma drug concentrations. Clinical studies of SRC inhibitors as
single agents or in combination are shown in Tables 1 and 2.

Table 1. Clinical Studies of SRC Inhibitors as Single Agents.

Single-Agent Studies with Dasatinib

Currently, dasatinib is approved for the second-line treatment of
chronic myeloid leukemia and Philadelphia chromosome-positive
(Ph+) acute lymphoblastic leukemia. Dasatinib is currently being stud-
ied in numerous solid malignancies. In a phase 1 dose-escalation study,
Demetri et al. [82] reported on the safety, tolerability, and pharmaco-
logic profile of dasatinib in 67 patients with refractory solid tumors.
Patients received oral dasatinib either every 12 hours for five consecu-
tive days followed by two nontreatment days (5D2) or as continuous
twice-daily dosing. Maximum tolerated dosages (MTDs) were estab-
lished as 120 mg twice daily for dosing for five consecutive days fol-
lowed by two nontreatment days and 70 mg for continuous twice-daily
dosing. Dose-limiting toxicities (DLTs) included grade 2 rash, grade 3
lethargy, grade 3 proteinuria, and grade 3 hypocalcemia. Previous
studies of dasatinib in Ph+ leukemias showed high rates of treatment-
associated neutropenia (45%), thrombocytopenia (35%), and pleural
effusion (35%) [83]. Interestingly, in solid tumors at least, most
treatment-related toxicities were nonhematologic (nausea, fatigue,
lethargy, anorexia, proteinuria, and diarrhea), suggesting that hemato-
logic adverse effects may be related to antileukemic activity. Pleural ef-
fusions were infrequent (three patients), although subsequent phase 2
studies showed a higher incidence [84]. The reasons for these differ-
ences are unclear, although they may relate to patient selection and un-
derlying malignancies. Whereas no objective responses were reported,
16% of patients had stable disease and 25% had metabolic partial re-
sponse (as judged by positron emission tomography scan).

Recent phase 2 studies suggest that dasatinib is well tolerated with
modest single-agent activity in breast cancer. In a phase 2 study, Finn
etal. [84] enrolled 44 patients with recurrent or metastatic triple-negative

Drug Tumor Type Clinical Trials.gov Phase Dose and Schedule Completion Enrolment Status Expected
Identifier Date Enrolment ()
Dasatinib Advanced solid tumors NCT00099606 1 35-120 mg twice daily Jul 2007 Completed 60
Hormone-sensitive breast cancer NCT00371345 2 70 mg twice daily Mar 2009 Completed 70
Triple-negative breast cancer NCT00371254 2 70 mg twice daily Sep 2008 Completed 44
Head and neck squamous cell carcinoma NCT00507767 2 100 mg twice daily Jul 2010 Active, not recruiting 35
Castration-resistant prostate cancer NCT00385580 2 70 mg twice daily Dec 2008 Active, not recruiting 100
Multiple myeloma NCT00429949 2 NR NR Completed NR
Pancreatic cancer NCT00544908 2 (dose NR) twice daily Dec 2009 Active, not recruiting 41
Colorectal cancer NCT00504153 2 (dose NR) twice daily Nov 2008 Active, not recruiting 54
Small cell lung cancer NCT00470054 2 (dose NR) twice daily Oct 2008 Active, not recruiting 56
NSCLC NCT00787267 2 70 mg twice daily Sep 2011 Recruiting 100
Breast cancer (patient selection by NCT00780676 2 100 mg once daily Oct 2024 Recruiting 532
genomic status)
Transitional cell carcinoma of the bladder NCT00706641 Pilot study 100 mg once daily Dec 2010 Recruiting 25
(adjuvant treatment before surgery)
Hepatocellular carcinoma NCT00459108 2 (dose NR) twice daily Jun 2009 Recruiting 41
Sarcomas NCT00464620 2 (dose NR) twice daily Dec 2013 Recruiting 502
Biomarker analysis of EGFR status NCT00903734 1 NA May 2013 Recruiting 102
Bosutinib Advanced solid tumors NCT00195260 1 50-600 mg once daily Dec 2009 Active, not recruiting 151
Breast cancer NCT00319254 2 400 mg once daily Jun 2008 Completed 75
Saracatinib Advanced solid tumors NCT00704366 1 (variable dose) once daily Feb 2010 Active, not recruiting 24
Osteosarcoma (localized to lung) NCT00923286 2 175 mg once daily Feb 2015 Recruiting 88
Hormone receptor—negative breast cancer NCT00559507 2 NR Jul 2010 Recruiting 41
Soft tissue sarcoma NCT00659360 2 NR Feb 2009 Active, not recruiting 37
Melanoma NCT00669019 2 NR Feb 2008 Recruiting 40
Castration-resistant prostate cancer NCT00513071 2 (dose NR) once daily Oct 2008 Completed 28
Thymoma or thymic cancer NCT00718809 2 (dose NR) once daily Jan 2011 Recruiting 39
Stomach or gastroesophageal NCT00607594 2 NR Sep 2009 Recruiting 35
junction cancer
Colorectal cancer NCT00397878 2 (dose NR) once daily Apr 2008 Active, not recruiting 35
Head and neck cancer NCT00513435 2 (dose NR) once daily Sep 2010 Active, not recruiting 28
Small cell lung cancer NCT00528645 2 (dose NR) once daily Apr 2009 Active, not recruiting 44

NA indicates not applicable; NR, not reported.
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Table 2. Clinical Studies of SRC Inhibitors Combination with Other Agents.

Drug Combination Tumor Type ClinicalTrials.gov Phase SRC Inhibitor Dose Completion Enrolment Status Expected
Agent(s) Identifier and Schedule Date Enrolment (1)
Dasatinib Erlotinib NSCLC NCT00444015 1 NR Jan 2010 Active, not recruiting 20
Erlotinib Glioma NCT00609999 1 100 mg once daily Jan 2009 Recruiting 48
Capecitabine Breast cancer NCT00452673 1 50-100 mg twice daily Dec 2009 Active, not recruiting 50
Paclitaxel Opvarian, peritoneal, or tubal cancer NCT00672295 1 50-250 mg once daily Mar 2010 Recruiting 24
Carboplatin
Capecitabine Colorectal cancer NCT00920868 1 50 mg twice daily May 2011 Recruiting 56
Oxaliplatin
Bevacizumab
Bevacizumab Advanced solid tumors NCT00792545 1 (dose NR) once daily Jul 2010 Recruiting 48
Paclitaxel Breast cancer NCT00820170 1/2 (dose NR) once daily Jan 2012 Recruiting 60
Docetaxel Castration-resistant prostate cancer NCT00439270 172 50-150 mg once daily Oct 2009 Active, not recruiting 66
Zoledronic acid Breast cancer with bone metastasis NCT00566618 1/2 100 mg once daily Mar 2010 Recruiting 55
Dacarbazine Melanoma NCT00597038 1/2 50-70 mg twice daily Feb 2010 Recruiting 47
Letrozole Hormone receptor-positive/ HER2- NCT00696072 2 100 mg once daily Jun 2012 Recruiting 120
negative breast cancer
Docetaxel Castration-resistant prostate cancer NCT00744497 3 100 mg once daily Sep 2012 Recruiting 1380
Prednisone
Bosutinib Capecitabine Solid tumors and HER2-advanced NCT00959946 1/2 NR Dec 2011 Recruiting 152
breast cancer
Letrozole Hormone-sensitive breast cancer NCT00880009 2 NR Dec 2013 Recruiting 250
Exemestane Hormone-sensitive breast cancer NCT00793546 2 NR Jul 2011 Recruiting 224
Saracatinib Carboplatin Advanced solid tumors NCT00496028 1 NR Oct 2009 Active, not recruiting 234
Paclitaxel
Cediranib Advanced solid tumors NCT00475956 1 125 or 175 mg once daily ~ Mar 2009 Active, not recruiting 56
Gemcitabine Pancreatic cancer NCT00265876 1/2 (dose NR) once daily Jun 2009 Suspended 60
Carboplatin Ovarian cancer NCT00610714 2 (dose NR) once daily May 2010 Active, not recruiting 241
Paclitaxel
Zoledronic acid Prostate or breast cancer with bone NCT00558272 2 NR Aug 2010 Recruiting 132

metastasis

NR indicates not reported.

breast carcinomas. Initial dosing at 100 mg twice daily was modified to
a70-mg twice-daily protocol after serious adverse events (AEs) in 22%
of patients at the higher dose. The lower dose was well tolerated, with
partial responses confirmed in two patients and stable disease achieved
in 11 patients (two for >16 weeks). In a phase 2 study of 68 patients
with advanced hormone receptor—positive breast cancers (ER+ and/or
PR+ and/or HER2 amplified), there were three partial responses and
six instances of stable disease (range, 24-33 weeks) [85]. All nine of
these patients had ER- and PR-positive tumors, with two tumors also
having amplified HER2.

In an analysis of pretreatment and posttreatment prostate tumor
samples from patients with CRPC, SRC activity was increased in
28% of patients and was associated with decreased survival and in-
creased metastatic disease [86]. Two recent phase 2 studies have eval-
uated the efficacy of dasatinib in CRPC [87,88]. Both studies enrolled
men who were chemotherapy naive and had progressive metastatic
CRPG; the first study used dasatinib 100 mg or 70 mg twice daily
and the second used 100 mg once daily. Response rates were similar
for the two dosing regimens. However, once-daily dosing was better
tolerated, with 13% of patients reporting grade 3/4 AEs compared
with 32% on the twice-daily regimen. Of 48 patients treated with
100 mg once daily, 1 patient had a confirmed prostate-specific antigen
response (>50% decrease from baseline), 1 patient had a partial tumor
response, and 8 patients had stable disease after 12 weeks. Levels of
urinary /N -telopeptide (a marker of osteoclast activity and bone resorp-
tion) decreased by more than 40% in 21 of 43 evaluable patients. Sim-
ilarly, serum bone-specific alkaline phosphatase (marker of osteoblast
activity) was decreased in 25 of the 44 patients with data, suggesting
that dasatinib is effective at stabilizing metastatic disease and decreas-
ing bone turnover.

Single-Agent Studies with Bosutinib and Saracatinib

At this time, few clinical studies have assessed the safety and effi-
cacy of saracatinib and bosutinib. A recent two-part, phase 1 study
of 81 patients with advanced solid tumors sought to establish the
MTD of saracatinib and its effect on downstream targets of SRC
[89]. In the first part of the study, 30 patients received saracatinib at
doses ranging from 50 to 250 mg daily. The MTD was established as
175 mg with once-daily dosing. DLTs were leukopenia (grade 3), as-
thenia (grade 3), febrile neutropenia (grade 3), and respiratory failure
(grade 5). One patient had renal failure (grade 4) with concomitant
septic shock (resulting in death), although the relationship of this
event to saracatinib was unclear. Other AEs were relatively mild and
included nausea, asthenia, anorexia, vomiting, and diarrhea. In the sec-
ond part of the study, 51 patients were randomized to receive 50, 125,
or 175 mg of saracatinib. Dose-dependent reductions in levels of
phospho-FAK and phospho-paxillin were noted in posttreatment sam-
ples, and patients with high baseline levels had proportionally larger
reductions in these substrates after treatment. A modulatory effect
of saracatinib on bone turnover was also observed, with the authors
reporting a dose-dependent decrease in C-terminal telopeptide (a bone
resorption marker) levels after treatment. There were no objective tu-
mor responses, although 16% of patients continued treatment for
more than 12 weeks. Thus, at the doses tested, saracatinib seems to
be well tolerated and able to inhibit SRC kinase activity. On the basis
of these results, follow-up phase 2 studies used saracatinib as a mono-
therapy in patients with advanced CRPC (7 = 28) and advanced colo-
rectal cancer (7 = 10). Although saracatinib was generally well tolerated,
there was no meaningful single-agent clinical activity [90,91].

In a phase 1 dose-escalation study of bosutinib in 51 patients with
advanced solid tumors, bosutinib was generally well tolerated with an
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MTD of 400 mg for once-daily dosing. DLTs included grade 3 diar-
rhea (two patients) and grade 3 rash (one patient). Drug-related AEs
were mainly gastrointestinal and included nausea, diarrhea, anorexia,
vomiting, and asthenia, with diarrhea being the only grade 3 AE oc-
curring in more than 5% of patients (14%). There were no objective
responses, although six patients had stable disease lasting longer than
15 weeks and one patient had stable disease lasting longer than
52 weeks (pancreatic cancer) [92]. In a follow-up phase 2 study of
women with stage IIIB, ITIC, or metastatic breast cancer, 73 women
received bosutinib 400 mg daily. The drug was generally well tolerated,
with only eight patients requiring dose reduction, mainly secondary
to gastrointestinal adverse effects (diarrhea, nausea, and vomiting).
Of 62 evaluable patients, four had partial responses and 13 and 25
had stable disease lasting 24 weeks or longer and less than 24 weeks,
respectively [93].

Combination Studies

On the basis of promising results from preclinical studies, SRC
inhibitors are being tested in combination with chemotherapies and
other targeted agents. In a phase 1/2 study, dasatinib was adminis-
tered with docetaxel to 46 patients with progressive CRPC. There was
a prostate-specific antigen response in 13 of 32 patients and a Response
Evaluation Ciriteria In Solid Tumors partial response in 12 of 21 pa-
tients. In addition, nine patients had stable disease (four at >21 weeks
and five at >6 weeks). There was also indirect evidence of decreased
bone resorption and formation. Of patients with measurable serum
levels of urinary /V-telopeptide and bone-specific alkaline phosphatase,
there was more than 35% decrease in 12 of 26 and in 17 of 24 patients,
respectively [94].

Dasatinib was also well tolerated in combination with 5-FU, leucov-
orin, oxaliplatin, and cetuximab in patients with metastatic colorectal
cancer [95]. Of seven patients enrolled, two had radiographic evidence
of response, including one confirmed partial response. This study is
continuing at using higher dasatinib doses.

Additional studies are assessing SRC inhibitors in combination
with anti-VEGF therapies. In a recent study, the effects of saracatinib
(175 mg once daily) were examined in patients receiving daily oral ce-
diranib (a small-molecule VEGFR inhibitor) at 20-, 30-, or 45-mg
doses. All dose cohorts tolerated the treatment well, with no DLTs
reported 28 days into the study. In the 11 patients for whom data were
available, nine had stable disease (35-197 days in duration) [96].

Conclusions

There is no single oncogene better studied than SRC. Despite nearly a
century of data suggesting a role in promoting malignancy, it is only
recently, with the discovery of a class of highly selective and specific
molecules, that we can effectively block SRC kinase activity. These
clinical grade SRC inhibitors are currently being evaluated in the
clinic. With such a central role in regulating so many cellular path-
ways, perhaps the most challenging task will be selecting the patients
most likely to benefit from SRC inhibition. On the basis of SRC’s role
in tumor biology, these molecules may work best in early stage disease
and in combination with other agents. Preliminary clinical data suggest
a role for SRC inhibition in human disease. Ongoing studies evaluat-
ing the molecular effects of SRC inhibition in clinical tissue and com-
binations of SRC inhibitors with cytotoxics and other biologic agents
are ongoing. Data from these studies are eagerly awaited, and these will
help guide the next phase of development of this class of novel agents.
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