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Abstract: This article describes the SRI24 atlas, a new standard reference system of normal human brain
anatomy, that was created using template-free population registration of high-resolution magnetic reso-
nance images acquired at 3T in a group of 24 normal control subjects. The atlas comprises anatomical
channels (T1, T2, and proton density weighted), diffusion-related channels (fractional anisotropy, mean
diffusivity, longitudinal diffusivity, mean diffusion-weighted image), tissue channels (CSF probability,
gray matter probability, white matter probability, tissue labels), and two cortical parcellation maps. The
SRI24 atlas enables multichannel atlas-to-subject image registration. It is uniquely versatile in that it is
equally suited for the two fundamentally different atlas applications: label propagation and spatial nor-
malization. Label propagation, herein demonstrated using diffusion tensor image fiber tracking, is enabled
by the increased sharpness of the SRI24 atlas compared with other available atlases. Spatial normalization,
herein demonstrated using data from a young-old group comparison study, is enabled by its unbiased
average population shape property. For both propagation and normalization, we also report the results of
quantitative comparisons with seven other published atlases: Colin27, MNI152, ICBM452 (warp5 and
air12), and LPBA40 (SPM5, FLIRT, AIR). Our results suggest that the SRI24 atlas, although based on 3T
MR data, allows equally accurate spatial normalization of data acquired at 1.5T as the comparison atlases,
all of which are based on 1.5T data. Furthermore, the SRI24 atlas is as suitable for label propagation as
the comparison atlases and detailed enough to allow delineation of anatomical structures for this purpose
directly in the atlas. Hum Brain Mapp 31:798-819, 2010.  © 2009 Wiley-Liss, Inc.
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INTRODUCTION

An anatomical atlas, like a geographical atlas, provides
a standardized coordinate system in which structures and
their spatial relationships with each other are represented.
Digital atlases, in particular, commonly take the form of
three-dimensional (3D) images that depict anatomy by
means of one or more morphological imaging modalities,
for example, X-ray computed tomography, or magnetic
resonance imaging (MRI). These are often accompanied by
maps of semantic labels, so-called segmentations, which
delineate various structures of interest. As Mazziotta et al.
[1995] point out, however, anatomy is different in every
individual, and thus, unlike geography, does not have an
underlying unambiguous and invariant physical reality.
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Many atlases of different anatomies have, therefore,
been created. Some atlases are based simply on a single
individual, such as the well-known Talairach atlas [Talair-
ach and Tournoux, 1988] of the human brain, the whole-
body Visible Human dataset [Spitzer et al., 1996], or the
atlas of the rat brain by Bai et al. [2006]. Other atlases
attempt to capture subject-independent properties by vir-
tue of being constructed from populations of individuals.
Population atlases have been created of the human brain
[Kazemi et al., 2007; Mazziotta et al., 2001a,b; Woods et al.,
1999], and other species, including the rat [Toga et al,
1995]; the honey bee, Apis Melifera [Brandt et al., 2005;
Rohlfing et al., 2001]; the desert locust, Schistocerca gregaria
[Kurylas et al., 2008]; and the fruitfly, Drosophila [Jenett
et al., 2006; Rein et al., 2002]. More detailed atlases that
focus on particular organs or anatomical regions are also
common, such as the recently presented comprehensive
map of the Drosophila olfactory system at the single-neuron
level [Jefferis et al., 2007].

Atlases of the human brain based on MRI provide
standard anatomical coordinate systems for joint data anal-
ysis. They are also used to define anatomical structures
and to propagate them to individual images (atlas-based
segmentation), where they can then serve in such diverse
applications as stereotactic localization [Kikinis et al., 1996]
or as standardized seed and target regions in population
studies of fiber tracking [Mori and van Zijl, 2002; Mori
et al., 2008] in diffusion tensor images (DTI) [Basser and
Pierpaoli, 1996].

We present in this work a new brain atlas that is based
on high-resolution MRI acquired at 3T from 24 subjects.
The “SRI24 atlas” improves on currently available atlases
in several ways: it includes multiple coregistered acquired
data channels (structural MRI, DTI) and derived measures
(FA, MD, tissue classes, anatomical region definitions).
Registrations between the atlas and subject images can,
therefore, be computed using potentially more robust and
accurate multichannel registration techniques [Boes and
Meyer, 1999]. Brain anatomy in the SRI24 atlas is repre-
sented in an unbiased population-average coordinate sys-
tem, which minimizes the deformation between the atlas
and individual brains, thus improving the robustness and
accuracy of registration. Finally, the SRI24 atlas is crisp
enough for region definition, and thus for label propaga-
tion (atlas-based segmentation) [Miller et al., 1993]. The
two latter properties eliminate the need to use different
atlases for spatial normalization and label propagation and
enable consistent studies that require both, such as quanti-
tative fiber tracking-based comparisons across the normal
adult age range [Sullivan et al.,, in press] and between
diagnostic groups [Pfefferbaum et al., 2009b].

Different atlases are typically used for spatial normaliza-
tion and label propagation. Atlases for spatial normaliza-
tion usually represent subject-independent anatomical
relationships derived from a population of individuals,
but contain some residual uncertainty of spatial localiza-
tion due to imperfect alignment (i.e., registration) across

individuals. Atlases for label propagation, on the other
hand, are commonly based on images obtained from a sin-
gle individual [Hammers et al., 2002; Holmes et al., 1998;
Tzourio-Mazoyer et al, 2002], so that anatomical land-
marks are well-defined, albeit in a coordinate system that
is not necessarily a good representative of the population
of interest. When used for label propagation, population
atlases typically rely on probabilistic label maps [Mazziotta
et al., 1995, 2001a,b; Shattuck et al., 2008], which represent
the probabilities of finding a given structure at a given
pixel, thus allowing for the inherent uncertainty of the av-
erage coordinate system. As we show herein, however,
spatial uncertainty of blurry atlases causes coregistration
problems that substantially degrade label propagation
accuracy.

The remainder of this article is organized as follows.
The “Atlas Construction” section describes in detail the ra-
tionale and methods behind the construction of the SRI24
atlas and provides an overview of all information channels
used in the actual atlas construction. “Atlas Applications”
presents examples of applications in spatial normalization
and label propagation that used the SRI24 atlas. Further
improving on an earlier conference presentation of the
SRI24 atlas [Rohlfing et al., 2008], we describe two recently
added cortical parcellation maps. The first map, which we
refer to as the SRI24/TZO map, is based on the template
by Tzourio-Mazoyer et al. [2002], to which we added spa-
tially encoded manual delineations of additional anatomi-
cal structures. The second parcellation map, referred to as
the SRI24/LPBA40 map, is based on the LONI Probabilis-
tic Brain Atlas of 40 subjects [Shattuck et al., 2008]. Both
label maps are distributed with the atlas. Finally, in “Dis-
tribution”, we detail the availability of the atlas to the sci-
entific community, including a summary of distributed
image file formats and region label encodings in the par-
cellation masks.

ATLAS CONSTRUCTION
Rationale

To maximize the usefulness of the SRI24 atlas, we
imposed several requirements that guided the design of
the image acquisition protocols and image processing
pipeline. In particular, the atlas is based on image data
acquired using state-of-the art imaging equipment and
techniques, represents normal human brain anatomy
across a large age range, and provides the most commonly
used channels of MR image information (see “Imaging
and Subjects”).

To facilitate robust and accurate spatial normalization,
the atlas is defined in a population-average coordinate sys-
tem that minimizes deformations between the atlas and
individual subject images. At the same time, the atlas is
sufficiently crisp to display clear boundaries of distinct an-
atomical structures and enable the outlining of meaningful
labeled regions. We simultaneously achieved these last
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two goals by applying an unbiased, fully nonrigid group-
wise intersubject registration algorithm in the construction
of the atlas (see “Template-Free Unbiased Intersubject
Image Registration”).

Imaging and Subjects

Volunteers were 12 young (25.5 + 4.34, range = 19-33
years, 6 male and 6 female) and 12 elderly (77.7 £ 4.9,
range = 67-84 years, 6 male and 6 female), right-handed,
nonsmoking healthy men and women, recruited from the
local community for studies of normal aging [Zahr et al.,
2008, 2009]. All participants underwent a thorough psychi-
atric interview by a trained research psychologist using
the Structured Clinical Interview for the Diagnostic and
Statistical Manual (DSM) IV to exclude subjects with psy-
chiatric diagnoses or medical conditions that can affect
brain functioning (e.g., diabetes, head injury, epilepsy,
substance abuse) or preclude safe MR examination (e.g.,
pacemakers). A detailed alcohol history was also taken
from each participant to exclude subjects with a history of
alcohol abuse or alcohol dependence.

The young and the elderly groups did not differ signifi-
cantly in education or estimated general intelligence,
although the elderly had a higher socioeconomic status
than the young [Hollingshead, 1975]. The elderly scored
lower (137.3 + 4.7) than the young (141.4 £ 2.6) on the De-
mentia Rating Scale, but the cutoff for dementia is <124
out of 144 [Mattis, 1988], and all subjects scored well
within the normal range of previously published values
for healthy elderly individuals living in the community
[e.g., 137.5 + 5.2; Vitaliano et al., 1984]. The body mass
index (BMI) was significantly greater for the elderly (26.6
+ 4.6 kg/m?) than the young (23.1 + 13.0 kg/m?), with
the elderly slightly overweight on average (BMI between
25.0 and 29.9 kg/ m?), but close to the mean BMI calcu-
lated from the 5,200 subjects participating in the cardiovas-
cular health study (26.3 + 3.9 kg/ m?) [Janssen et al., 2005].
The elderly also had significantly higher systolic blood
pressure (1359 £+ 221.8 mm Hg) than the young group
(114.0 + 16.2 mm Hg), but all were in the prehypertensive
range (i.e., between 120 and 139 mm Hg).

Imaging was performed on a 3.0T GE scanner with an
8-channel head coil. Some sequences used the temporal
acceleration of GE’s Array Spatial Sensitivity Encoding
Technique. In ~40 min per subject, four imaging sequen-
ces were collected:

1. For T1-weighted structural images: 3D axial IR-prep
SPoiled Gradient Recalled (SPGR), TR = 6.5 ms, TE =
1.54 ms, FOV = 240 x 240 mm, 256 x 256 pixels,
number of slices = 124, slice thickness = 1.25 mm,
interslice gap = 0 mm.

2. For proton density-weighted (hereafter, early-echo)
and T2-weighted (hereafter, late-echo) images: 2D
axial dual-echo fast spin echo (FSE), TR = 10,000 ms,
TE = 14/98 ms, FOV = 240 x 240 mm, 256 x 256 pix-

els, number of slices = 62, slice thickness = 2.5 mm,
interslice gap = 0 mm.

3. For diffusion tensor computation: 2D echo-planar dif-
fusion-weighted images (DWI), TR = 7,500 ms, TE =
97.6 ms, number of slices = 62, slice thickness = 2.5
mm, interslice gap = 0 mm, b = 0 (5 NEX), plus 15 non-
collinear diffusion directions b = 860 s/mm? (2 NEX),
plus 15 opposite polarity noncollinear diffusion direc-
tions b = 860 s/mm? (2 NEX) FOV = 240 mm, x-dim =
96, y-dim = 96, reconstructed to 128 x 128 pixels.

4. For field map computation to spatially unwarp DWI:
2D axial dual-echo gradient echo (GRE), TR = 460
ms, TE = 3/5 ms, number of slices = 62, slice thick-
ness = 2.5 mm, interslice gap = 0 mm.

In the DWI, eddy-current distortions were minimized on
a slice-by-slice basis by within-slice registration that takes
advantage of the symmetry of the opposing polarity acqui-
sition. The individual repeat acquisitions for each diffusion
direction were averaged, eliminating the need to account
for the cross terms between imaging and diffusion gra-
dients [Neeman et al, 1991], producing 15 images per
location for tensor computation. A field map was con-
structed from the complex difference image between two
echoes (3 and 5 ms) of the GRE after unwrapping with
PRELUDE. B0 inhomogeneity distortion was corrected
with FSL’s Utility for Geometrically Unwarping EPIs
(FUGUE).

For the youngest (19 years) and the oldest (84 years)
subject, slices from the acquired data are shown in Fig-
ure 1, as well as corresponding slices from the DTI-
derived fractional anisotropy (FA) and mean diffusivity
(MD) maps and three-compartment tissue segmentations.

Image Preprocessing

For each subject, the following preprocessing steps were
performed to correct imaging artifacts and align all image
channels:

1. A coarse head-versus-background mask was extracted
by thresholding the late-echo FSE image.

2. For FSE intensity inhomogeneity correction, a second-
order polynomial multiplicative bias field was com-
puted from the early-echo FSE image using the previ-
ously generated late-echo head mask using a model-
free entropy-minimization algorithm [Likar et al,
2001]. This bias field was then also applied to the
late-echo image, because the bias correction algorithm
worked more reliably on the early than on the late-
echo images. Applying the same multiplicative bias
field to both echos also guaranteed invariance of T2
times (and the associated rates, R2), which can be
derived at each pixel from the log-ratio of early and
late-echo image intensities [Pfefferbaum et al., in
press].
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Early-echo FSE

Late-echo FSE

B = 0DWI FA MD

Tissue

Figure I.
Images of the youngest (19 years; top row) and oldest (84 years; bottom row) of the 24 sub-
jects. Images are shown here after within-subject alignment and, for SPGR, early- and late-echo

images, with MR bias field correction.

3. A brain mask was extracted from bias-corrected late-
echo image using the FSL Brain Extraction Tool, BET
[Smith, 2002].

4. A separate second-order multiplicative bias field for
intensity inhomogeneity correction [Likar et al., 2001]
was computed from, and applied to, the SPGR image.
As the head mask for this bias field correction we
used a temporary brain mask propagated from the
FSE image via registration of the uncorrected early-
echo FSE to uncorrected SPGR image.

5. The bias-corrected early-echo FSE image was regis-
tered to the bias-corrected SPGR image.

6. The FSE brain mask was transferred once more to the
SPGR image by label propagation, this time using the
bias-corrected registration transformation, to obtain
the final SPGR brain mask. This mask was applied to
the bias-corrected SPGR image to obtain the skull-
stripped SPGR image.

Within-Subject Registration

Using the skull-stripped images and intensity bias-cor-
rected images as described above, the different MRI chan-
nels acquired for each subject were brought into alignment
as follows:

1. Stripped and bias-corrected late-echo FSE images
were registered to the stripped and bias-corrected
SPGR images.

2. To align DTI and anatomical images and to correct
for residual geometrical distortion, each b = 0 echo-

planar image (EPI) was registered nonrigidly (Rueck-
ert et al. [1999]; see also Studholme et al. [2000]) to
the corresponding bias-corrected (but unstripped)
late-echo FSE image.

Template-Free Unbiased Intersubject Image
Registration

The anatomical coordinate space of the SRI24 atlas was
constructed via a groupwise registration procedure. No one
subject was selected as the template for the registration,
which is why we refer to the entire procedure as “unbiased”
in the sense that putting the input subjects in any particular
order did not bias the result of the registration.

All 24 brain-stripped and bias-corrected SPGR images
were first simultaneously registered with linear transfor-
mations using a template-free registration algorithm. The
reference coordinate space was not related to any of the
subject image spaces but was represented instead by an
empty grid of pixel locations that had the same size and
resolution as the acquired SPGR images.

Coordinates in reference space were mapped onto each
subject’s SPGR image by a separate affine coordinate trans-
formation with the following nine degrees of freedom:
three translations, dx, 8y, 8z, three rotation angles, o, B, v,
and three log-scale factors, Ix = log cx, Iy = log cy, Iz =
log cz. The use of log-scale factors ensured that the iden-
tity transformation was described by the zero parameter
vector and permitted enforcement of zero sums for each of
the transformation parameters over all subjects.

The image similarity measure for the template-free
affine registration was a multi-image generalization of
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(b)

Figure 2.
Axial slices from all subjects (a) after groupwise affine registration, and (b) after groupwise non-
rigid registration. Enlargements of the respective slices from the oldest (left) and youngest sub-
ject (right) in the population are also shown. The images in each panel are sorted by increasing
subject age, in rows from top left to bottom right.

mutual information [MI; Zhang and Rangarajan, 2005]. To
avoid the common issues with sparse histograms, our
algorithm takes advantage of the fact that under certain
assumptions, the marginal and joint entropies of the
registered image channels are proportional to the determi-
nants of appropriately computed covariance matrices [Rus-
sakoff et al., 2004].

Completion of the affine registration stage was followed
by an unbiased nonrigid registration algorithm, which is
similar to the one described by Balci et al. [2007] and uses
the stack entropy registration criterion introduced in the
“congealing” algorithm by Learned-Miller [2006]. In short,
stack entropy is implemented by reformatting all images
into template space and computing the entropy of inten-
sity distributions over all images at each template pixel.
The entropies are then added over all template pixels to
obtain the final groupwise registration criterion.

The nonrigid transformation model of the algorithm is
based on the B-spline free-form deformation by Rueckert

et al. [1999], but implemented to encode the initial affine
transformations in the initial control point positions as
detailed in Rohlfing et al. [2003]. To this transformation
model, we apply a zero-mean deformation strategy [Stud-
holme and Cardenas, 2004]. Unlike Studholme and Carde-
nas [2004], however, who achieved approximate zero-
mean deformation fields using a constraint term in the
optimization function, our algorithm enforces exact zero-
mean deformations during the optimization using gradient
projection in a multiresolution gradient descent algorithm
[Rohlfing and Maurer, 2003].

The theoretical rationale behind the zero-mean con-
straint is to construct an atlas coordinate space that
requires the least amount of deformation, on average,
when mapping to the individual subjects, thus creating a
minimum deformation template [Kochunov et al., 2001].
On a more practical level, the zero-mean constraint is also
useful as it prevents the optimization algorithm from
shrinking all input images into a single pixel, which
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Figure 3.
Average SPGR image after (a) groupwise affine and (b) group-
wise nonrigid registration. The nonrigid registration clearly
improves the level of anatomical detail visible in the atlas.

would be the global optimum of the similarity measure
but unusable as a registration result.

Numerous algorithms for template-free population regis-
tration and atlas construction have been proposed. Gui-
mond et al. [2000] were among the first to propose the
concept of an average-intensity image in an average coordi-
nate space, but their method was not template free and
thus not unbiased. Lorenzen et al. [2004], Joshi et al. [2004],
and Twining et al. [2005] all used groupwise registrations
based on diffeomorphic flows, which ensure one-to-one cor-
respondences between all individual images and the result-
ing atlas. Bhatia et al. [2007,2004] used algorithms based,
like ours, on the B-spline deformation model, but with dif-
ferent groupwise registration metrics. As far as we know,
however, none of these algorithms have ever been used to
create an atlas that was made publicly available.

In general, any effective groupwise registration method
technique could have been used to construct the SRI24
atlas, including iterative methods used by us in earlier
work [Brandt et al., 2005; Kurylas et al., 2008; Rohlfing
et al., 2001]. We decided to use the algorithm described in

“Template-Free Unbiased Intersubject Image Registration”,
because it is template free (thus unbiased) and noniterative
(other than employing an iterative optimization for regis-
tration), and we have found it to be both robust and accu-
rate (based on visual inspection of the registration results).
We also found it sufficient to use only the SPGR channel
from each subject for anatomical coregistration, rather than
use several of the available image channels from each sub-
jects (Lorenzen et al. [2006]; Hecke et al. [2008]).

Two different image similarity measures were used for
the affine and nonrigid registration because we empirically
found MI to be more robust, while stack entropy appeared
to be more accurate. In more detail, we observed registra-
tion failure for some images in the affine registration using
stack entropy but not MI. Also, we observed a sharper av-
erage image after nonrigid registration using stack entropy
than using MI. Thus, MI was used for the affine stage and
stack entropy was used for the nonrigid stage.

The effectiveness of nonrigid registration is illustrated
by the comparison of slices from all subjects before and af-
ter nonrigid registration in Figure 2. Consequently, the av-
erage of the 24 individual SPGR images is substantially
sharpened after nonrigid compared with affine registration
in (Figure 3).

Atlas Generation

Using concatenations of the appropriate transformations
(illustrated in Fig. 4), within each subject and then from
each subject into group average space, all channels of
information were reformatted directly into the final atlas
space. Each image was, therefore, interpolated only once to
avoid accumulation of interpolation artifacts. Axial slices
through all atlas channels are shown in Figure 5.

Structural channels

All coregistered macro-structural image channels (SPGR,
early- and late-echo FSE) were reformatted into the atlas
space using a cubic interpolation kernel. The image inten-
sities of the reformatted images were normalized to equal
means and standard deviations, and the reformatted and
normalized images were then averaged.

Tissue probability maps and label map

Tissue probability maps for cerebrospinal fluid (CSF),
gray matter (GM), and white matter (WM) were independ-
ently obtained for each subject using FSL’s “FAST” tool
[Zhang et al., 2001] on the stripped and bias-corrected
SPGR images in each subject’s individual coordinate space.
The segmentation probability maps were then reformatted
into atlas space and numerically averaged. From the
averaged probability maps, an indexed tissue label map
(CSF =1, GM = 2, WM = 3) was also generated by deter-
mining at each pixel the tissue with the highest probability
value.
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Subject #1

Early-echo FSE

Subject #24  Subject #23

R

emplate-fre
Image Registration

g\

Subject #3 Subject #4

Figure 4.
lllustration of the registration links between the images that the SRI24 atlas is constructed from.
For each subject, the b = 0 EPI is registered to the late-echo FSE image, which in turn is regis-
tered to the SPGR image. The early- and late-echo FSE images from each subject were acquired
in a single, dual-echo acquisition and are, therefore, in perfect registration. The SPGR images
from all 24 subjects are coregistered using a simultaneous, template-free registration algorithm.

To verify the accuracy of FAST tissue segmentations of
the input images, we performed a stereology-type valida-
tion study [Grabowski et al., 2000]. For both the youngest
and the oldest subject in the study, 52 points inside the
brain were randomly selected. Two of the authors (TR:
“Expert A”, and NMZ: “Expert B”) then independently
classified the tissue type at each of these locations in the
SPGR image as either CSF, GM, or WM. One author (TR)
repeated the classification one day later. The manual clas-
sifications were then compared with each other and with
those provided by FAST. The resulting pairwise co-occur-
rence tables are provided in Table I.

From these tables, we computed Cohen’s k coefficient, a
statistical measure of inter-rater agreement for categorical
data [Cohen, 1960] defined as

_ Pactual - prandom (l)
1-P random ’

where P,ctua is the observed probability of two raters
agreeing with one another, and Pyangom is the probability
of agreement purely by chance.

Although not universally accepted, Landis and Koch
[1977] rate k values above 0.61 as “substantial agreement”

and above 0.81 as “almost perfect agreement.” Regardless
of whether one agrees with this rating system, we note
that the agreement of FAST with the three expert segmen-
tations (between 0.67 and 0.81) is very close to the inter-
rater agreement between each of the two classifications by
Expert A and the single classification by Expert B of k =
0.70 and k = 0.74, respectively. This suggests, in our opin-
ion, at the very least an acceptable level of segmentation
performance by FAST.

Diffusion channels

Diffusion tensor fields were reconstructed in native
image coordinates of each of the original 24 subjects.
The DTI-derived image channels of scalar diffusion
measures (FA, MD, and longitudinal diffusivity, A;) were
generated from the tensor fields in subject space and
were then reformatted into the atlas space using a cubic
interpolation kernel. The reformatted images from all
subjects were averaged, and the value ranges were trun-
cated to [0, 1] for FA and [0, o0) for MD and A; so as
to eliminate illegal values introduced by the cubic
interpolation.
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Figure 5.
Axial slices through the channels of the SRI24 atlas in |0 mm increments, from z = 20 mm (infe-
rior) to z = 130 mm (superior). The structural image channels are grouped on the left, the tis-

sue segmentation channels are grouped in the center, and the diffusion-related channels are
grouped on the right. Columns from left to right: SPGR, early-echo FSE, late-echo FSE, CSF
probability map, GM probability map, WM probability map, tissue label map, mean DWI, FA map,
MD map, A; map.
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TABLE I. Comparison of tissue classification using FAST and manual expert classification for 52 samples in the
youngest and 52 in the oldest subject

Expert A1 Expert A2 Expert B
CSF GM WM CSF GM WM CSF GM WM | X
CSF| 13 2 0 14 1 0 13 2 0 [15
FAST GM | 2 36 10 b4 s 0 48 0 |48
0 5 36 0 14 27 |41
WMo 7 34 15 48 41 13 64 27
3 15 45 44 x=0.81 xk=0.74
Expert A2 Expert B
CSF GM WM CSF GM WM| X
CSF| 14 1 13 2 0|15
E’;{’;’” GM| 1 42 0 45 0 | 48
WM| 0 5 0 17 27| 41
X | 15 45 13 64 27
x=0.93 k=10.70
Expert B
CSF GM WM | X
CSF |13 2 0|15
BXpert GM [0 48 0 |48
WM 0 14 27 | 41
pX 13 64 27
xk=0.74

Co-occurrence tables show the summary comparisons of FAST vs. each of the three manual segmentations (top row), first vs. second
classification by Expert A, and first classification by Expert A vs. classification by Expert B. From each table, Cohen’s x coefficient of

inter-rater agreement was computed (see text for details).

Cortical parcellation maps

Two cortical parcellation label maps were constructed for
the SRI24 atlas. The first, which we refer to as the SRI24/
TZO map, is based on the map described by Tzourio-
Mazoyer et al. [2002]. This map is defined in the coordi-
nates of the Colin27 brain image [Holmes et al., 1998], a
high-quality single-subject SPGR image resulting from core-
gistration and averaging of 27 scans of the same person.

As coregistration of SRI24 and Colin27 was not suffi-
ciently robust for direct transfer of the label map, we used
an approach suggested by Heckemann et al. [2006] as
“indirect fusion.” In short, the Colin27 atlas had previ-
ously been registered to each of 300 archival 1.5T SPGR
images from studies performed by our group [Pfefferbaum
et al., 2006b, 2007]. Each of these 300 images was then also

registered to the SRI24 atlas. By reformatting the cortical
label map from Colin27 through each of the 300 indirect
two-transformation sequences onto SRI24, we obtained 300
different cortical maps for the SRI24 atlas. These were then
combined by label fusion [Rohlfing et al., 2001].

To the thus transferred cortical parcellation map, one of
the authors (AP) manually added segmentations of the
corpus callosum, the lateral ventricles, [Pfefferbaum et al.,
2006a] and the pons. To enable studies of spatial distribu-
tions of effects, the corpus callosum was coded with an
anterior-posterior subdivision according to Pandya and
Seltzer [1986], the ventricle mask was coded with a poste-
rior—anterior gradient of increasing label indices (constant
label in each coronal slice), and the pons mask with a left—
right gradient (constant label in each sagittal slice). The
final label map, which we refer to as SRI24/TZO
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Figure 6.
Axial slices of the SRI24/TZO cortical parcellation map, overlaid onto the SPGR structural atlas
channel, in 5-mm increments from z = |5 mm (inferior) to z = 135 mm (superior).

parcellation, is shown in axial slices in Figure 6 and ren- The second cortical parcellation for the SRI24 atlas was
dered in 3D in Figure 7 after projection onto a cortical sur-  generated from the manual segmentations used by Shat-
face model of the SRI24 brain that was extracted from the tuck et al. [2008] to construct the LPBA40 atlas. We
gray matter tissue probability map. obtained the original MR images and manual
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Figure 7.
Three-dimensional renderings of the SRI24/TZO parcellation map, projected onto a cortical sur-
face model. (a) View from left. (b) View from anterior. (c) View from superior. (d) View from
right. (e) View from posterior. (f) View from inferior.

segmentations from the LPBA40 website and registered
each of the 40 individual SPGR images to the SRI24 atlas
via nonrigid registration [Rohlfing and Maurer, 2003;
Rueckert et al., 1999]. The individual segmentations were
then propagated into SRI24 coordinate space, where they
were combined via label fusion [Rohlfing and Maurer,
2005]. The final label map, which we refer to as SRI24/
LPBAA40 parcellation, is thus essentially a 40-atlas segmen-
tation of the SRI24 brain and is shown in axial slices in
Figure 8 and rendered in 3D in Figure 9 after projection
onto the aforementioned cortical surface model.

Brain masks

The brain masks previously generated in subject space
(see “Image Preprocessing” section) were reformatted into
atlas space and averaged using a shape-based averaging
algorithm [Rohlfing and Maurer, 2007]. The averaged
brain mask was then used to remove all data outside the
brain in all aforementioned average images (structural, tis-
sue, DTI, and parcellation), which ultimately resulted from

imperfect alignment (within one or two pixels) of the 24
subject SPGR images.

ATLAS APPLICATIONS

To assess quantitatively the suitability of the SRI24 atlas
for label propagation and spatial normalization, we com-
pared it with several other established atlases, shown in Fig-
ure 10: the MNI152 atlas [Mazziotta et al., 2001a], the ICBM-
452T1 (air12 and warp5) atlases', the LONI Probabilistic
Brain Atlas, LPBA40 [Shattuck et al., 2008] (SPM5, FLIRT,
and AIR), and the Colin27 brain [Holmes et al., 1998].

Spatial Normalization
Comparison with other atlases

Spatial normalization of all subjects in a study to the
same coordinate space is a common step in many group
comparison studies [e.g.,, Ashburner and Friston, 2000;

"http:/ /www.loni.ucla.edu/Atlases /
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z = 015 mm z = 020 mm z = 025 mm z = 030 mm

Figure 8.
Axial slices of the SRI24/LPBA40 cortical parcellation map, overlaid onto the SPGR structural
atlas channel, in 5-mm increments from z = 15 mm (inferior) to z = 135 mm (superior).
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Figure 9.
Three-dimensional renderings of the SRI24/LPBA40 parcellation map, projected onto a cortical
surface model. (a) View from left. (b) View from anterior. (c) View from superior. (d) View
from right. (e) View from posterior. (f) View from inferior.

Cardenas et al., 2002; Good et al.,, 2001]. Each of the
atlases was used as the target for spatially normalizing
skull-stripped SPGR images of the 40 individual subjects
used in the creation of the LPBA40 atlases. We previ-
ously used images from the IBSR database’ for this
evaluation [Rohlfing et al., 2008] but had to rely on
automatic skull stripping, which did not work equally
well on all images in the database. The LPBA40 subject
images are provided with manual skull strippings, and
40 images give a larger test set than the 14 successfully
skull-stripped images we previously used from the IBSR
database.

The segmentations provided from 57 anatomical struc-
tures for each of the LPBA40 individual subject images
were then propagated onto each of the atlases. Because
there are no corresponding label maps for the atlases
other than the LPBA40 variants, and because, unlike label
propagation, spatial normalization brings all subject
images into a single coordinate system, we used group-

2http: / /www.cma.mgh.harvard.edu/ibsr/

wise overlap scores as the evaluation metric rather than
the agreement between atlas and coregistered subject label
maps.

The groupwise scores were computed as follows. For
a given atlas, let L;;,, = 1 if | is the label at the n-th pixel
in the i-th reformatted label map, and L;;,, = 0 otherwise.
Then the groupwise overlap can be computed as a special
case of an overlap formula derived by Crum et al. [2005]
as

K-1i-1

>3 Yo > min(Ligy, Lijn)
=001 "
O=iaio ’ @

S>> ouiji > max(Lipy, Lijy)
1 n

i=0 j=0

where K is the number of atlases (here: K = 40).

Higher overlap scores indicate better consistency
between the anatomies mapped onto the atlas, suggesting
that an atlas with higher overlap scores is better suited for
spatial normalization than one with lower scores. We
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(b)

(c) (d)

(e)

Figure 10.

Examples of other publicly available MRI-based brain atlases.
Only Tl-weighted images are available for all atlases in this fig-
ure. (a) Colin27 brain atlas generated by averaging 27 independ-
ently acquired SPGR images of the same subject. (b) MNII52

report herein two different types of overlap, determined
by the choice of weights o;,;. The first is volume-weighted
overlap, for a;;; = 1 for all [, i, j, in which larger structures
have a proportionally larger influence. The second is
equally-weighted overlap, for oy;j =1/(3>", (Lisn + Ljsn))
for all I, i, j, in which all structures have the same influ-
ence, regardless of their volumes.

The scores for all structures mapped onto each atlas are
shown in Table II, both for nonrigid (B-spline registration)
and affine (9 degrees of freedom) normalization. For non-
rigid normalization, the SRI24 atlas outperformed all other
atlases in terms of the volume-weighted overlap, and all but
the LPBA40/SPM5 and ICBM452/warp5 atlases in terms of
equally-weighted overlap. For affine normalization, the
SRI24 atlas performed best out of all atlases by volume-
weighted overlap and fourth-best by equally weighted over-
lap. Note that there is a potential bias in this analysis in favor
of the LPBA40 atlases, because they were created from the
test images, which could potentially make coregistration
easier (e.g., due to more similar image contrast) and thus
more accurate.

The individual overlaps for the separate structures af-
ter nonrigid normalization were computed by restricting
the nested sum in Eq. (2) to a single label I. We then
used these per-label overlaps scores for statistical testing.
A within-factor analysis of variance comparing all eight
atlases yielded a significant effect (F(7,455) = 51.470,

atlas (at 2-mm resolution, as distributed with FSL). (c)
ICBM452/air|2 atlas. (d) ICBM452/warp5 atlas. (e) LPBA40/
SPM5 atlas. Note the still substantial fuzziness of all atlases
other than Colin27, especially when compared with the SRI24.

P = 0.0001). Follow-up paired comparisons indicated
that the SRI24 results were significantly different from
(and better than) six of the other seven atlases (all but
LPBA40/SPM5) on Fisher PLSD tests. The SRI24 results
furthermore differed significantly from four of the seven
other atlases by paired t-tests (Table III). For compari-
son, Table III also shows the affine normalization
results, where SRI24 performed significantly better than
Colin27, LPBA40/SPM5, LPBA40/FLIRT, and MNI152.
Differences with the remaining atlases were not
significant.

Application example: Aging effects on FA

For a demonstration of the utility of the atlas for spatial
normalization, data acquired at 3T from 10 young and 10
elderly subjects not used in the atlas construction (from
Sullivan et al. [2006]) were registered to the atlas and
group averages of FA constructed (see Fig. 11). The result-
ing group-average FA maps demonstrate the well-known
effect of decreased FA with increasing age (e.g., Pfeffer-
baum and Sullivan [2003]; Madden et al. [2004]; Salat et al.
[2005]; Sullivan et al. [2006]). Analyses similar to this are
frequently done in voxel-based morphometry (VBM) stud-
ies for comparisons between different groups of subjects.
Of particular interest here is how consistently the FA
maps from all subjects in either group were coregistered

¢ 811



¢ Rohlfing et al. ¢

TABLE Il. Groupwise overlap scores for the 40 LPBA40 individual subject images, spatially normalized to each of
eight atlases (sorted, from left to right, by increasing number of subjects used to create the atlas)

LPBA40 ICBM452

Atlas SRI24 Colin27 SPM5 FLIRT AIR MNI152 warp5 airl2
Nonrigid Normalization

Volume Weighted 0.907 0.843 0.852 0.847 0.793 0.844 0.800 0.800

Equally Weighted 0.491 0.435 0.501 0.487 0.485 0.474 0.493 0.482
Affine Normalization

Volume Weighted 0.872 0.821 0.808 0.807 0.739 0.809 0.743 0.747

Equally Weighted 0.412 0.414 0.413 0.411 0.420 0.412 0.420 0.419

Best overlap score in each row is printed in bold face. The two top rows show the results for nonrigid normalization, the two bottom

rows show the results for affine normalization.

with the SRI24 atlas, although registration was based on
the SPGR image channels of subjects and atlas. Although
we cannot provide a quantitative measure of the unavoid-
able registration errors, this illustrates that even the accu-
mulated errors of within-subject (DTI to SPGR) and
subject-to-atlas registration do not pose problems in this
application.

Label Propagation

Label propagation, or atlas-based segmentation, is a
commonly used technique to segment images by register-
ing them to an already segmented atlas image and then
propagating the labels from the atlas to the new image
according to the spatial transformation between them
[Miller et al., 1993]. We have previously shown [Rohlfing
and Maurer, 2005; Rohlfing et al., 2004a,b] that segmenta-
tion results can be greatly improved by using multiple
independent atlases. However, this is not always a practi-
cal approach as it requires time-consuming manual label-
ing of all structures of interest in more than a single atlas
image. As demonstrated [Rohlfing et al., 2004a], an “aver-
age shape atlas,” like the SRI24, does not perform as well
as multiple independent atlases, but it still typically out-
performs an atlas based on a single individual. According

to work by Wang et al. [2005], label propagation from a
carefully constructed average shape atlas can perform
close to independent propagation from multiple individual
atlases but requires substantially less effort to construct.

Comparison with other atlases

For a quantitative comparison of label propagation accu-
racy using different atlases, labelings of the same anatomi-
cal structures are needed for each of the atlases and for a
population of test subjects. As for spatial normalization,
we use the subjects included in the LPBA40 atlases [Shat-
tuck et al.,, 2008] as test subjects, because they represent
one of the largest available populations of manually seg-
mented MR images. A corresponding segmentation of the
SRI24 atlas (the aforementioned SRI24/LPBA40 label map)
was generated by label fusion of the spatially normalized
individual images used for evaluation in the previous sec-
tion. Using the same procedure, we also generated corre-
sponding segmentations for the remaining comparison
atlases including the three variants of the LPBA40 atlas.

Although this procedure of atlas labeling degrades the
atlas label map due to registration errors, the ultimate
label map is the result of a 40-atlas classifier fusion and is
thus likely quite well-matched with the anatomy. This is

TABLE lll. Per-label overlap scores and P values computed by two-sided, paired t-tests

LPBA40 ICBM452

Atlas SRI24 Colin27 SPM5 FLIRT AIR MNI152 warp5 airl2
Nonrigid Normalization

Mean 0.497 0.443 0.504 0.489 0.487 0.476 0.496 0.484

Std.dev. 0.112 0.114 0.099 0.097 0.095 0.099 0.097 0.095

T-test P vs. SRI24 <0.0001 0.072 0.071 0.039 <0.0001 0.753 0.012
Affine Normalization

Mean 0.423 0.419 0.418 0.416 0.425 0.417 0.425 0.424

Std.dev. 0.106 0.104 0.106 0.106 0.100 0.105 0.101 0.101

T-test P vs. SRI24 <0.0001 <0.0001 <0.0001 0.307 <0.0001 0.192 0.684

Best result (highest mean) in each row is marked in bold face.
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Figure 11.
lllustration of the SRI24 atlas for spatial normalization. (a) Aver-
age FA maps for 10 young (left) and 10 elderly (right) subjects
after registration and reformatting into the atlas space. (b) Line
profile reveals lower FA in the elderly subjects (gray line) than
the young subjects (black line). White line in (a) marks the level
at which FA is quantified.

especially the case because label voting is substantially
more robust to outliers than the numerical overlap values
reported in the previous section. Furthermore, this method
is the only way to generate label maps for the MNI152
and ICBM452 atlases, for which we have no access to the
original individual images.

To test label propagation using the LPBA40 atlases, we
did not use segmentations provided with these, but
instead used the same normalization and label fusion pro-
cedure as was applied to the remaining atlases. This was
done to treat all atlases equally and reduce (albeit of
course not eliminate) potential bias in the analysis. We

note that the provided LPBA40 label maps are also
affected by registration errors, namely those that occurred
during the construction of these atlases, although one
could argue that these errors might have different effects
due to the different registration problems, individual to
individual rather than individual to atlas.

For the actual evaluation of label propagation, each of
the eight atlases was independently registered, using
nonrigid registration, to each of the individual LPBA40
subjects. The direction of the coordinate mapping was
reversed from the ones used for spatial normalization,
so that the nonrigid alignments were indeed independ-
ently computed. The labels were then propagated from
each of the atlases to the coordinate space of each individ-
ual subject, where their overlap with the original manual
segmentations was computed. The resulting overlaps in
terms of fraction of correctly classified pixels are listed in
Table IV.

By this evaluation, the SRI24 atlas performed signifi-
cantly better (based on two-sided, paired t-tests) than the
Colin27, LPBA40/FLIRT, and MNI152 atlases. SRI24 per-
formed worse than the LPBA40/SPM5, LPBA40/AIR,
ICBM452 /warp5, and ICBM452/airl2 atlases.

Application example: ROI definition for DTI
fiber tracking

The usefulness of our atlas for region definition, and
thus atlas-based labeling, has been demonstrated in Zahr
et al. [2009] and is illustrated here in Figure 12. A parcella-
tion of the corpus callosum in the atlas was propagated
onto a coregistered subject image and provided target
regions for DTI fiber tracking.

DISTRIBUTION

The SRI24 atlas is made available at http://www.nitrc.
org/projects/sri24/ under a Creative Commons license.
The atlas is provided at 1-mm isotropic resolution with
image size 240 x 240 x 155 pixels. The atlas channels are
stored in different pixel data representations, depending
on the type of data:

TABLE IV. Comparison of label propagation from eight atlases vs. manual ground truth segmentations of the
LPBA40 individual subject images

LPBA40 ICBM452
Atlas SRI24 Colin27 SPM5 FLIRT AIR MNI152 warp5 airl2
Mean 0.9669 0.9530 0.9680 0.9637 0.9706 0.9654 0.9701 0.9694
Std.dev. 0.0032 0.0048 0.0034 0.0039 0.0029 0.0035 0.0030 0.0031
T-test P vs. SRI24 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Best result is marked in bold face.
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(a)

(b)

Figure 12.
Example of region definition for fiber tracking using the SRI24 atlas and label propagation. (a)
Parcellation of the corpus callosum into nine segments defined in the SRI24 atlas (top row) and
propagated onto a subject’s FA map (bottom row). (b) 3D rendering of fiber tracts determined
in subject’s diffusion tensor image and colored according to the parcellation of the corpus

callosum.

. Structural images (SPGR, early- and late-echo FSE) and
the mean DWTI are stored as signed 16bit integer data.

. FA is stored are 16bit signed integer data, with a scale
factor of 1,000 applied to the original FA values.

. MD and A, maps are stored as single-precision (32bit)
floating point data.

. Tissue probability maps are single-precision (32bit) float-
ing point images with all pixel values in the range [0, 1].
. The tissue class label map is stored as unsigned 8bit
data and the following label assignments: 0 = back-
ground, 1 = CSF, 2 = GM, 3 = WM.

. The extended SRI24/TZO cortical parcellation map,
based on the Tzourio-Mazoyer et al. [2002] parcellation
is stored as signed 16bit integer data. The following
continuous blocks of labels are assigned:

a. The cortical regions were encoded in the range
from 1 through 116 (image background: 0), fol-
lowing their order in the original template by
Tzourio-Mazoyer et al. [2002].

b. The anterior—-posterior lateral ventricle subdivi-
sion is represented by the labels 201 (posterior)
through 415 (anterior), with odd labels used for
the right hemisphere and even labels for the
left hemisphere.

c. The anterior—posterior corpus callosum subdivi-
sion is represented by the labels 581 (genu)
through 589 (splenium).

d. The left-right subdivided pons mask is repre-
sented with labels 591 (right hemisphere)
through 607 (left hemisphere).

7. The SRI24/LPBA40 parcellation map [Shattuck et al.,
2008] is stored as single-byte unsigned data with
region labels identical to the ones provided by
LONL?

Three image file formats are available, Near Raw Ras-
ter Data (NRRD),* NIFTL® and Analyze 7.5.° The NRRD
images are stored in axial orientation with a self-con-
tained definition of the image coordinate systems.”
The NIFTI images are stored in axial orientation with
appropriately set orientation information. The Analyze
hdr/img pairs are stored in axial R-L/P-A/I-S pixel
order, that is, the fastest varying pixel index corresponds
to the anatomical right-left direction, the second-fastest
index corresponds to the posterior-anterior direction,
and the third-fastest corresponds to the inferior—superior
direction.

In addition to the SRI24 atlas itself, all custom tools
used for its construction (e.g., pairwise and groupwise
image registration, bias field correction) are available as
part of the Computational Morphometry Toolkit (http://
www nitrc.org/projects/cmtk/).

Shttp:/ /www.loni.ucla.edu/Atlases/ Atlas_Detail jsp?atlas_id12
4htt'p: / /teem.sourceforge.net/nrrd /format.html

5htt'p: / /niftinimh.nih.gov /nifti-1

6http: //www.mayo.edu/bir/PDF/ANALYZE75.pdf

"http:/ /teem.sourceforge.net/nrrd / format.html#space
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(a) (b)

(c) (d)

Figure 13.
Volume renderings of four atlases illustrate the level of sharpness with which the cortical surface
is defined in each. (a) SRI24. (b) Colin27. (c) ICBM452/air|2. (d) ICBM452/warp5.

DISCUSSION

The SRI24 brain atlas is distinguished from other atlases
as it satisfies all of the following criteria:

1. It is derived from a sample of subjects across the
adult age range (19-84 years), albeit not uniformly
sampled. This makes the SRI24 atlas useful as a spa-
tial normalization template by reducing the average
deformation required to map subjects onto it. By com-
parison, the Colin27 brain (Fig. 10a) is based on a sin-
gle subject and is thus less likely to represent a
“typical” anatomy. The MNI152, ICBM452, and LPBA
atlases are based on samples of younger adults (less
than 40-years-old) and may thus be less suitable as
templates for studies of the elderly.

2. Nonlinear intersubject registration was used for atlas
construction, unlike the MNI250 [Evans et al., 1992],
MNI305 [Evans and Collins, 1993], MNI152
[Mazziotta et al., 2001a], ICBM-452T1/air12, and two
of the three LPBA40 atlases [Shattuck et al., 2008].
Nonrigid alignment provides substantially improved
sharpness (compare Fig. 5 with Fig. 10b-e). This
makes our atlas useful for definition of regions that
can be transferred onto other images by label propa-
gation. Two maps of such regions for cortical parcel-
lation are provided with the SRI24 atlas.

3. We used unbiased nonrigid population registration,
unlike any other published atlas, to capture normal
anatomy and take advantage of population informa-
tion during the registration stage, rather than perform
pairwise registrations and combine them into a popu-
lation alignment. We thus avoid the potentially diffi-
cult registration problem between two outlier subjects
with very dissimilar anatomies.

4. The SRI24 atlas is multispectral and uniquely includes
several acquired macrostructural channels, MRI-
derived tissue classifications, and DTI-derived FA,
MD, and A, parameter maps. Coregistration of the
SRI24 atlas and subject images can thus be achieved
using multichannel registration algorithms. By com-

parison, the Colin27, ICBM452, and LPBA40 atlases
contain only a single MR channel (T1-weighted), and
the MNI152 atlas contains T1-weighed, T2-weighted,
and proton density channels.

The usefulness of the SRI24 atlas has been demonstrated
in this article for both spatial normalization and label
propagation using quantitative comparisons with four
commonly used MR brain atlases: MNI152, ICBM452 (air5
and warp5), LPBA40 (AIR, FLIRT, SPM5), and Colin27.
For both evaluations, the SRI24 atlases performed well rel-
ative to the other atlases. Although our results are neither
conclusive nor general enough to say that any one atlas is
always better than another, we note that SRI24 performed
at or near the top of the comparison group for spatial nor-
malization and well in the middle for label propagation.
Excellent registration performance was achieved despite
the different field strengths: all other atlases as well as all
test data were based on MR data acquired at 1.5T field
strength, whereas the SRI24 atlas alone was based on data
acquired at 3T.

Our label propagation comparison is obviously biased in
several ways. First, we used essentially the same registra-
tion algorithm for atlas-to-subject registration as was used
for creating the label maps in atlas spaces. However, each
task involved coordinate transformations in opposite direc-
tions (mapping subject to atlas space vs. mapping atlas to
subject space). As the registration algorithm we used is
strictly pairwise, nonsymmetric, independently computed
coordinates transformations were used in atlas map gener-
ation and label propagation. The second source of bias
comes from the fact that the LPBA40 atlases were created
from the same images used for evaluation. However, this
bias should work in favor of the LPBA40 atlases, and not
the SRI24 atlas.

There is also an implicit bias because atlas construction
for the comparison depends on spatial normalization,
which, as we have also demonstrated herein, is different
for each atlas. Unfortunately, there is no other way to cre-
ate label maps for fuzzy population atlases for which the
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original individual image data are not available, because
their level of anatomical detail is not sufficient to identify
anatomical features with certainty (see Figs. 10 and 13).

That is not to say that label propagation is impossible
with fuzzy atlases, for example, using probabilistic label
maps [Mazziotta et al., 2001a; Shattuck et al., 2008]. Seg-
mentation using these maps combined with tissue classifi-
cation in subject space has been demonstrated, for
example, by Collins et al. [1999], but their results also
illustrate a major problem with the approach: shifted
region boundaries in the segmentation due to lack of ana-
tomical detail in the fuzzy atlas. This problem cannot be
mitigated by improved registration algorithms.

Another practical drawback with probabilistic atlases is
the need to label a large number of brains rather than a
single one. Even if the necessary resources were available,
for actual application to label propagation, it would be
more advisable to use the individual segmented images
for a multi-atlas segmentation, rather than combine them
first into a single atlas. This is supported by increasing
body of studies [e.g., Chou et al., 2008; Gousias et al.,
2008; Heckemann et al., 2006; Klein and Hirsch, 2005;
Klein et al., 2008; Rohlfing and Maurer, 2005; Rohlfing
et al.,, 2004a,b; Svarer et al., 2005]. It also comports with
recent theoretical and experimental evidence [Blezek and
Miller 2007], showing that a single atlas is not always suf-
ficient to represent a population of subjects. Nonetheless,
using a single atlas is still the most computationally effi-
cient procedure and ensures at least consistency of atlases
over all subjects.

No atlas is perfect, and the SRI24 atlas is no exception.
One possible limitation is that the 24 subjects used to cre-
ate this atlas were in two separate age groups (young and
older), so that the intermediate age range is not repre-
sented. This leads to the larger issue of whether studies on
separate subject groups should use different atlases alto-
gether. This concept relates to so-called custom templates
used in optimized VBM studies [Good et al., 2001],
whereby the atlas used for a study is created from the con-
trol subjects of the study itself. The obvious problem with
this approach is that each study is performed in its own
anatomical coordinate system, which makes it very diffi-
cult to reuse regions defined in one atlas, or to compare
results between different studies. Furthermore, quality
control would have to be repeated for every custom tem-
plate thus generated.

Another possible criticism of the SRI24 atlas is that the
two parcellation label maps, SRI24/TZO and SRI24/
LPBA40, were essentially generated automatically via
image registrations. The SRI24/TZO map was manually
corrected, but interactive segmentation tools are typically
optimized for creation of label maps rather than editing.
We can, therefore, be certain that the two label maps are
not perfect; however, manual segmentation, considered
the “gold standard,” is also imperfect, even when done by
multiple independent experts. Typical issues are inconsis-
tencies between adjacent slices (because segmentation is

usually performed with the data presented in only one
slice orientation) and inconsistencies between subjects
(because every individual image is segmented by itself).

Conversely, one advantage of the SRI24 atlas over
probabilistic atlases is that mismatches of labels and anat-
omy can be detected, and thus corrected, in the atlas
itself. Fuzzy atlases, such as the MNI152, ICBM452, and
LPBA40 atlases, avoid this issue because the anatomy is
not clearly defined in the first place, so asking whether a
label map is aligned with the atlas anatomy is somewhat
meaningless. That does not at all imply, however, that
there is good alignment. Probabilistic label maps only de-
fer the problem, because once propagated to a new subject
image they need to be sharpened (subject anatomy is
deterministic after all), at which point the uncertainty of
the probabilistic map translates into label-anatomy
mismatch.

What could be perceived as a further issue with the
SRI24 is that its correspondence relationships with other
atlases have not yet been established. We note, however,
that the correspondence between a fuzzy population aver-
age atlas (e.g., MNI152, ICBM452, LPBA40) and a single-
subject atlas (e.g., Talairach) is always questionable, again
because of the lack of clearly defined anatomy in the fuzzy
atlases. Every anatomical landmark in Talairach space, for
example, corresponds to a point cloud in the space of
a fuzzy atlas. In the SRI24 atlas, however, many landmarks
correspond to approximately a single point, so that
SRI24 can be matched with Talairach space in a meaning-
ful way.

CONCLUSIONS

We have introduced the SRI24 brain atlas, a multichan-
nel representation of normal brain anatomy with label
annotations. The usefulness of the SRI24 atlas has been
demonstrated in the application of the atlas for spatial nor-
malization in a group comparison study and for region
definition in a fiber tracking study. The SRI24 atlas per-
formed well in two quantitative comparisons with seven
other publicly available atlases. It is made available to the
scientific community at http://www.nitrc.org/projects/
sri24/as a resource and reference system for future imag-
ing-based studies of the human brain.
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