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Abstract
The physiological lag between blood and interstitial fluid (ISF) glucose is a major challenge for
non-invasive glucose concentration measurements. This is a particular problem for spectroscopic
techniques, which predominantly probe ISF glucose, creating inconsistencies in calibration, where
blood glucose measurements are used as reference. To overcome this problem, we present a
dynamic concentration correction (DCC) scheme, based on the mass transfer of glucose between
blood and ISF, to ensure consistency with the spectral measurements. The proposed formalism
allows the transformation of glucose in the concentration domain, ensuring consistency with the
acquired spectra in the calibration model. Taking Raman spectroscopy as a specific example, we
demonstrate that the predicted glucose concentrations using DCC-based calibration model closely
match the measured glucose concentrations, while those generated with the conventional
calibration methods show significantly larger deviations from the measured values. In addition, we
provide an analytical formula for a previously unidentified source of limiting uncertainty arising in
spectroscopic glucose monitoring from a lack of knowledge of glucose kinetics in prediction
samples. A study with human volunteers undergoing glucose tolerance tests indicate that this lag
uncertainty, which is comparable in magnitude to the uncertainty arising from noise and
nonorthogonality in the spectral dataset, can be reduced substantially by employing the DCC in
spectroscopic calibration.

1. Introduction
Non-invasive glucose diagnosis has received considerable attention due to its important
implications for diabetes management and therapeutics.1, 2 Various techniques ranging from
electrochemical assays3, 4 to optical methods5 have been proposed to meet the goals of
painless and accurate glucose measurements. Vibrational spectroscopy, notably near infrared
(NIR) absorption and Raman spectroscopy, has shown substantial promise in this regard.6
Specifically, NIR Raman spectroscopy has provided successful predictions of glucose at
physiologically relevant concentrations in serum,7, 8 whole blood,9 and even in human
volunteers.10 However, a clinically accurate and robust algorithm for predicting glucose
concentrations in multiple human subjects, or even in the same subject at different times, is
currently lacking.11
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Researchers have identified factors that degrade the glucose measurement accuracy of
Raman spectroscopy by introducing non-analyte specific variance into the calibration model.
The predominant factors include sample-to-sample variability in absorption and scattering
properties (turbidity),12 tissue autofluorescence and associated quenching,13 and
physiological lag between blood and interstitial fluid (ISF) glucose.14–18 Several
spectroscopic correction schemes have been implemented to minimize the effect of the first
two factors,19–21 but correction for the presence of a lag time has not been demonstrated for
transcutaneous glucose monitoring, due to its intricate relationship with the fundamental
physiological dynamics. This lag time creates an inconsistency in spectroscopic calibration
algorithms, which are based on reference blood glucose concentrations and the acquired
tissue spectra. This inconsistency arises from the fact that the spectroscopic techniques
primarily probe ISF glucose18, due to the relatively shallow penetration depth (~1mm) of
NIR light in tissue and the small density of blood vessels in the superficial layers of the skin.
22

This inconsistency in calibration presents a severe hindrance not only for spectroscopy
based non-invasive glucose monitoring but also for minimally invasive electrochemical
sensors (such as Medtronic/Minimed’s Guardian and FreeStyle Navigator from Abbott
Diabetes Care), which base their glucose estimates on interstitial fluid measurements.
Indeed, as pointed out by Cengiz and Tamborlane,15 the physiological lag introduces
systematic errors during calibration which adversely impact long-term sensor performance,
even in the presence of a positive correlation between blood and ISF glucose.23–25 Such
diagnostic errors may lead to unnecessary insulin bolus, which significantly increases the
risk of hypoglycemia.26, 27 The presence of systematic errors is one of the main reasons that
such continuous glucose monitoring sensors need to be re-calibrated against fingerstick
measurements at regular intervals.

Typically, for all ISF glucose-based sensors, spectroscopic or otherwise, the underlying
assumption is that the blood-to-ISF glucose gradient remains constant over the measurement
range.17 However, this assumption fails if the sensor is calibrated during rapid changes in
blood glucose, as are encountered during glucose tolerance tests, which provide the most
viable protocol for the development of calibration models using spectroscopic techniques.28

Calibration during such non-equilibrium conditions leads to large errors in the developed
model. To account for the differences in blood and ISF glucose, Bonnecaze and co-workers
established the first substantive models for ISF glucose by considering the ISF and blood
glucose to reside in two “compartments”, and performing a mass balance between them.29,
30 Using amperometric glucose sensors implanted in rats, they demonstrated that accurate
estimates of blood glucose concentration can be extracted from subcutaneous ISF glucose-
based measurements. However, no analogous models exist for development of spectroscopic
calibration algorithms, which are inherently more complex because of the multivariate
nature of the data.

Furthermore, even if an accurate calibration model can be established by performing all
measurements under equilibrium conditions (e.g. by employing glucose clamps), the lack of
knowledge of glucose kinetics in prediction samples would introduce an uncertainty in the
concentration estimates. Such prediction uncertainties may lead to inappropriate treatments.
Previously, several research groups have assessed uncertainty in spectroscopic prediction
based on the noise in the spectral and concentration datasets and the non-orthogonality
(spectral overlap) of the analyte of interest with the other sample constituents.31–33

However, the uncertainty introduced due to the lag phenomenon in the prediction samples
remains unexplored.
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This paper presents a new spectroscopic calibration scheme based on “dynamic
concentration correction” (DCC), which is based on a two-compartment mass transfer
picture of blood and ISF glucose and is designed to provide an accurate estimate of glucose
concentrations for non-invasive measurements. These transformations are performed
iteratively in conjunction with an implicit calibration method, such as partial least squares
(PLS), to form an accurate and consistent regression model. The resulting calibration model
can be used on a new set of acquired spectral samples — the prediction set — to calculate
the ISF glucose concentrations of the samples. Subsequent application of the DCC model
converts the estimated ISF glucose concentrations to the equivalent blood glucose
concentrations of the prediction samples.

This work employs Raman spectroscopy as a specific example to demonstrate the
effectiveness of the new calibration method, with the understanding that this scheme can be
similarly applied to other spectroscopic techniques, such as NIR absorption. Using blood
and ISF glucose concentration datasets obtained by Steil et al.34, we first demonstrate that
predicted glucose concentrations using the DCC calibration model closely match the
measured blood glucose concentrations, whereas those generated solely by the conventional
implicit calibration methods show significantly larger deviations from the measured values.
These results are further validated on spectral and concentration datasets obtained from
clinical studies on human volunteers undergoing glucose tolerance tests.

In addition, we derive analytical expressions for the limiting uncertainty introduced in the
concentration predictions due to presence of the physiological lag – with and without
application of DCC. Here, limiting uncertainty is defined as the uncertainty in concentration
estimate in the case where all modeling noise is disregarded, i.e. where the calibration model
is assumed to be completely accurate and noise free. Employing the human volunteer data,
we find that the concentration uncertainty due to the lag phenomenon is comparable to that
arising from the noise and overlap in the prediction spectra and that this major source of
uncertainty can be significantly reduced (approximately six-fold) when DCC is used,
providing further motivation for its use in spectroscopy-based transcutaneous blood glucose
monitoring.

2. Dynamic concentration correction (DCC) theory
The primary motivation for proposing a new spectroscopic calibration method for blood
glucose detection is to establish consistency in the calibration model, which maps the
spectral measurements to the glucose concentrations. The conventional linear calibration
equation can be written as35:

(1)

where b is the spectrum of regression coefficients (also called the regression vector), S is the
matrix of calibration spectra and c is the vector of measured concentrations of the analyte of
interest in the calibration samples. S* is the appropriate inverse of S, as evaluated by the
calibration method of choice. (Lowercase boldface represents a vector and uppercase
boldface denotes a matrix.)

As mentioned in Sec.-1, since the spectral measurements are predominantly contributed by
ISF glucose, the relevant input concentrations to the implicit calibration method should
incorporate the ISF glucose concentrations. However, the ISF glucose concentrations are
typically not available in a real-life clinical setting – instead, blood glucose values obtained
from frequent blood withdrawals are used as reference concentrations. This creates a
regression vector, which is neither based completely on blood glucose nor on ISF glucose,
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but a mixture of the two contributions. This, in turn, also creates a problem in the prediction
step, where the predicted glucose concentration c is obtained by a scalar product of the
regression vector b and the spectrum acquired from the prediction sample s:

(2)

(Lowercase italics indicates a scalar quantity and the superscript T denotes the transpose of
the vector.) In the conventional calibration framework, the predicted glucose concentration
is reported as the blood glucose concentration, although this clearly is not an accurate
representation.

To correct for this discrepancy, we propose a new calibration methodology (DCC) in which
the concentrations are appropriately changed to conform to the spectral measurements. The
transformation in the concentration domain is based on a two-compartment mass transfer
model, which establishes a well-defined relationship between blood glucose, ISF glucose
and the system parameters. Specifically, we perform the following two transformations in
DCC:

a. Pre-calibration DCC (PC-DCC): Transform the blood glucose concentrations in the
calibration dataset to their corresponding ISF values before inputting into the
implicit calibration method. This ensures that the regression vector is solely based
on ISF glucose contributions.

b. Post-prediction DCC (PP-DCC): Re-transform the predicted ISF glucose
concentration, which is determined by Eq. (2), to the corresponding blood glucose
value.

The conceptual differences between the conventional and proposed (DCC-based) calibration
methods can be seen in Fig. 1.

For the subsequent analysis, we assume that the sampling volume (i.e. the volume of tissue
probed by the NIR light) is a subset of the interstitial fluid space. This assumption is
primarily based on the fact that the ISF constitutes nearly 45% of the volume fraction of the
human skin in contrast to the blood vessels which contribute about 5% of the skin volume.36

In Sec.-5, we revisit this assumption and characterize its impact on the proposed calibration
model.

Transfer of glucose from the blood to the ISF compartment occurs by passive diffusion
across an established concentration gradient.37 The mass transfer rate is affected by several
variables, such as the blood flow rate to the site, rate of glucose uptake by the surrounding
tissue, and the capillary permeability. Nevertheless, as discussed in the literature,29, 34, 38 a
simple two-compartment mass-transfer model can be written for the ISF volume VISF:

(3)

where cISF and cBG are the ISF and blood glucose concentrations (mol/cm3) respectively, kM
is the glucose mass transfer coefficient (cm/s), A is the effective mass transfer surface area
(cm2) and kU is the rate of glucose uptake by the neighboring cells (1/s). The effect of
insulin on the uptake term has been ignored. This approximation is consistent with the
observed result that the glucose levels in (subcutaneous) ISF are largely unaffected by the
local insulin concentration.34 In fact, the uptake term itself has been observed to be very
small for subcutaneous glucose sensing.29 This is attributed to the fact that skin tissue, as
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opposed to muscle or adipose tissue, is unlikely to have significant glucose uptake, even in
the presence of high insulin concentration. Consequently, we will ignore the uptake term in
further analysis. Eq. (3) can then be simplified to:

(4)

where  is a lumped mass-transfer parameter having units of time. The parameter α
provides a measure of the physiological lag time arising from the diffusion process and is
henceforth called the characteristic lag time constant. This equation provides the ability to
construct blood glucose estimates based on the spectroscopy-based ISF glucose prediction
values and a priori knowledge of the lag time constant in the sample. The numerical
evaluation of this equation, which provides the post-prediction (PP-DCC) step, is explained
in Appendix I.

The other important portion of the proposed scheme is the pre-calibration (PC-DCC) step. In
order to obtain consistency in the calibration model, we need to convert the measured blood
glucose concentrations to the corresponding ISF glucose values. To perform this
transformation, we write Eq. (4) in its integral form:

(5)

where the definite integral is evaluated from time ti to tf. Details of the numerical
implementation of this equation are given in Appendix II.

3. Formulation of prediction uncertainty arising from physiological lag
In order to quantify the precision of spectroscopy based calibration models, Lorber and
Kowalski derived an elegant prediction error formula, which describes the error propagation
for linear multivariate prediction algorithms.31 Our laboratory has previously derived
analytical expressions for uncertainty in concentration prediction for the specific case where
noise in the prediction dataset (spectra) is the dominant source of error.32, 33 This case is
important, as in most biomedical applications constraints on the acquisition time in
prediction samples cause the noise in the prediction dataset to be significantly higher than
that observed in the calibration dataset (where acquisition times are typically much longer).
In such cases, it can be assumed that an accurate calibration model can be achieved by
developing it on calibration samples in which sufficiently high signal-to-noise ratio (SNR)
can be attained. Under such conditions, the limiting uncertainty in the predicted
concentrations arises from the spectral overlap between the analyte of interest and the other
tissue constituents, and the measurement noise in the spectra acquired from the prediction
samples. Mathematically, the spectroscopic uncertainty for the analyte of interest (glucose)
is given by Δcs 33:

(6a)

where
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(6b)

Here, ĉ and c are the estimated and actual analyte concentrations in the prediction sample,
respectively and Δs represents the spectral noise in the prediction spectrum s. As the
modeling noise is ignored in computation of the limiting uncertainty, b represents the ideal
(noise-free) regression vector for glucose. σ is a measure of the noise magnitude in the
prediction spectrum, sg quantifies the signal strength of glucose at unit concentration, and olf
indicates the amount of overlap between glucose and the other spectral interferents (such as
proteins, lipids, and water).

In addition to the spectroscopic uncertainty, there exists a prediction uncertainty for
transcutaneous glucose measurements that arises from the physiological lag between blood
and ISF glucose levels. Even if the calibration models are developed under conditions in
which the blood and ISF glucose concentrations are in equilibrium (such as those obtained
by employing glucose/insulin clamps), the predicted concentrations will still contain
uncertainties due to the unaccounted physiological lag in the prediction samples. We present
an error propagation analysis to determine the limiting uncertainty in concentration
prediction due to the physiological lag, with and without DCC. Similar to our laboratory’s
previous work,32, 33 we assume that the developed calibration model itself is accurate, i.e.
devoid of noise and lag-related errors.

3.1. Limiting uncertainty for conventional calibration
When the modeling noise is ignored, Eq. (6) provides the relationship between the estimated
and the actual glucose concentrations. However, for in vivo prediction, there will be a lag
between the instantaneous blood and ISF glucose values in the sample, where the latter is
measured by the prediction spectrum. Taking this into account, we can re-write Eq. (6) in
terms of the estimated (ĉISF) and actual (cISF) ISF glucose concentrations:

(7)

Based on the two-compartment model, the actual blood glucose concentration, cBG, can be
determined from the actual ISF glucose concentration using Eq. (4), given the correct lag
time constant for the prediction sample (αactual). Substituting the value of the actual ISF
glucose concentration from Eq. (7) into Eq. (4), we obtain:

(8)

However, the conventional models report the estimated ISF glucose concentration as the
blood glucose concentration (ĉBG) in the prediction sample:

(9)

Substituting Eq. (9) into Eq. (8) and re-arranging, we obtain:
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(10)

Equation (10) implies that under the conventional calibration framework, the limiting
uncertainty in the concentration estimate has two separate contributions: (i) the uncertainty
resulting from the measurement noise in the prediction spectrum and the spectral overlap,

Δcs and (ii) the uncertainty due to the glucose physiological lag, . While
the former (i) is a well-known quantity, the latter uncertainty (ii) has not been examined
before. Figure 2 illustrates the two contributing factors of the prediction uncertainty. In this
figure, the simulated blood and ISF glucose data in panel (A) (which mimics the glucose
profiles obtained from a tolerance test) are plotted against each other to construct the solid
line curve in panel (B). It is evident that the physiological lag between the blood and ISF
glucose profiles in (A) introduces a hysteresis-like closed loop behavior when blood glucose
is plotted against ISF glucose, showing the lack of a one-to-one correspondence between the
glucose concentrations in the two compartments. For example, we observe that given an ISF
concentration of 148 mg/dl at point P, the actual blood glucose concentration could be either
132 mg/dl (Q) or 158 mg/dl (T). However, conventional methods that have the underlying
assumption of a constant blood-to-ISF glucose gradient would predict 148 mg/dl (R), giving
rise to a significant error in prediction. Specifically, when the glucose levels are increasing,
the blood glucose concentrations are greater than the corresponding ISF glucose
concentrations. This set of values is represented by the points on the concave upwards curve
(labeled “RISE”). Similarly, the set of values obtained during the falling phase is
represented by the concave downwards curve (labeled “FALL”). The lag uncertainty Δcconv
in the predicted blood glucose concentration for the conventional calibration model is given
by the distance between points Q and R. The uncertainty due to the noise and spectral
overlap in the prediction spectrum is marked as Δcs.

3.2. Limiting uncertainty for DCC calibration
In contrast to the conventional model, the DCC scheme explicitly accounts for the
physiological glucose dynamics. Specifically, the post-prediction equation (PP-DCC) is used
to transform the spectroscopy-based ISF glucose estimate (ĉISF) to a corresponding blood
glucose value (ĉBG), and this step needs to be considered in evaluating the limiting
uncertainty. As the correct lag time constant in the prediction sample is unknown in a real
clinical setting, some uncertainty due to the physiological lag is introduced via the PP-DCC
step. As explained in Sec.-3.1, we employ the (ensemble) average of the lag time constants
obtained from the calibration samples to approximate the actual lag time constant in the
prediction sample. Based on this approximation, the PP-DCC equation can be re-written as:

(11)

where ᾱcalib refers to the average value of α computed from the calibration samples.

Substituting Eq. (7), into Eq. (11), we obtain:

(12)
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The deviation of ᾱcalib from the actual lag time constant in the prediction sample, αactual can
be written as:

(13)

where Δα is the error (uncertainty) in the estimation of the lag time constant.

Substituting Eq. (13) into Eq. (12) and re-writing the first term of the above equation as cBG,
we get:

(14)

Equation (14), which is analogous to Eq. (10) for the conventional calibration model,
implies that even with DCC, the net uncertainty is a combination of the uncertainties arising

from the spectral noise and overlap (Δcs) and the physiological lag ( ).
However, the primary difference between the two cases – with and without DCC – lies in
the magnitude of uncertainty introduced due to the physiological lag. The lag uncertainty for
the conventional calibration model case (which is proportional to αactual) is significantly
larger than that observed for DCC calibration (which is proportional to Δα). This can be
visualized in Fig. 2(B). The dashed line curve of Fig. 2(B) connects the points whose
coordinates are given by the model estimated blood and ISF glucose concentrations (in
contrast to the solid line curve that represents the points whose co-ordinates are given by the
blood and ISF glucose concentrations in Fig. 2(A)). Since the exact lag time constant of the
prediction sample is unknown, the estimated blood glucose concentrations will differ from
the actual blood glucose concentrations by the product of the rate of change in glucose

concentration and the estimation uncertainty of the lag time ( ). It is worth
noting that the dashed (DCC estimated) curve is computed using Eq. (11), whereas the blood
and ISF glucose concentrations of the solid curve are related by Eq. (4). From the figure, it
is evident that ΔcDCC, the distance between points Q and S, is substantially smaller than
Δcconv, the distance between points Q and R, as long as the lag time constant used in the
DCC model provides a reasonably close approximation to the actual lag time constant. A
quantitative comparison of the two lag uncertainties and the spectroscopic uncertainty is
performed in Sec.-5.2.

4. Materials and Methods
We performed numerical simulations and experimental studies to: (1) demonstrate the
improvement in prospective prediction performance of the calibration model on application
of DCC and (2) estimate the distribution of the lag time constant in a human population and
characterize the prediction uncertainty introduced due to the physiological lag. To
accomplish (1), a numerical simulation study was undertaken (Sec.-4.1). In this study, ISF
and blood glucose concentration datasets, described by Steil et al.,14, 34 were used to
generate tissue Raman spectra for calibration and prediction. The simulations were also used
to understand the relationship between the SNR in the spectral dataset and performance of
the conventional and DCC calibration models. In order to investigate the lag time
distribution in a human population (2), datasets obtained from our laboratory’s clinical
studies on human volunteers were employed. Additionally, the human volunteer study was
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used to determine the limiting uncertainty arising from the physiological glucose dynamics,
as described in Sec.-4.2.

4.1. Numerical simulations
The dataset used in our numerical simulations was based on blood and ISF glucose
concentrations originally measured by Steil et al. 34 In their studies, Steil and co-workers
monitored blood and ISF glucose concentrations in non-diabetic human subjects during
glucose clamping. After 10–12 hours of overnight fasting, glucose was sequentially clamped
at approximately 5, 4.2 and 3.1 mM (1 mM of glucose ≈ 18 mg/dL) for 90 minutes each by
insulin and glucose infusion, and subsequently allowed to return to euglycemic levels. ISF
glucose was measured by two MiniMed (Medtronic, Inc.) subcutaneous amperometric
glucose sensors. Blood was withdrawn at regular intervals for blood glucose measurements
using a clinical glucose analyzer. Our analysis uses the blood and ISF glucose
concentrations from 90 to 380 minutes after initial insulin and glucose infusion, as shown in
Fig. 3. The simulated spectra and corresponding blood glucose concentrations is divided into
calibration (dataset spanning from 90 to 220 min) and prediction (dataset from 230 to 380
min) sets, respectively.

In our study, simulated Raman spectra are generated by forming weighted linear
combinations of the constituent Raman spectra of glucose, creatinine, and urea (as measured
by our laboratory Raman system19). The weights assigned for glucose (the analyte of
interest) are determined by the experimentally measured ISF glucose concentrations of the
Steil dataset. The other two constituents (spectral interferents) are assigned weights that
randomly varied within 2% of a constant value, in order to mimic the small changes
observed in these constituents during typical glucose tolerance and clamping tests. To
simulate normal experimental conditions, zero-mean Gaussian white noise is added to the
mixture spectra at varying levels of SNR (20–40 dB) to study its effect on prediction
performance of the calibration models. The uniform noise across the spectra and the SNR
range are consistent with typical Raman spectra of biological samples.

In contrast to the conventional PLS calibration strategy, where the number of loading
vectors are optimized, in the DCC calibration the number of loading vectors as well as the
lag time constant, α, need to be optimized. To accomplish this, we initially assign default
values to α (0 minutes) and the number of loading vectors (2) employed, respectively. Prior
to constructing the leave-one-out calibration model, all but one of the reference blood
glucose concentrations are converted to the corresponding ISF glucose values using PC-
DCC (Eq. (5)). This allows the creation of a calibration model based purely on ISF glucose.
The developed calibration model, in conjunction with the spectrum of the excluded data
point (which constitutes the validation data), is then used to predict the ISF glucose
concentration at that point. Subsequently, PP-DCC (Eq. (4)) is used to re-transform the
predicted ISF glucose concentration to the blood glucose value. This process is repeated till
each data point is used once as the validation data. The resultant blood glucose estimates are
compared with the actual blood glucose values to give the root-mean-squared error of cross-
validation (RMSECV). The whole procedure is iterated for appropriate ranges of α (0 to 20
min) and number of loading vectors (LV) (2 to 10) to determine the optimal combination of
parameters (αopt, LVopt) that yields the minimum RMSECV. This combination of
parameters is then used to obtain the PLS regression vector, bopt. Prospective prediction on
a separate portion of the data set was performed by taking the scalar product of the
prediction spectra with bopt (Eq. (2)). The ISF glucose predictions are re-converted to the
blood glucose values using PP-DCC, where αopt is used in place of α in Eq. (4). The root-
mean-squared error of prediction (RMSEP) is computed from the predicted blood glucose
concentrations and the reference blood glucose values.
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Conventional PLS calibration and prediction is also performed on the same dataset to
compare the relative performance with the DCC model. For further comparison, a fixed time
delay is also incorporated into the standard PLS analysis as a second control. This involves
shifting the measured blood glucose concentrations with respect to the spectral acquisitions
by a specified amount comparable to the time lag reported in the literature. Twenty
simulations are carried out for each value of SNR in the spectral dataset (both calibration
and prediction) to establish the mean and standard deviation of the prospective prediction
errors.

4.2. Experimental studies on human subjects
To investigate the lag time distribution in a human population, clinical datasets consisting of
blood glucose concentrations and tissue Raman spectra are used. The acquisition of the
clinical data was described in one of our laboratory’s previous publications 11. Briefly,
Raman spectra were collected from the forearms of healthy Caucasian and Asian human
volunteers undergoing OGTT. The age of the tested human volunteers’ was in the range of
21–29, with a mean of 24.5. For the excitation source, an 830 nm diode laser (Process
Instruments) was used at an average power of ~300 mW in a ~1 mm2 spot. A f/1.8
spectrograph (Kaiser Optical Systems) was coupled to a liquid nitrogen-cooled CCD
(1340×1300 pixels, Roper Scientific) for spectral dispersion and acquisition, respectively.
For each volunteer, OGTT was initiated by the ingestion of a glucose-rich solution, and
Raman spectra were collected every 5 minutes over a two-hour period. Concurrently, the
reference blood glucose concentrations were measured every 10 minutes from blood
samples using a clinical glucose analyzer (HemoCue, Inc.), and spline interpolation was
used to correlate the measured blood glucose concentrations with the spectra collected at
intermediate time points. This study protocol was approved by MIT Committee On the Use
of Humans as Experimental Subjects.

Datasets from volunteers exhibiting motional artifacts, inadequate SNR in the acquired
spectra, and impaired glucose tolerance characteristics are excluded from further analysis. A
representative set of tissue Raman spectra and the corresponding blood glucose
concentration profile acquired from one of the human volunteers are shown in Fig. 4. For the
selected volunteer datasets, DCC calibration is performed using a leave-one-out cross-
validation routine on the measured Raman spectra and reference blood glucose
concentrations to determine the optimal value of α for each individual. In addition,
conventional PLS calibration is also performed on the same datasets to compare the resultant
cross-validation errors. The cross-validation procedures in both cases remain the same as
that described in Sec.-4.1, except that experimentally measured Raman spectra are used in
place of the simulated Raman spectra. The mean and standard deviation of α determined
from the human subjects are used to approximate αactual and Δα for the quantification of
uncertainty due to physiological lag for the DCC and conventional calibration schemes
respectively (Sec.-3). These uncertainty estimates are also compared with the spectroscopic
uncertainty, Δcs.

5. Results and discussion
5.1. Numerical simulations

Numerical simulations were used to compare the prospective prediction capability of the
conventional and DCC calibration models. DCC implementation was found to reduce the
RMSECV of the simulated dataset from 0.15 mM to 0.04 mM, when the measured ISF
glucose concentrations were used for computing the cross validation errors. The RMSECV
for fixed timed delay PLS processing was computed to be 0.07 mM. These simulation
results were obtained for a SNR of 40 dB. Figure 5 shows the measured ISF glucose
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concentrations plotted together with cross-validated glucose concentrations from the
conventional and DCC calibration models. It is evident that the ISF glucose concentration
profile generated with DCC closely matches the measured ISF glucose concentrations, while
that generated without DCC shows significantly larger deviations. The cross-validation
routine also optimized the lag time constant for the DCC calibration model and the number
of loading vectors for both models. For this dataset, the characteristic lag time constant αopt
was determined to be 6.1 minutes, in agreement with the experimentally observed values of
6–8 minutes.34

When the calibration models were applied prospective to the prediction dataset, the DCC
model (RMSEP = 0.14 mM) exhibited significantly improved prediction accuracy compared
with the conventional PLS scheme (RMSEP = 0.28 mM). In comparison, the fixed time
delay PLS processing provides an RMSEP of 0.26 mM, which is a slight improvement over
conventional PLS implementation, but it is still significantly poorer than the DCC
performance. Figure 6 shows the results of prospective prediction, in which the measured
blood glucose concentration profile is plotted alongside of the prediction profiles, with and
without DCC. This demonstrates how calibration during non-equilibrium conditions leads to
systematic errors giving rise to much higher prediction errors (Fig. 6) than estimated during
cross-validation (Fig. 5). The presence of systematic errors is further evidenced by the
relative performance of the fixed time delay processing in cross-validation (approximately
50% improvement over conventional PLS processing) and prospective prediction
(approximately 7% improvement over conventional PLS processing), respectively. In fact,
in the presence of such errors, the predicted glucose concentration may have no statistically
significant correlation with the actual glucose concentrations during rapidly rising and
declining glucose concentrations. Potentially, one could achieve an even closer correlation
with the measured blood glucose concentration profile by smoothing out the noisy
fluctuations observed in the concentration profile of the DCC prediction of Fig. 6. However,
such smoothing algorithms were not employed as they might introduce artifacts and
additional delays to the concentration profile that are unrelated to glucose equilibration.34

The accuracy of blood glucose concentration prediction with and without DCC was also
compared at varying levels of SNR in the spectral dataset. Figure 7 shows a plot of the
RMSEP of blood glucose prediction with conventional and DCC calibration models as a
function of SNR. In both cases, increase in noise level corresponded to an increase in error
values, as expected. However, under all tested values of SNR, the prediction error of DCC
calibration models was consistently smaller compared to that of the conventional PLS
models. It was also observed that the mean αopt was essentially noise-insensitive, although
the variations from the mean αopt were larger for lower SNR (e.g. standard deviation in α
was computed to be 0.05 and 0.5 min at 40 and 20 dB, respectively).

Clearly for DCC implementation, a time series of glucose measurements (such as those
obtained from glucose tolerance tests) are required from human subjects included in the
calibration study for characterization of the glucose kinetics. It is not possible to develop a
consistent calibration model based only on single spectroscopic measurements from multiple
human subjects, as such measurements do not provide information on the glucose kinetics.

It is also worth noting that application of an enhanced calibration scheme, such as support
vector machines39 or hybrid calibration methods,40, 41 alone would not alleviate
inconsistencies in the calibration models as they do not address the lack of one-to-one
correspondence between the ISF and blood glucose concentrations (Fig. 2). Nevertheless,
when used in conjunction with DCC, such calibration schemes may potentially further
improve the prediction accuracy.
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5.2. Experimental studies on human subjects
Table 1 lists the results of the leave-one-out cross-validation on the dataset from each human
subject, using DCC calibration as well as the conventional PLS routine. We observe that, on
average, the RMSECV for the blood glucose concentrations of the human subjects reduces
on application of DCC by 15.5%, with a maximum reduction of 28.6%. This demonstrates
the applicability of DCC in clinical situations, where the number of tissue components
probed is vastly greater than the three constituents (glucose, creatinine and urea) employed
in our simulations.

As mentioned in Sec.-2, in formulating DCC, it has been assumed that the sampling volume
is a subset of the interstitial fluid space. This assumption was based on: (i) NIR light has a
penetration depth of ~1 mm in skin tissue and (ii) the blood vessels contribute only 5% to
the total skin volume,36 with the outermost epidermis being completely avascular. However,
a small fraction of the inelastically scattered (Raman) light arises from the glucose residing
in the blood compartment. This results in a reduction in the value of the lag time constant α,
as determined by our DCC model. Nevertheless, our results demonstrate that DCC
successfully models the clinical human volunteer data, even though a small Raman
contribution from the blood glucose component is present. This shows that the DCC
approach is effective in improving consistency in the calibration model and thus in
prospective prediction, as long as the spectral contribution of blood glucose is small
compared to that of ISF glucose.

The results also suggest that the value of the lag time is fairly constant for the tested human
volunteer population. This is established by the lag time distribution obtained from the
clinical data, where the mean of α, 9.5 min, is significantly larger than the standard
deviation, 1.6 min. The relative constancy of α indicates that the mean lag time of the
calibration set provides a fairly accurate approximation to the lag time of any prospective
subject, on whom the algorithm has not been applied before. To the best of our knowledge,
this is the first time that the lag time distribution in a human population has been measured
by optical techniques. Previous attempts with subcutaneous amperometric sensors have been
observed to have significant sensor specific lag, which obscures the precision of the
physiological lag measurements.14 In addition to the sensor specific lag of the sub-cutaneous
amperometric monitors, the difference in lag time constants observed from the numerical
simulations using the Steil dataset (6.1 min) and our clinical studies on human volunteers
(9.5±1.6 min) can be attributed to: (a) the difference in the composition of glucose (i.e. the
proportion of blood and ISF) sampled by the spectroscopic and amperometric sensors and
(b) the variations in the population demographics studied in the two cases.

Although most current research including our own study on human subjects reported above
indicates a reasonably constant value of α, some research groups have previously suggested
that the response times between blood and ISF glucose may be different for the rising and
falling phases. These groups claim to have demonstrated that ISF glucose falls in advance of
blood glucose during the time of declining glucose levels.42–44 In such situations, a
modified DCC model can be implemented by employing two distinct α’s during the rising
and falling phases through a piece-wise application of Eq. (4) and (5).

The mean and standard deviation of α obtained on the human volunteer dataset were also
employed in determining the physiological lag uncertainties for the DCC and conventional
calibration schemes. For the conventional schemes, the uncertainty is calculated as

, where the mean α of the human volunteers is used for αactual. At times of
reasonably rapid increase in glucose levels, the concentration of glucose in either
compartment may change by ~2 mg/dL/min (0.11 mM/min).15 Plugging in these values, we
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find that for conventional calibration, the prediction uncertainty due to lag amounts to
approximately 1.06 mM. For the DCC model, the uncertainty due to lag can be computed by

, where Δα is approximated by the standard deviation of α obtained from the human
volunteer dataset. Based on this value of Δα, we obtain a lag uncertainty of 0.18 mM for the
DCC calibration method. The calculated values project to an approximately six-fold
reduction in the lag uncertainty on application of DCC.

Previously, we had estimated using tissue phantom studies that the spectroscopic uncertainty
for glucose using our Raman instrument was 1.04 mM (obtained for σ=61.03 (photon
counts), sg=83.74 (photon counts/mM) and olfg=1.43 in Eq. (6b)).19 Prior to this work, this
spectroscopic uncertainty was considered to be the limit of detection, i.e. the smallest
concentration at which glucose could be detected in the tissue. For the specific case of non-
invasive glucose detection this does not provide the full picture, as it ignores the lag
uncertainty. For example, when conventional calibration schemes are employed, our results
suggest that the uncertainty due to lag (1.06 mM) is comparable to the spectroscopic
uncertainty (1.04 mM), especially at times of rapid changes in glucose levels. Consequently,
the resultant limit of detection, which is sum of the uncertainties arising from spectroscopic
considerations and physiological lag (2.1 mM), may be nearly twice that of the previously
accepted value (1.04 mM). On the other hand, the net uncertainty on application of DCC
(1.22 mM) predominantly arises from spectroscopic considerations (SNR and spectral
overlap) and the glucose kinetics plays only a minor role.

6. Conclusion
The presence of a physiological lag between glucose in the blood and ISF compartments
must be considered in developing an accurate spectroscopy-based calibration model for
predicting blood glucose concentrations. We have presented a mass transfer model based
correction scheme that explicitly accounts for the glucose kinetics. The proposed dynamic
concentration correction (DCC) enables us to employ the reference concentrations that are
appropriate for the acquired spectra in developing the calibration model – a key step which
has not been previously considered. In particular, the resulting improvement in blood
glucose estimates should enhance the spectroscopic ability to correctly determine
hypoglycemia and even predict impending hypoglycemia based on the rate of change in
glucose concentration. Furthermore, we have demonstrated that the prediction uncertainty
due to physiological lag, which is comparable in magnitude to the uncertainty arising from
noise and non-orthogonality in the spectral dataset, can be reduced substantially by
employing DCC.

We are currently performing a clinical study to characterize the glucose kinetics in a larger
population of human subjects of different ages and ethnicities, both with and without
diabetes. It is well-known that inadequate glycemic control causes microvascular and
macrovascular changes,45 which may in turn affect the physiological lag time. We expect
that this study will provide further details about such changes and the ability of spectroscopy
to diagnose similar diabetes-related complications. In addition, the clinical study across a
larger and more diverse population would lead to a better understanding of the applicability
of the DCC model as well as the variation of the lag time across different population
segments. This clinical study is also expected to shed light on tissue site selection for
spectroscopic sensing, based on a combination of skin heterogeneity and glucose kinetics
parameters. In addition, our future research will focus on combining DCC with non-linear
and hybrid regression schemes to develop more robust and accurate calibration models.
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Appendix I
A first-order accurate estimate of the blood glucose concentration can be obtained by using a
finite difference approximation for the derivative term of Eq. (4):

(15)

where Δt is the time interval at which spectroscopic measurements (and thus, ISF glucose
concentration estimates) are obtained. The above equation gives the discrete transformation
equation of the post-prediction (PP-DCC) step, which can be applied in real-time. There are
a couple of points worth noting about the application of Eq. (15). Firstly, it is evident from
the above equation that at least two spectroscopic predictions of ISF glucose (at t and t −Δt)
are necessary in order to determine the blood glucose concentration at time t. In practice, it
is beneficial to perform multiple spectroscopic acquisitions so that the corresponding blood
glucose estimates can be averaged to ensure less fluctuations in the predicted blood glucose
value. Secondly, the time interval Δt, at which the spectroscopy based ISF glucose
predictions should be performed, needs to be ascertained. Although spectroscopic
acquisitions can be performed rapidly, having a very small Δt is not too useful as it may fail
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to capture the changes in the glucose levels due to the slow diffusion kinetics – thereby
rendering the DCC approach ineffective. On the other hand, too large a time interval would
introduce substantial errors in the derivative term. Using these limiting cases as guidelines,
one might optimize the value of Δt with a starting point given by a fraction of the typical
physiological lag time (~5–10 min).

Appendix II
After employing integration by parts for the second term of Eq. (5), numerical integration
was performed by using Simpson’s rule to get the following equation:

(16a)

where

(16b)

Here,  refers to the derivative of cBG evaluated at t. This equation can be readily
evaluated by approximating  via a first-order finite difference approximation similar to
that employed in Eq. (15) for the PP-DCC step (Appendix I). The resultant discretized
version of Eq. (16) gives the necessary transformation equation for the PC-DCC step. The
primary challenge in the evaluation of this equation lies in having a priori knowledge of the
initial ISF glucose value, i.e. at the start of the time window [ti, tf]. Generally, such
information is not available for an arbitrary time window. However, during a spectroscopic
calibration study such as glucose clamp or tolerance test, one can ensure that the ISF glucose
and blood glucose values are completely in equilibrium at the start of the experiment by
restricting the glucose intake of the subject prior to the measurements. For example, a
typical oral glucose tolerance test (OGTT) protocol stipulates that the patient must fast for
8–14 hours before the study.46 This initial condition enables successful evaluation of Eq.
(16) for the first time window. For each subsequent evaluation, the ISF glucose value at time
tf for the previous window is inputted as the initial value (at time ti) for the current window.
Evidently, the shorter the time window over which the evaluation is performed, the higher
the accuracy of the determined ISF glucose concentrations. Nevertheless, the time window
cannot be shortened below a lower bound, governed by the maximum permissible frequency
of blood withdrawal from a human subject. Most research laboratories, for example, sample
blood glucose at time intervals ranging from 2.5–10 minutes.14, 34, 47 To determine the
values of the concentrations and their derivatives at intermediate points, spline interpolation
is employed.
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Fig. 1.
Flowcharts of (a) the conventional implicit and (b) DCC calibration methods. Scalib, cblood,
and spred represent the calibration spectra, reference blood glucose concentrations in the
calibration samples, and the spectrum acquired from the prediction sample, respectively. For
the conventional calibration method, bconv and cpred give the regression vector and the
predicted concentration, respectively. For DCC calibration, bDCC represents the developed
regression vector. cISF,pred and cblood,pred are the intermediate ISF glucose estimate and the
final blood glucose prediction. PC-DCC is the pre-calibration transformation of blood
glucose concentrations into the corresponding ISF glucose values. PP-DCC transforms the
predicted ISF glucose concentration into the blood glucose value. Note that the conventional
calibration scheme does not differentiate between the blood and ISF glucose concentrations.
‡ Both PP-DCC and PC-DCC require two concentration inputs acquired at a time interval Δt
apart for evaluation of Eq. (15) and (16), respectively.
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Fig. 2.
(A) A schematic representation of blood and ISF glucose concentration profiles, similar to
those obtained during a typical tolerance test. (B) Plot of the ISF vs. blood glucose
concentrations shown in panel (A). The solid line curve shows the lack of one-to-one
correspondence between the actual ISF and blood glucose relationship, while the dotted line
curve represents the approximate relationship estimated by the DCC model. Further details
are provided in the text.
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Fig. 3.
Blood and ISF glucose concentration time profiles measured from a normal human
volunteer during insulin-induced hypoglycemia.34 Glucose was clamped at 5, 4.2 and 3.1
mM and subsequently allowed to return to normoglycemic levels. It is observed that the ISF
glucose, measured by subcutaneous amperometric sensors, consistently lags blood glucose
concentrations during both rising and falling phases. In contrast, they have nearly identical
values during the clamping phases.
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Fig. 4.
(a) Representative Raman spectra acquired from a human volunteer during OGTT.
(b) Blood glucose concentration profile measured over the same time.
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Fig. 5.
Cross-validation results of conventional (red) and DCC (black) calibration methods applied
on the simulated dataset. The measured ISF glucose concentration values are given by the
blue dotted line. In the DCC calibration process, the lag time constant αoptimal was optimized
to be 6.1.
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Fig. 6.
Prospective prediction results of conventional (red) and DCC-based (black) calibration
methods applied on the simulated dataset. The measured blood glucose concentration values
are given by the blue dotted line.
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Fig. 7.
Plot of RMSEP obtained for conventional (red) and DCC (blue) calibration models, applied
on the simulated dataset, as a function of increasing SNR. The error bars represent the
standard deviation of RMSEP for 20 iterations.
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