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Complex trait variation is likely to be explained by the combined effects of genes, environmental factors, and
gene 3 environment (G 3 E) interaction. The authors introduce a novel 2-step method for detecting a G 3 E
interaction in a genome-wide association study (GWAS) of case-parent trios. Themethod utilizes 2 sources ofG3E
information in a trio sample to construct a screening step and a testing step. Across a wide range of models, this 2-
step procedure provides substantially greater power to detect G 3 E interaction than a standard test of G 3 E
interaction applied genome-wide. For example, for a disease susceptibility locus with minor allele frequency of 15%,
a binary exposure variable with 50% prevalence, and a GWAS scan of 1 million markers in 1,000 case-parent trios,
the 2-step method provides 87% power to detect aG3 E interaction relative risk of 2.3, as compared with only 25%
power using a standardG3 E test. Themethod is easily implemented using standard software. This 2-step scan for
G3 E interaction is independent of any prior scan that may have been conducted for genetic main effects, and thus
has the potential to uncover new genes in a GWAS that have not been previously identified.

environmental exposure; epidemiologic methods; genetic association studies; genetics; genome-wide association
study; models, genetic

Abbreviations: DSL, disease susceptibility locus; G-E, gene-environment; G 3 E, gene 3 environment; GWAS, genome-wide
association study(ies); SNP, single nucleotide polymorphism.

Genome-wide association studies (GWAS) have success-
fully uncovered new genes for complex traits. Most of these
genes, however, have only modest effects and explain only
a small proportion of the overall trait variation (1). Many
complex traits also have established environmental risk fac-
tors, but these nongenetic factors also leave much of the trait
variation unexplained. Complex trait variation is likely to be
due to the combined effect of genes, environmental factors,
and their interactions. However, most investigators conduct-
ing GWAS do not consider gene 3 environment (G 3 E)
interactions in their search for new genes. This is partly due
to a current lack of efficient statistical methods for detecting
interactions in high-volume genetic data.

In a GWAS, a dense panel of single nucleotide polymor-
phisms (SNPs) spanning the genome are genotyped and each
SNP is tested for association with the trait. GWAS of a dis-

ease trait are often conducted using either the case-control
study design or the case-parent trio study design. In the
former, cases and unrelated controls are selected from
a source population, and a standard logistic regression anal-
ysis can be used to test associations. It is well recognized that
population stratification bias (also known as confounding by
race/ethnicity) can adversely affect inferences in a case-
control design. A number of strategies have been proposed
with which to characterize individual ancestry and use this
information in the model to adjust for race/ethnicity in the
analysis of a case-control sample (2–6). A case-parent trio
study, on the other hand, controls for race/ethnicity by design
through the collection of data on parental genotypes. For
a disease trait, the transmission disequilibrium test (7) can
be applied to test for an association between each SNP and
disease. Variations of the transmission disequilibrium test
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have been proposed that allow for the use of sibling geno-
types (8), account for missing parental genotypes (9), and
provide tests of G 3 E or G 3 G interaction (10–14).

For analysis of G3 E interaction, an alternative to a case-
control or case-parent trio study is the case-only design (15).
Here, one simply tests for association between G and E in
cases without the use of parental data. The case-only test has
been shown to be more powerful than a case-control or case-
parent-trio analysis for identifying interactions (16, 17).
However, the validity of a case-only analysis depends on
an underlying assumption of gene-environment (G-E) inde-
pendence in the population, which, for many environmental
factors, would be untenable across all SNPs being scanned
in a GWAS. Population-level G-E dependence can occur if
there is a causal association between G and E (e.g., a gene
that predisposes a person to smoke) or a noncausal associ-
ation induced by population stratification, specifically con-
founding due to differential G and E distributions within
subgroups of the source population. Causal G-E association
is likely to occur for only a small subset of SNPs. Noncausal
G-E associations, on the other hand, are likely to be much
more prevalent, particularly for factors such as height or diet
that can vary substantially across ethnic subgroups. The
case-parent design, on the other hand, requires the weaker
assumption that G and E are independent, conditional on
parental genotypes (12). While this will not hold for genes
with a causal G-E association, it will hold for genes with
a noncausal G-E association due to ethnic confounding.

We propose a new procedure with which to screen the
genome for G 3 E interaction in the context of a GWAS of
case-parent trios. This method uses G 3 E interaction in-
formation in a trio sample that is not used in standard tests
but can be uniquely used in a GWAS to improve efficiency.
The method is computationally efficient and can be imple-
mented using standard statistical software. We compare the
power of the proposed approach with that of a standard test
of interaction over a wide range of underlying models.

MATERIALS AND METHODS

Consider a sample of N diseased persons sampled from
a population, and let Dc, c ¼ 1, . . ., N, denote the disease
indicators for these cases. Let Ec denote the exposure of
a given case to some environmental factor, where ‘‘environ-
ment’’ is loosely defined to include exogenous environmen-
tal variables (e.g., sunlight, air pollution), personal
exposures (e.g., smoking, dietary fat), or other personal
characteristics (e.g., sex, age). We assume that M SNPs
spanning the genome are genotyped for each case, and we
let the genotype at a given SNP locus for a case be denoted
by Gc. We furthermore assume that the same M SNPs are
typed for both parents of each case; we denote the genotypes
at a given locus for the mothers and fathers by Gm and Gf,
respectively, and let Gp ¼ {Gm, Gf}. We let qA denote the
frequency of the minor (less common) allele ‘‘A’’ for a given
SNP and let ‘‘a’’ denote the more common allele. For use in
a statistical model, G will be coded according to an assumed
genetic model. In a GWAS, G is often coded according to an
additive model, specifically G ¼ 0, 1, or 2 for genotype aa,

Aa, or AA, respectively. However, G could also be coded
according to a dominant (G indicates AA or Aa genotype),
recessive (G indicates AA genotype), or codominant (pair of
indicators coding the 3 genotypes) model.

In a sample of case-parent trios, the probability of the data
for a given trio can be expressed as

Pr
�
Gc;Ec;GpjDc ¼ 1

�
¼ Pr

�
GcjEc;Gp;Dc ¼ 1

�

Pr
�
Ec;GpjDc ¼ 1

�
: ð1Þ

The first factor in equation 1 is the basis for analysis of G3
E interaction that has been previously described (11, 12).
For example, Schaid (11) adopted a conditional logistic re-
gression likelihood of the form

LðbG; bGEÞ ¼
YN

c¼1

expðbGGc þ bGEGcEcÞ
P4

j¼1

exp
�
bGGj þ bGEGjEc

�; ð2Þ

where the sum in the denominator is taken over the 4 pos-
sible genotypes the case could have inherited, conditional on
parental genotypes. The maximum likelihood estimates
derived from equation 2 are consistent estimators of the
corresponding relative risk parameters (11). Specifically,
exp(bG) denotes the main effect of G—that is, the increase
in the relative risk of disease per 1-unit increase in G for
those unexposed (E ¼ 0). The interaction effect exp(bGE)
parameterizes the ratio of the genetic relative risks in ex-
posed subjects compared with unexposed subjects. An ad-
ditional requirement for inference related to interaction
effects is that the main-effect model for G is correctly pa-
rameterized, which may cause one to choose a codominant
coding for G effects. The main effect of E cannot be esti-
mated in a case-parent trio design. As an alternative to con-
ditional logistic regression, Umbach and Weinberg (12)
developed a Poisson regression approach that also provides
unbiased estimates of the same relative risk parameters,
and which has the added advantage that it can naturally
handle incomplete trios (9). The general assumptions re-
quired for analysis of trios by either the conditional logistic
regression approach or the Poisson approach are the same,
and are reviewed by Umbach and Weinberg (12). In the
context of a GWAS, one can simply apply either the condi-
tional logistic regression model or the Poisson model to
each SNP in turn and test the corresponding G 3 E inter-
action null hypothesis that bGE ¼ 0. We denote the likeli-
hood ratio test of this null hypothesis as the ‘‘standard’’ test
of G 3 E interaction.

The second factor on the right-hand side of equation 1 is
typically assumed not to depend on parameters of interest
and is ignored (12). However, in the presence of G 3 E
interaction, there will be an induced association between
case exposure and parental genotypes for an ascertained
sample of cases. This follows from the known association
between G and E in the presence of G3 E interaction that is
exploited in a case-only analysis (15), coupled with the
inheritance-based association between case and parental ge-
notypes. However, as in the case-only analysis, there will
also be an induced association between case exposure and
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parental genotypes in the presence of population-level asso-
ciation (unrelated to disease) between exposure and geno-
type. Thus, as a means of final inference for testing a specific
G3 E interaction, use of the second factor in equation 1 can
lead to an inflated type I error in the presence of population-
level G-E association. For this reason, the G 3 E informa-
tion contained in the Ec-versus-Gp association has not been
utilized in previously proposed methods (11, 12).

In the context of a GWAS, we propose a 2-step analysis
that will exploit all of the information in equation 1 while
maintaining valid inference in the presence of population-
levelG-E association. This 2-step scan ofM SNPs forG3 E
interaction in a case-parent trio sample takes the following
form.

Step 1 (G-E association test). Screen the M SNPs for
G 3 E interaction at a fixed a1 significance level, based
on a test of association between case exposures (Ec) and
some function of the parental genotypes G*

p.
Step 2 (case-parent trio test). Apply the conditional lo-

gistic regression likelihood in equation 2 to test G 3 E in-
teraction with the m markers that pass step 1, declaring
statistical significance at the a/m level, where a is the de-
sired experiment-wise type I error rate.

The value of a1 should be chosen carefully to maximize
the overall power of the 2-step procedure. As a1 increases,
the power to pass a trueG3 E interaction from step 1 to step
2 increases, butmwill also be inflated due to additional false
positive SNPs’ being passed to step 2. On the other hand,
decreasing a1 will decrease m and increase power in step 2,
but at the possible expense of preventing a true G 3 E in-
teraction from reaching step 2. We will demonstrate the
optimal setting of a1 under a variety of models.

As shown in the Web Appendix (available on the Jour-
nal’s Web site (http://aje.oxfordjournals.org/)), the tests
from steps 1 and 2 are independent. Because of this inde-
pendence, the overall type I error rate of the above proce-
dure is ensured, as long as the step 2 test has the correct test
size, conditional on the number of SNPs (m) that reach step
2 (18). Intuitively, the independence guarantees that the
distribution of the step 2 statistic is unaffected by the out-
come of the step 1 screening. If, on the other hand, the tests
from steps 1 and 2 were not independent, the noncentrality
parameter of the step 2 statistic, conditional on the step 1
statistic’s exceeding a given significance threshold, would
be nonzero under the null hypothesis of no interaction. This
would inflate the type I error of step 2, assuming a zero
noncentrality parameter under the null hypothesis.

As noted above, a situation in which the validity of the
test is of particular concern is that of a noncausal SNP-E
association in the population but no SNP 3 E interaction in
disease risk. Such a SNP will have an increased chance of
passing the step 1 screen, but again, because of the indepen-
dence, this will not affect the validity of the step 2 intra-
family test statistic. Moreover, because the step 2 test has
the correct size in the presence of population-level SNP-E
association (18), the overall type I error rate in the presence
of population-level SNP-E association will be preserved.
One may be tempted to use a case-only test of G-E associ-
ation in the affected offspring to screen theM SNPs in step 1.
While it provides greater power to pass a true SNP 3 E

interaction on to step 2, this approach is not desirable, be-
cause it produces a correlation in the test statistics between
steps 1 and 2 and a corresponding inflation of the false-
positive rate in the presence of SNP-E association, for the
reason described above.

The second factor on the right-hand side of equation 2 can
be expressed as Pr(EcjGp, Dc ¼ 1) 3 Pr(GpjDc ¼ 1). Since
only the first factor of this expression is informative for G3
E interaction, the step 1 screen can be based on a model for
the case exposure given parental genotypes. With a binary
environmental factor and additive (0, 1, or 2 minor alleles)
coding for parental genotypes, one can use a logistic regres-
sion model for step 1 with the following form for a single
trio:

Logit
�
Pr
�
Ec ¼ 1jGm;Gf

�
¼ c0 þ c1Gm þ c2Gf :

Assuming that associations with E do not differ between
maternal and paternal genotypes, the above can be simpli-
fied to

Logit
�
Pr
�
Ec ¼ 1j Gm;Gf

�
¼ c0 þ c

�
Gm þ Gf

�

¼ c0 þ cG*
p; ð3Þ

where Gp* ¼ Gm þ Gf. The step 1 test then consists of
testing the null hypothesis H0: c ¼ 0—using a likelihood
ratio or score test, for example. In a GWAS setting, it is
reasonable to use an additive coding scheme for Gm and
Gf, so that Gp* represents the total number of minor alleles
carried by parents. However, alternative 1-variable (e.g.,
dominant) or 2-variable (codominant) coding schemes
could be adopted for parental genotypes.

We compare the power of the proposed 2-step method to
detect G 3 E interaction in a GWAS with the power of
a standard analysis. We assume that among a collection of
M SNPs, there is a true G 3 E interaction effect on disease
between a specific disease susceptibility locus (DSL) and
exposure E. In our initial ‘‘base’’ model, we assume that the
minor allele frequency for the DSL is qA ¼ 0.15, the genetic
model is additive, the exposure prevalence is pE ¼ 0.5, and
RG ¼ RE ¼ 1.0—that is, neither the DSL nor exposure has
an effect in the absence of the other factor. We set the
sample size equal to 1,000 case-parent trios, set M equal
to 1 million SNPs, and assume that all SNPs are indepen-
dent. We also assume in our base model that for each of the
1 million SNPs, there is no SNP-E association in the general
population.

Our general approach to computing statistical power is
based on direct calculation of the expected noncentrality
parameter for the likelihood ratio test of interaction (see
Gauderman (19) for additional details). In all calculations,
we assume a desired experiment-wise type I error of 0.05
and a 2-sided alternative hypothesis, and we utilize a Bon-
ferroni correction for the m tests in step 2. Statistical power
for the 2-step method is computed as the product of the
powers of steps 1 and 2, relying on the independence of
these 2 steps. In addition to the base model, we compare
the power of the 2-step and standard analyses under a range
of model parameters and assumptions about population-
level SNP-E association. As described above, an important
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quantity in our 2-step procedure is a1, the significance
threshold in step 1. For each model considered, we identify
the optimal setting of a1—that is, the value of a1 that yields
the greatest power in a 2-step analysis—using a simple
search algorithm. We also explore the sensitivity of the
2-step power to the choice of a1.

RESULTS

Under our base model parameter settings, the 2-step
method provides substantially greater power to detect
a G 3 E interaction with the DSL than a standard analysis
across a range of interaction effect sizes (Figure 1). For
example, with 1,000 case-parent trios, the 2-step method
provides 87% power at the optimal setting of a1 to detect
an interaction effect of Rge ¼ 2.3, compared with only 25%
power using the standard test. At the commonly used thresh-
old of 80% power, the detectable magnitude of Rge is 2.22
using the 2-step method, compared with 3.10 based on
a standard analysis. The optimal step-1 significance thresh-
old is a1 ¼ 5.4 3 10�5 when Rge ¼ 2.1, and it generally
declines for greater interaction effect sizes (Figure 2, dia-
monds). However, Figure 2 also shows that powers for
a given magnitude of Rge are quite similar across a range
of a1 settings from 1 3 10�5 to 1 3 10�4.

The power to detect G 3 E interaction for the 2-step
method is also substantially greater than that for the stan-
dard test across a range of model parameters (Table 1), in-
cluding different values of the DSL allele frequency (models
2 and 3), exposure prevalence (models 4 and 5), and baseline
relative risks (models 6 and 7). The 2-step method also has
greater power when the interaction effect is negative (Rge <
1.0, models 8 and 9). Power generally increases as the num-
ber of SNPs tested decreases (models 10–12) because of the
reduced multiple-testing burden. The latter setting of M ¼
1,500 demonstrates that the 2-step approach can be effective
in smaller-scale genotyping studies, such as might be the
case in a post-GWAS follow-up study. Power for the 2-step

method is also higher than that for the standard analysis
under a dominant model (model 13), but the improvement
is not as large under a recessive model (model 14). The
relative improvement in power with the 2-step method is
similar for alternative settings of a, the experiment-wise
type I error rate (models 15 and 16). In most models, the
optimal setting for a1 is between 1 3 10�5 and 1 3 10�4.
The final column of Table 1 shows that the power achieved
by fixing a1 to 1 3 10�4 is nearly identical to the power at
the optimal a1 in most situations.

In all of the above models, we assumed no population-
level association between E and any of the M SNPs. Under
that scenario, we expect that M 3 a1 false-positive SNPs
will pass through the first-step screen. However, it is likely
that there will be noncausal E-SNP associations for some
fraction of theM SNPs—due to population stratification, for
example. We let pge denote the proportion of M SNPs that
have a noncausal association with E in the general popula-
tion. If we conservatively assume that all pge 3 M of these
SNPs pass the step-1 screen, the expected total number of
SNPs that pass step 1 is E(m) ¼ M(pge þ a1 – pgea1). As
shown in Figure 3, as pge increases, the power of the 2-step
method declines sharply but then levels off. Even in the
unlikely situation where 100,000 (10%) of 1 million SNPs
have a noncausal population-level SNP-E association, the
power of the 2-step method is still markedly greater than
that of the standard analysis.

DISCUSSION

We have proposed a novel method of screening the ge-
nome for G 3 E interactions in a GWAS. The method uses
information from the full likelihood of trio data (equation 1)
to substantially increase power relative to use of the stan-
dard likelihood forG3 E analysis in trios that conditions on
parental genotypes. The partitioning of the full likelihood
into 2 independent factors gives rise to the proposed 2-step
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Figure 1. Statistical power to detect a gene 3 environment interac-
tion in a genome-wide screen for varying magnitudes of the true in-
teraction effect (Rge). Power for the 2-step method is shown at the
optimal setting of a1. All other parameter values are set to those in the
base model (see footnote ‘‘a’’ of Table 1).
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Figure 2. Statistical power to detect gene3 environment interaction
using the 2-step method as a function of the step-1 significance
threshold (a1, ranging from 3 3 10�6 to 2 3 10�4) and the magnitude
of the interaction (Rge). All other parameter values are set to those in
the base model (see footnote ‘‘a’’ of Table 1).
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approach. The use of the conditional likelihood in step 2
ensures that the overall procedure has the correct test size in
the presence of noncausal population-level association be-
tween E and some subset of SNPs. The procedure is com-
plimentary to a genome-wide association scan for main
effects, and thus has the potential to uncover novel genetic
signals that may otherwise be missed.

Across a wide range of models we considered, the 2-step
method was more powerful than a standard analysis for
detecting G 3 E interactions. Coupled with this improve-
ment in power is relative ease of implementation, requiring
no specialized software and only a modest increase in com-
putation time in comparison with a standard analysis. De-
spite the improved efficiency of our 2-step method, the
detectable interaction effect size at the 80% power level

was still large (>2.0; Figure 1) in our base model with
1,000 trios. Larger sample sizes will be required to detect
interaction effects of the magnitude that have been reported
for main effects (typically odds ratios < 1.5) in many ge-
nome-wide scans. We assumed that the M SNPs were in-
dependent in all calculations, which will not generally be
the case because of linkage disequilibrium. Although link-
age disequilibrium will not change the expected number of
SNPs that pass from step 1 to step 2, correlation in the step-2
test statistics due to linkage disequilibrium will make a Bon-
ferroni correction conservative. An alternative multiple-
testing correction procedure that accounts for correlated
statistics (e.g., see Conneely and Boehnke (20)) could be
considered for both the 2-step and standard interaction tests
to improve power in the presence of linkage disequilibrium.

Table 1. Statistical Power to Detect Gene 3 Environment Interaction in 1,000 Case-Parent

Trios for the Standard Test and the 2-Step Test Across a Range of Models

Model
No.

Model
Standard

Test Power

2-Step Test

Optimal Power at
a1 5 1 3 1024

Power a1

1 Base modela 0.25 0.87 3.7 3 10�5 0.86

Disease susceptibility
locus allele
frequency (qA)

2 0.05 0.01 0.15 2.9 3 10�5 0.15

3 0.25 0.54 0.97 5.9 3 10�5 0.97

Exposure frequency (pE)

4 0.10 0.03 0.28 7.3 3 10�5 0.28

5 0.25 0.23 0.83 5.1 3 10�5 0.83

Main effect sizes (Rg, Re)

6 1.0, 2.0 0.23 0.66 3.5 3 10�5 0.65

7 2.0, 1.0 0.10 0.97 3.0 3 10�6 0.89

Negative interaction
effect (Rge)

8 0.45 0.08 0.35 1.1 3 10�3 0.29

9 0.35 0.37 0.77 2.0 3 10�3 0.65

No. of single nucleotide
polymorphisms (M)

10 500,000 0.29 0.89 5.4 3 10�5 0.89

11 100,000 0.40 0.93 1.4 3 10�4 0.93

12 1,500 0.74 0.99 2.0 3 10�3 0.95

Genetic modelb

13 Dominant 0.25 0.77 1.7 3 10�4 0.77

14 Recessive 0.25 0.40 2.4 3 10�2 0.16

Experiment-wise type I
error rate (a)

15 0.01 0.17 0.82 1.5 3 10�5 0.78

16 0.10 0.29 0.89 5.4 3 10�5 0.89

a The base model has qA ¼ 0.15, pE ¼ 0.5, Rg ¼ Re ¼ 1.0, Rge ¼ 2.3, M ¼ 1 million single

nucleotide polymorphisms, and experiment-wise a ¼ 0.05. Each additional model varies the in-

dicated parameter.
b For the dominant model,Rgewas increased to 2.6. For the recessive model, qAwas increased

to 0.43 and Rge to 2.6. These settings provided the same power as the base model for the

standard analysis.
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We presented our 2-step approach in the context of a bi-
nary environmental variable, but it could also be imple-
mented for a quantitative or multicategory exposure. Here
one would simply replace the step 1 logistic model in equa-
tion 3 with a regression model appropriate for the type of
environmental variable—for example, a linear regression
model if E is quantitative. One could also consider reversing
the roles of G and E (14) in our first-step model (equation
3)—for example, modeling the parental G distribution as
a function of E using polytomous logistic regression. This
may be preferred when the exposure variable includes some
fraction of zero values indicating ‘‘nondetectable,’’ requir-
ing the use of a nonstandard regression model for E in order
to obtain a valid test of association. We expect analogous
increases in power for the 2-step method relative to the
standard approach for alternative types of environmental
variables and for alternative forms of the step-1 regression
model.

A situation in which the 2-step method can lose power
relative to the standard approach is one where there is
population-level association between the DSL and E in the
opposite direction of the association induced by the G 3 E
interaction. In the unlikely case that this occurs because of
a causal DSL-E association (e.g., the DSL increases pre-
disposition for exposure), neither the standard method nor
the 2-step method will provide a valid test of G 3 E in-
teraction. A more likely situation is that of a noncausal
DSL-E association due to population stratification, which
does not affect the validity of the 2-step method but will
affect power. For example, if E is less prevalent in the sub-
population with higher DSL allele frequency, then our first-
step test will have reduced power to detect a positive G3 E
interaction effect. On the other hand, if E is more prevalent
in the subpopulation with higher DSL frequency, our first-
step test will have enhanced power, albeit for an artifactual

reason. It may be possible to modify our first-step logistic
model (equation 3) to include standard covariates describing
population structure (4, 21) that would identify ethnic sub-
groups and would therefore adjust for this type of noncausal
G-E association. Population stratification will also affect the
power of the standard 1-step method, since the distribution
of G and E in a sample of trios will depend on the corre-
sponding distributions in the subpopulations. Further study
of the impact of population stratification on the power to
detect G3 E interaction and the impact of including adjust-
ments for population structure in our first-step model are
areas for future research.

A standard paradigm in the GWAS setting is to reserve
testing of interactions for only those SNPs that are signifi-
cant genome-wide (e.g., at a ¼ 10�7) in the primary main-
effects scan. We certainly advocate testing for G 3 E
interaction with relevant E’s as part of the follow-up of
any such genome-wide-significant SNP. However, while
some models of G 3 E interaction induce a strong main
effect, there are many interactions that are likely to go un-
detected by this form of screening (22). One could envision
a mixed screening step that passes a SNP on to step 2 G3 E
testing if it achieves some modest level of significance either
in a main-effect test or in the step-1 screen proposed in this
paper. Further research is required to investigate the type I
error rate and power of such a hybrid approach.

The use of a screening step to improve efficiency in
multiple-testing situations has been proposed in other con-
texts. For example, Van Steen et al. (23) developed an effi-
cient 2-step analysis of trios to detect genetic main effects
for a quantitative trait. Millstein et al. (24) proposed
a screening step to improve efficiency in the analysis of
gene-gene interactions for studies of multiple candidate
genes. Murcray et al. (18) described a 2-step analysis for
detecting G 3 E interaction in a GWAS of a case-control
sample. A common element in all of these approaches is the
coupling of an informative but potentially biased first-step
test with an independent and unbiased second-step test to
guarantee the overall validity of the procedure. The goal of
these procedures is to reduce the multiple-testing burden by
using a screening step to eliminate the majority of associa-
tions, specifically those that are least likely to be statistically
significant in the primary test of interest (i.e., the step 2 test).
As with any screening procedure, there is the possibility that
a true association will not pass step 1 and thus will not be
formally tested in step 2. However, our results and the re-
sults of other similarly constructed 2-step procedures dem-
onstrate that the substantial improvement in expected power
is likely to be worth this risk.

Of course, scanning the genome for G3 E interactions is
predicated on the identification of a relevant E for the trait of
interest. For example, for lung cancer or cardiovascular dis-
ease, scanning for genes involved in a G 3 smoking inter-
action might seem natural, given the strong associations that
have been reported between these traits and smoking. On the
other hand, for traits such as prostate cancer or multiple
sclerosis, the choice of a relevant E is less clear. Just as it
is important to obtain high-quality SNP data through careful
genotyping and rigorous quality control procedures, it
will be important in the G 3 E setting to also obtain
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Figure 3. Statistical power to detect gene3 environment interaction
using the standard and 2-step methods, as a function of the proportion
of single nucleotide polymorphisms (SNPs) with a noncausal
population-level SNP-environment (E) association. All other parameter
values are set to those in the base model (see footnote ‘‘a’’ of Table 1).
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well-measured environmental data. In the types of large
samples required for a GWAS, one may have to utilize
easily obtained measures that are available on all subjects
(e.g., ever smoking/never smoking) rather than more de-
tailed and harder-to-measure variables (e.g., pack-years of
tobacco exposure) that are available for only a subset of
subjects. This may be particularly true in a consortium set-
ting, where several GWAS with varying types of environ-
mental data will be analyzed. Investigators should carefully
consider the tradeoff between increasing sample size and
introducing possible measurement error when they choose
the specific form of E that will be analyzed.

By definition, a complex trait is one that depends on many
factors, including both genes and environmental exposures.
Direct, main-effect testing of genome-wide panels of SNPs
has certainly been successful at identifying new genes of
interest for several complex traits. However, there are likely
to be many remaining genes, some that may only have de-
tectable levels of effect in the presence or absence of an
environmental exposure. Given the high cost of genotyping
large numbers of subjects in genome-wide SNP panels, it is
essential that investigators fully analyze their data to un-
cover any detectable associations. We have developed an
efficient method with which to utilize available environmen-
tal and genetic data in case-parent trios to scan for genes
involved in a G 3 E interaction. Application of this method
has the potential to augment an investigator’s list of main-
effect ‘‘hits’’ with additional genes that modify or are mod-
ified by an environmental factor.
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