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Abstract
The goal of a screening test is to reduce morbidity and mortality through the early detection of disease;
but the benefits of screening must be weighed against potential harms, such as false-positive (FP)
results, which may lead to increased healthcare costs, patient anxiety, and other adverse outcomes
associated with diagnostic follow-up procedures. Accurate estimation of the cumulative risk of a FP
test after multiple screening rounds is important for program evaluation and goal setting, as well as
informing individuals undergoing screening what they should expect from testing over time.
Estimation of the cumulative FP risk is complicated by the existence of censoring and possible
dependence of the censoring time on the event history. Current statistical methods for estimating the
cumulative FP risk from censored data follow two distinct approaches, either conditioning on the
number of screening tests observed or marginalizing over this random variable. We review these
current methods, identify their limitations and possibly unrealistic assumptions, and propose simple
extensions to address some of these limitations. We discuss areas where additional extensions may
be useful. We illustrate methods for estimating the cumulative FP recall risk of screening
mammography and investigate the appropriateness of modeling assumptions using 13 years of data
collected by the Breast Cancer Surveillance Consortium. In the BCSC data we found evidence of
violations of modeling assumptions of both classes of statistical methods. The estimated risk of a FP
recall after 10 screening mammograms varied between 58% and 77% depending on the approach
used, with an estimate of 63% based on what we feel are the most reasonable modeling assumptions.
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1 Introduction
The goal of a screening test is to reduce morbidity and mortality by detecting disease among
asymptomatic individuals early, when treatment may be most successful[1]. Some screening
tests may also lead to the prevention of disease through the removal of precursor lesions or the
treatment of conditions that cause disease. However, apart from this principal goal, screening
programs also need to consider the balance of benefits and harms. Harms may result directly
from the screening test itself, such as radiation exposure from an imaging test, or may result
from the diagnostic workup of a positive screening test. Many screening tests are designed to
be more sensitive than specific, with true-positive rates that are a small percentage of the total
positive rate. Those who test positive usually will undergo more specific, though possibly more
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expensive and invasive, diagnostic tests. Thus, it is important to understand and quantify the
risk of false-positive (FP) results, which are associated with increased healthcare costs, patient
anxiety, and other adverse outcomes arising from diagnostic follow-up procedures among
patients without disease.

In breast cancer screening, the benefits of mammography are well established and include
reducing the risks of being diagnosed with an advanced breast cancer and of dying from breast
cancer and increasing the range of treatment options such as breast-conserving therapy[2,3].
Harms associated with screening mammography include recall for either immediate or short-
interval follow-up, biopsy of benign lesions, and the anxiety associated with these diagnostic
workups[4,5]. FP recalls–i.e., recall for the additional workup of a screening mammogram
among women without breast cancer–are the most prevalent harm. FPs are unavoidable if
mammography screening programs are to succeed at detecting small breast cancers, but it is
important that the rate not be greater than necessary to achieve that purpose. Women should
be informed about the inevitability of FPs and their risk of experiencing a FP mammogram if
they undergo regular screening. In fact, it is a worthy goal to tailor information about the
likelihood of experiencing a FP based on risk factors associated with the probability of a FP
result.

Estimating the cumulative risk of a FP result is challenging for several reasons. First, there
may be significant differences within and between programs in the FP rate, and these
differences may be influenced by the screening population, interpretive skill, and resources.
Second, because individuals may not receive all recommended screening rounds within the
study period. This may be due to: administrative censoring, if the study ends before all
individuals receive all exams; non-adherence with recommended screening intervals; or
individuals dropping out of the screening program. Differences in the FP risk between subjects
who choose to attend more screening rounds and those who drop out represents a form of
dependent censoring. In this case, estimates conditional on the number of screening rounds
attended will not reflect the FP rate that would be observed if the entire population adhered to
the recommended screening regimen.

Previous research has estimated the cumulative risk of a FP screening mammogram result from
right censored observations under the assumption that the probability of participating in
subsequent screening rounds is independent of prior exam results[6,7,8]; however, evidence
suggests this assumption may not hold for screening mammography[9,10]. Extensions by Xu
et al.[10] for estimating the FP risk while allowing for differences among those who attend
different numbers of screening rounds rely heavily on parametric assumptions about the
distribution of the time to the first FP result for censored individuals that may not be appropriate
in the context of screening mammography.

In this paper, we review existing statistical methods used to estimate the cumulative risk of a
FP result. We discuss limitations and unrealistic assumptions of current approaches and
propose extensions. We compare inference on the cumulative FP recall rate of screening
mammography based on these statistical methods and investigate the appropriateness of
modeling assumptions using 13 years of data collected by the Breast Cancer Surveillance
Consortium (BCSC). We end with a discussion of our findings and suggested areas for future
research.

2 Review of existing statistical methods
2.1 Definitions and notation

Let n denote the number of subjects under observation and Si denote the number of screening
tests received by the ith subject. We denote the screening round of the first FP as Wi. Let Tij =
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1 be an indicator of receiving a jth screen and Yij = 1 indicate a FP at that screen for the ith
subject. Thus, if Si = k then Tij = 1 for j less than or equal to k and Tij = 0 for all j greater than
k. We additionally denote the complete screening history for the ith subject up to the jth test
as Yij = (Yi1, …, Yij). For ease of notation we will suppress the subscript i relating to subject
throughout.

We are interested in estimating the cumulative probability of an individual receiving a FP after
a specified number of screening rounds. This cumulative probability can be expressed in terms
of W as pj = P(W ≤ j) or in terms of Y as pj = 1 − P(Y1 = 0, …, Yj = 0); that is, the probability
that after undergoing j tests, the subject has received at least one FP test result. In addition to
the overall cumulative FP probability, we may also be interested in understanding how
individual characteristics influence this probability. In the discussion below, we address
estimation of both of these quantities.

If all subjects received the recommended regimen of screening tests, that is, if Tij = 1 for all i
and j, it would be straightforward to estimate the cumulative FP probability. For instance, one
could use the empirical distribution of W as an estimator. However, in practice not all subjects
will attend all recommended screening rounds. This results in right censoring of W. That is,
the time of the first FP will be unobserved for some subjects. If the censoring mechanism is
not independent of W then naive estimates of pj will be biased relative to the true probability
of a FP test result under conditions of regular screening. Below we discuss two distinct
approaches to estimating pj when W is right censored.

2.2 Conditional estimation of the false-positive probability
One approach to estimating pj under right censoring of the data developed by Gelfand and
Wang[7] is to define the cumulative risk of a FP screening test conditional on attending j
screening rounds. That is,

(1)

They additionally define the probability of receiving a first FP at the jth screening round
conditional on participating in at least j screens as

(2)

If we assume that qj = P(Yj = 1∣Y1 = 0, …, Yj−1 = 0), that is the probability of receiving a first
FP is independent of the number of rounds of screening a subject participates in, then we can
express the cumulative FP probability in terms of qj as

(3)

As noted by Xu et al.[10], a necessary and sufficient condition for equation (3) to hold is that
Tj+1 is conditionally independent of I(Yj = 0j) given S ≥ j. Xu et al.[10] suggest evaluating this
assumption using a hypothesis test for independence of I(Yj = 0j) and I(S = j) among those
attending at least j rounds of screening. Independence of these two binary random variables
can be tested using Pearson's χ2-test or Fisher's exact test for each value of j.
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If the independence assumption holds, it is straightforward to develop the likelihood for qj. Let
sj denote the number of subjects participating in at least j screening rounds with no FPs in the
first j screens and rj denote the number of subjects participating in at least j screens with no
FPs in the first j − 1 screens. Note this implies that rj − sj subjects have a FP at the jth screen.
It also implies that the number of subjects at risk for a FP screen decreases by sj − rj−1 between
the (j − 1)th and jth tests. We can now write the likelihood for qj as

(4)

where K is the largest number of screening tests observed for any subject.

Estimation of  has been investigated via both maximum likelihood (ML) and Bayesian
approaches. As pointed out by Gelfand and Wang[7], the ML estimate is simply the actuarial
estimator with

with variance given by Greenwood's formula,

Bayesian estimation is similarly straightforward for the conditional model. In this case, we can
either assign prior distributions to qj or, if prior information is not available on the screen-
specific FP rates, a hierarchical approach in which qj are assumed to arise from some common
distribution with unknown parameters can be adopted. The latter was explored by Gelfand and
Wang[7] who suggest using qj ∼ Beta(a, b), as this is the conjugate density in this case with
independent gamma hyperpriors on a and b. Estimation can be carried out by using Markov
Chain Monte Carlo (MCMC) via the Gibbs sampler to sample from the posterior distribution
[11]. In the context of screening mammography, Elmore et al.[6] used this method to estimate
the cumulative FP risk.

2.2.1 Covariate effects in the conditional model—The conditional model can be
extended to allow for estimation of possibly time-varying covariate effects on the risk of a FP
test result. To do so, we define q(Xj) = P(Yj = 1∣Y1 = 0, …, Yj−1 = 0, Xj), the probability of a
first FP at screen j for a subject with covariate vector Xj and specify a regression equation
expressing q(Xj) as a function of covariates and regression parameters.

ML estimation for the conditional model with covariates can be undertaken using standard
software for binary regression. For example, Baker et al.[12] propose a logistic regression
model for q(Xj). In the frequentist framework, existing research has only addressed fixed effects
regression models for q(Xj); it would be straightforward to incorporate random effects via the
methods of generalized linear mixed models.
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A Bayesian estimation method for q(Xj) was proposed by Gelfand and Wang[7]. They suggest
using

because this form can be thought of as a discrete time analogue to the proportional hazards
model with hazard function h(Xj) = hj exp(Xjβ) and hj = −log(1 − qj) interpreted as discrete
baseline hazards. We can express the likelihood in terms of q(Xj) as

Gelfand and Wang[7] note that this is a Bernoulli likelihood and hence for q(Xj) close to zero
can be reasonably approximated by a Poisson distribution with P(Yj = 0) = 1 − q(Xj) = exp
(−λj), where λj = hj exp(Xjβ). Estimates for q(Xj) can be used to obtain the covariate specific
cumulative risk,

Using either the Bernoulli likelihood or the Poisson approximation to the likelihood, Bayesian
estimation can be carried out by assigning prior distributions to hj and β. Gelfand and Wang
[7] propose a hierarchal approach with hj ∼ Gamma(a, b). In this model we can either assume
a and b known based on prior information or assign hyperpriors for a and b. Random effects
can easily be incorporated into the Bayesian framework by introducing subject- or cluster-
specific covariate effects. In the context of screening mammography, this Bayesian estimation
method with random effects used to capture between-radiologist variability in FP rates was
implemented by Christiansen et al.[8].

2.2.2 Summary of the conditional model—The conditional model addresses difficulties
in estimating the cumulative FP probability under right censoring by assuming independence
of the number of screening rounds a subject attends and the probability of a FP test result. A
straightforward test exists that allows us to evaluate whether this assumption is appropriate in
practice. In Section 4.3 we evaluate the independence assumption for the BCSC population.

A conceptual limitation of the conditional model is that  is an estimate of the probability of
a FP screening test result for subjects who choose to participate in at least j tests during the
study period. This may not correspond to the FP risk in subjects who do not comply with
screening recommendations or receive fewer than j tests for other reasons. Ideally, we would
like to estimate the unconditional FP probability, pj, that is, the cumulative FP rate for all
subjects, regardless of their observed screening behavior. In Section 2.3, we discuss approaches
to estimating pj by marginalizing over the number of screening rounds attended.
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2.3 Marginal estimation of the false-positive probability
Conceptually, it is desirable to estimate pj, the unconditional cumulative probability of a FP.
This can be achieved in the presence of censoring by marginalizing over the distribution of
number of screening rounds attended, S. In this approach we define

(5)

where ξk = P(W = k).

Consider the data available for estimating pj to be (S, Z, δ) where Z = min(W, S) and δ is an
indicator of W < S. These data are similar to the data available in a typical survival context
with right censored data. However, in the case of screening tests, in addition to observing Z
we also observe S regardless of whether or not the event (a FP) precedes the censoring time.
This additional information, which is not available in the typical context of right censored data,
allows us to relax the assumption of independence of S and W.

To estimate pj without assuming independence of S and W we must make some assumption
about the relationship between the time of the first FP and the number of screening rounds
attended for subjects who have not received a FP prior to censoring. Xu et al.[10] propose the
model

(6)

when j > k. That is, following censoring, the time to the first FP screen is geometrically
distributed with parameter θk = P(Yj = 1∣Y1 = 0, …, Yj−1 = 0, S = k) dependent on the number
of screening rounds attended. Note that by making this assumption we facilitate estimation of
the risk of a first FP test for screens subsequent to the maximum number of screens observed
for an individual. However, while we are now allowing for variation in the FP rate for subjects
who participate in different total numbers of screens, we have introduced a new assumption.
We now assume that, given the total number of screening rounds attended, FP results occur at
a constant rate across screening rounds following censoring. At the least, for screening
mammography we expect the FP rate to be higher for the first versus subsequent rounds of
screening[13]. We discuss an extension of this method making use of an assumption that may
be more appropriate in the context of screening mammography in Section 3.2.

Let nkj denote the number of subjects participating in k screening rounds with a first FP at the
jth screen and nk0 denote the total number of subjects with k screens and no FP. Based on the
above assumption of geometrically distributed time to first FP given the number of screens
received for subjects censored prior to a FP, we can construct the likelihood arising from the
data as

(7)
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Note that if parameters of P(S = k) are distinct from the parameters of P(W = j∣S = k) and θk,
we can carry out separate estimation for these two portions of the likelihood.

Xu et al.[10] derived maximum likelihood estimators for this model. Under the maximum
likelihood approach they obtained estimates for the length of screening

and for the probability of a FP conditional on the total length of screening

and

We can then go about estimating pj via , where

and P̂*(W = k∣S = l) = P̂(W = k∣S = l) when k ≤ l and P̂*(W = k∣S = l) = θ ̂l(1 − θ ̂l)k−1 when k >
l. An important advantage of this approach is that it allows for estimation of p̂k even when k
exceeds the maximum number of screens observed in the data.

Xu et al.[10] describe a frequentist estimation approach; however, Bayesian methods can also
be used to obtain estimates of pj using the likelihood in equation (7) by assigning prior
distributions to P(S = k), P(W = j∣S = k), and θk. We can then obtain the posterior distribution
for these quantities. If MCMC sampling were used it would be straightforward to obtain a
sample from the posterior for pj using the relationships presented above.

2.3.1 Covariate effects in the marginal model—Xu et al.[10] proposed an approach to
incorporating covariates into estimates of the marginal probability of a FP screening test by
defining the outcome vector {I(W = 1), I(W = 2), …, I(W = k), I(W > k)}. Conditional on k this
will be multinomially distributed. We can then specify a regression equation relating covariates
Xj to P(W = j∣S = k, Xj), for instance via a logistic formulation. A separate regression equation
is estimated for each value of S. We can similarly obtain estimates of P(S = k∣X1, …, Xk) by
using a multinomial likelihood for {I(S = 1), …, I(S = K)}. Standard multinomial logistic
regression software can be used to estimate the regression parameters in this likelihood and
estimates of P(W = j∣S = k, Xj) and P(S = k∣X1, …, Xk) can be used to estimate ξ(X). Bayesian
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estimation can also be used to obtain risk factor parameter estimates making use of the
multinomial likelihood conditional on number of screens received.

2.3.2 Summary of the marginal model—The marginal model provides a framework for
estimating the cumulative probability of a FP screening test result without requiring that we
condition on the number of screening rounds a subject attended. This is desirable in the context
of evaluating the performance of a recommended screening program because it provides an
indication of the FP risks introduced by the program if all subjects complied with
recommendations. We contrast this to the conditional model which provides an estimate of the
FP risk only for the sub-group who choose to comply with screening recommendations.
Because this sub-group may not be representative of the population at large, the marginal model
may be preferred in evaluating screening recommendations.

Existing methods for marginal modeling of the cumulative FP probability have several notable
limitations. Specifically, these methods have assumed a constant FP rate across screening
rounds for censored subjects. This is particularly problematic for subjects participating in only
a single screening round because information from this single test will be used to project the
FP risk for these subjects in later rounds of screening. This will provide a poor estimate if the
FP risk at the first test differs from that expected at later screening rounds. We demonstrate
the extent of this problem in the context of screening mammography in Section 4.3 using data
from the BCSC. An extension of this method to accommodate screening round dependent
variation of the FP rate is needed.

3 Extensions
3.1 Covariate adjusted tests of the independence assumption

As discussed above, the primary limitation of the conditional method is its reliance on the
assumption of independence of the number of screening rounds attended and the history of FP
results. The test proposed by Xu et al.[10] allows us to formally evaluate this assumption.
However, this test does not account for violations of the assumption that may be mediated by
conditioning on covariates.

Violations of the independence assumption could arise for several reasons. Differences in the
number of screening rounds attended could be caused by prior screening results. For instance,
subjects receiving a FP may be less likely to return for additional screening. This would be a
direct violation of the independence assumption. Alternatively, differences may be attributable
to confounders. For instance, in the context of screening mammography, women at higher risk
might be more likely to return for additional screening and might have a different probability
of a FP result than lower risk women. Another possibility is that differences in the cumulative
FP risk could be due to different screening intervals. Individuals who are screened more
frequently will have more observed screening exams during the study period by definition, and
previous research for screening mammography has found that the FP probability decreases as
the screening interval decreases[13]. Under the latter two scenarios, one way to mediate
violations of the independence assumption would be to condition the FP probability estimates
on covariates. If the history of FP test results among women who continue to attend screening
versus those with fewer observed screening tests is the same after conditioning on covariates,
the method of estimation for the conditional cumulative probability estimate described above
would remain valid by basing estimates on covariate adjusted q̂(X).

Tests of the independence assumption can be extended to adjust for possible confounding by
covariates. We propose a test of the independence assumption after adjusting for covariates by
fitting a logistic regression model to data for all subjects attending at least k screening rounds
for each value of k, the number of screens attended, with outcome I(W > k) and predictors I
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(S > k) and possible confounders. If the regression parameter associated with I(S > k) is
significantly different from zero, this would indicate a violation of the independence
assumption after accounting for confounding variables. However, if the independence
assumption is satisfied, then estimates of  will provide valid inference about the
cumulative FP rate.

In addition to carrying out hypothesis testing of the independence assumption, we should also
evaluate the clinical importance of variations in the FP probability as a function of number of
screens attended after adjusting for confounding by covariates. Covariate adjusted estimates
of the probability of a FP conditional on the number of screens obtained and covariates are
available via logistic regression models using marginal standardization, also known as
predictive margins[14,15]. This calculation entails first estimating the probability of a FP for
each combination of covariates based on the fitted logistic regression model. We then combine
these estimates weighted by the overall proportion of subjects falling in each stratum. Standard
errors for these probability estimates are available via the delta method.

3.2 More flexible marginal models
The marginal model is appealing because it allows us to estimate the FP probability associated
with a recommended screening program. However, the model proposed by Xu et al.[10] makes
strong assumptions about the probability of a future FP screen for subjects with no FP results
prior to the end of screening. This assumption could be relaxed by allowing FP probabilities
to vary as a function of screening round as well as total number of screening rounds attended.
That is, rather than assume θk constant across screening rounds, we specify a screening round-
dependent function for P(Yj = 1∣Y1 = 0, …, Yj−1 = 0, S = k), fj(αk). This implies that the
probability of censoring prior to receiving a FP is

The marginal likelihood given by equation (7) holds for this model. Depending on the
functional form of fj(αk), explicit estimates for α̂k may be available or estimates can be obtained
using numerical maximization of the likelihood.

In the context of screening mammography, we expect the FP probability at the first screening
test to be highest followed by a decrease in the FP probability at each subsequent screen. We
propose to model this using a linear function on the logistic scale in which FP probability at
the first screen is estimated separately dependent on the total number of screening rounds
attended followed by a change in the FP probability for subsequent screens and a linear trend
thereafter associated with repeated screening. Specifically, we define

(8)

where exp(αk0/(1 + exp(αk0)) represents the FP probability at the first screening test for subjects
participating in a total of k screening rounds and β0 and β1 represent variations in this probability
associated with repeated screening which are assumed constant across k. This model could be
further relaxed by allowing β0 and β1 to depend on k as well. However, in this case additional
assumptions would be required for identifiability
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3.3 Expanded methods for time-varying covariates
Methods for incorporating time-varying covariates in the marginal model could also be
extended. Although time-varying covariates can be incorporated into the model of Xu et al.
[10], this method is somewhat problematic. In their model, P(W = j∣S = k, Xj) depends only on
current covariate values. However, receiving a first FP result at the jth screen is dependent
upon the results of the previous j − 1 screens. Because P(W = j∣S = k) = P(Yj−1 = 0, Yj = 1∣S =
k), it is clear that this joint probability may depend on a complex function of past and current
covariate values. Alternatively, one could construct a model for P(W = j∣S = k) via the
decomposition

We can then construct a joint model for the binary event P(Yj = 1∣Yj−1 = 0, Xj, S = k) for all j.
Covariate adjustment of P(Yj = 1∣Yj−1 = 0, S = k) could be incorporated in fj(αk) to yield covariate
adjusted FP risk estimates that also account for trends in the FP rate associated with variations
in the FP probability across screening rounds.

4 Application to the BCSC
4.1 Description of the BCSC population

We illustrate the existing methodology as well as our proposed extensions using data collected
by seven mammography registries in the National Cancer Institute-funded Breast Cancer
Surveillance Consortium (BCSC) [16] (http://breastscreening.cancer.gov): (1) the Carolina
Mammography Registry, (2) the Colorado Mammography Project, (3) Group Health
Cooperative in Washington; (4) the New Hampshire Mammography Network, (5) the New
Mexico Mammography Project, (6) the San Francisco Mammography Registry, and (7) the
Vermont Breast Cancer Surveillance System. These registries link information on women who
receive a mammogram at a participating facility to regional cancer registries and pathology
databases to determine cancer outcomes. Information on patient and mammogram
characteristics collected at the time of the mammogram included patient age, clinical history,
breast cancer risk factors, and time since last mammogram.

We included women who had their first screening mammogram between the ages of 40 and
59 at a participating BCSC facility. We included this first screening mammogram along with
subsequent screening mammograms meeting inclusion criteria performed from 1994 to the
most recent year with complete breast cancer capture, which varied from 2004-2006 across the
seven mammography registries. A screening mammogram was defined as a bilateral
mammogram that the interpreting radiologist indicated was for routine screening. To avoid
misclassifying diagnostic exams as screening exams, we excluded mammograms performed
within 9 months of a prior breast imaging exam. We censored women if and when they were
diagnosed with breast cancer; received breast augmentation or reconstruction; or self-reported
a time since their last mammogram that differed from that in the database by more than six
months, because women could go to a non-BCSC facility to receive a mammogram.

Mammograms were classified as positive or negative using standard BCSC definitions (see
BCSC Glossary of Terms accessed at
http://breastscreening.cancer.gov/data/bcsc_data_definitions.pdf) based on the initial Breast
Imaging Reporting and Data Systems (BI-RADS) assessment[17] and recommendations
assigned by the radiologist. As defined by the American College of Radiology BI-RADS Breast
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Imaging Atlas[17], a positive mammogram was defined as a mammogram with initial BI-
RADS assessment of 0, 4, or 5. To correct for inconsistencies in the use of the BI-RADS lexicon
early in the study period, BI-RADS 3 assessments with a recommendation for immediate
follow-up were reclassified as BI-RADS 0 and considered positive[18]. A positive
mammogram was considered to be a FP if the woman was not diagnosed with invasive
carcinoma or ductal carcinoma in situ within 1 year of the mammogram and prior to the next
screening mammogram.

4.2 Summary of observed FP rates
We included 159,574 women who each received 1 to 13 screening mammograms over the
study period for a total of 346,082 total mammograms and 303,761 mammograms that did not
follow a prior FP result. Characteristics of this cohort are presented in Table 1. Half of the
women received only a single mammogram while 5.4% received in excess of 5 mammograms.
The majority of women attended screening with an average interval between screens of either
9 to 18 months (39.2%) or 19 - 30 months (37.7%). The interquartile range for the average
interval between screens was 15 to 29 months.

Table 2 shows the probability of a first FP result for women with no prior FPs across screening
rounds, q̂j = P̂(Yj = 1∣Yj−1 = 0, S ≥ j), and the empirical cumulative probability of a FP result,
P̂(W ≤ j∣S ≥ j). Overall, 12.7% of the 346,082 screening mammograms were recalled for
additional workup among women without breast cancer. The probability of a first FP was
highest (16.2%) during the first screening round and decreased to between 5 and 10% at
subsequent screens. The observed cumulative probability of at least one FP mammogram for
women who had at least 10 screening mammograms was 44.5%. Interestingly, the observed
cumulative probability of a FP is not monotonically increasing, suggesting the probability of
returning for subsequent screening exams may depend on the prior test result.

Two modeling assumptions are central to the methods presented in Section 2: (1) under the
conditional approach, the probability of a first FP at the jth screen is assumed independent of
the total number of screening rounds a woman participates in; and (2) under the marginal
approach we assume that women censored prior to a FP result would have experienced a
constant FP risk at subsequent screening rounds. Assumption (1) may be violated if
characteristics associated with participating in more frequent screening or screening over a
longer time span are also associated with the FP probability. In screening mammography,
assumption (2) is likely violated because prior research has shown that the FP rate at the first
screening mammogram is higher than at subsequent mammograms[13]. This is especially
problematic for estimation of the cumulative probability of a FP for women who attended only
one round of screening because the FP probability at future screening rounds for these women
will be estimated solely using the FP probability at the first round.

We investigate variation in the probability of receiving a FP across screening rounds and as a
function of the total number of screening rounds attended for women in the BCSC (Figure 1).
Empirical probabilities of a first FP (Figure 1, left) indicate strong time trends in FP risk
associated with screening round. The probability of a FP is highest at the first screen, with
highest rates among women who attended only one screen. The cumulative FP probability also
varies as a function of total number of screening rounds a woman attended. Women attending
more screening rounds had lower cumulative probabilities of a FP result then women attending
fewer screening rounds (Figure 1, right). These results suggest that assumptions of both the
marginal and conditional models are violated in the BCSC population.
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4.3 Modeling the cumulative FP rate
Before undertaking model-based estimation of the cumulative FP probability, we formally
evaluate the independence assumption for the conditional model. Figure 1 suggests that this
assumption may not be appropriate for the BCSC data. We formally test the assumption of
independence of the number of screening rounds attended and the history of screening exam
results required by the conditional model using the test proposed by Xu et al.[10]. This test is
equivalent to asking, among women who participated in at least k screening rounds (S ≥ k), is
a woman who has not yet had a FP result (W > k) equally as likely to return for a (k + 1)st exam
(S > k) as a woman who has previously had a FP (W ≤ k)? We carry out this test using a χ2 test
with one degree of freedom for each screening round (Table 3). In the BCSC data, this
assumption is clearly violated for all screening rounds except for the eighth screen.

In Section 3.1, we proposed a covariate-adjusted test of the independence assumption.
Covariate adjusted estimates of the FP probability for women who do versus those who do not
attend additional screening are presented in Table 3 along with p-values corresponding to a
hypothesis test for independence adjusted for baseline age less than 50, calendar year of first
screen, average screening interval, and mammography registry. We modeled year of first screen
as a categorical variable with separate categories for each year and categorized average interval
between screens as shown in Table 1. After adjusting for these covariates, the independence
assumption is still violated for all screening rounds except for the first.

In Figure 2 and Table 4 we compare marginal and conditional estimates of the cumulative
probability of a FP screening exam in the BCSC population. The marginal curve is an estimate
of the probability of receiving a first FP at or before the kth screening round while the
conditional curve is an estimate of the probability of receiving a first FP at or before the kth
screen, given that a woman chose to participate in at least k rounds of screening. The estimate
of the cumulative probability of a FP at the tenth screening round based on the conditional
model is 58.2%, while the estimate based on the marginal model is 77.0%. The substantial
separation between estimates from the two models may be due to violations of model
assumptions. As discussed above, the independence assumption of the conditional model does
not hold for the BCSC population. We believe that a more appropriate estimate for these data
would allow for variations in the FP probability associated with total number of screening
rounds a woman attends. Moreover, the marginal method is also likely to be inappropriate for
the BCSC population because it assumes a constant FP probability across screening rounds for
women censored prior to their first FP, following censoring. This is an untestable assumption.
However, empirical estimates of the probability of a first FP across screening rounds suggests
this is likely to be false for these data (Figure 1). An estimate of the cumulative FP probability
for screening mammography should allow for trends in FP probability across screening rounds.

To address these concerns, we implemented an adjusted marginal estimator using the proposed
model for risk of a first FP given by equation (8). Point estimates were obtained via numerical
maximization of the likelihood using a quasi-Newton method, and variances were computed
using the delta method. The cumulative FP probability estimated for the BCSC lies in between
the marginal and conditional estimates (Figure 2). The adjusted model estimates a cumulative
FP probability at the tenth screening round of 63.3%. This estimate is intermediate between
the conditional and marginal estimates because the adjusted estimate allows for variation in
the FP probability associated with screening round and total number of screening rounds
attended. It accommodates higher FP rates among women participating in only one screen,
while also allowing for decreases in the FP probability across screening rounds. Both the
marginal model proposed by Xu et al.[10] and our adjusted marginal model rely on untestable
assumptions concerning the FP probability for women who are censored prior to their first FP.
However, observed trends in FP rates (Figure 1) suggest that the adjusted marginal estimate is
more appropriate for the BCSC population. A comparison of estimated cumulative FP
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probabilities at the first, fifth, and tenth screening round based on the conditional, marginal,
and adjusted marginal models is presented in Table 4.

5 Discussion
Estimating the cumulative risk of at least one FP screening test after repeated rounds of
screening is important for understanding the potential harms associated with a screening
program. However, estimating this risk is challenging, because typically not all individuals
will receive all recommended screening rounds within the study period; and some may drop
out of the screening program altogether. An additional complication arises if the FP risk differs
depending on the number of screening rounds attended. We reviewed existing statistical
methods that fall under two general frameworks: conditional approaches, which estimate risk
for the subgroup of subjects who choose to attend a specified number of screening tests; and
marginal approaches, which marginalize over the number of screening tests subjects chose to
attend. The conditional approaches rely on the assumption that the probability of a FP result
at each round of screening is independent of the total number of screening rounds attended.
By contrast, the marginal approach allows for variation in the FP risk as a function of number
of screening rounds attended but relies on the assumption that the risk of a first FP result at
each screening round after censoring is constant.

We used 13 years of data on screening mammograms that the BCSC collected on over 150,000
women to illustrate available statistical approaches for estimating the cumulative FP risk and
to evaluate the appropriateness of modeling assumptions. We found evidence that assumptions
of both approaches do not hold for the BCSC population. Specifically, at almost every
screening round, women who returned for subsequent screening mammograms had lower FP
rates than did those who did not return. These differences were not mitigated by adjusting for
baseline age, average interval between screening exams, year of first exam, and registry site.
Assumptions of the marginal model are untestable because they refer to the FP risk among
women who are censored, which is by definition unobserved. However, strong trends in the
probability of a first FP across screening rounds among women who were not censored suggest
that this is an unrealistic assumption in this context. Thus, the estimated cumulative probability
of a FP result after 10 screening rounds of 58.2% based on the conditional model likely
underestimates the true risk. By comparison, the estimate of 77.0% based on the marginal
approach likely overestimates the risk. We proposed an extension to Xu and colleagues'
approach that allowed for variations in the FP probability associated with total number of
screening rounds attended and variation in the FP probability across screening rounds. Based
on our extended model, we estimated the cumulative risk of a FP test after 10 screening exams
to be 63.3%.

Our estimates of cumulative risk are higher than those reported in previous studies. For
instance, using data from Harvard Pilgrim Health Care in Boston, MA and a conditional
cumulative risk model, Elmore et al.[6] estimated that 49.1% of women would experience at
least one FP by their tenth screening mammogram. However, this estimate does not account
for such possible confounders as the sample's higher-than-normal rate of family history,
irregular screening intervals, and presence or absence of prior comparison films; nor does it
address variability across different risk groups or among radiologists. Also, in this study
population, the observed FP rate at a single exam across all rounds of screening was only 6.3%,
notably lower than that found by the BCSC and other U.S. studies and populations (see e.g.
Rosenberg et al.[19]).

Our estimates are also notably higher than those for European screening programs. The FP risk
in the triennial NHS Breast Screening Programme conducted in the U.K. is 7.8% at the first
screening mammogram and 2.8% at subsequent screening mammograms[23]. A woman
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attending all screening rounds in this program would participate in 7 rounds of screening over
20 years and would experience a cumulative FP risk of 22.2%, assuming independence of the
FP risk and duration of screening. In a study of the Norwegian screening program[24], the FP
rate after 10 biennial screening mammograms over 20 years was estimated to be 20.8%,
projected from 3 screening rounds. The FP rate after 10 biennial screening mammograms over
20 years in a Spanish screening program[25] was estimated to be 32.4%, projected from 4
screening rounds. Increased risk was found to be associated with previous benign breast
disease, perimenopausal status, high body mass index, and younger age. In a study of the Danish
screening program[26], the FP rate after 10 biennial screening mammograms over 20 years
was estimated to be 15.8-21.5% for Copenhagen and 8.1-9.6% for Fyn, projected from 3-5
screening rounds and assuming independence between exams.

The European studies are not directly comparable to performance in the context of American
clinical practice because screening practice differs markedly between Europe and the United
States[27,28,29]. Specifically, European screening programs typically have biennial screening
with a much greater volume of screening mammograms interpreted per radiologist and
typically screening mammograms are double-read, resulting in markedly lower callback rates
than in U.S. practices. The lower callback rate in these studies results in lower cumulative risk
of a FP result. The results from Europe are also based on a relatively small number of rounds
of screening (3-5) observed per woman. Estimates of the FP rate over 10 rounds of screening
are extrapolated from this course of observation.

In addition to model-based estimates of the cumulative FP risk, empirical estimates in the
BCSC cohort are also higher than those previously reported. In a study of women undergoing
screening mammography at Massachusetts General Hospital Avon Comprehensive Breast
Center, the empirical cumulative FP risk among women receiving 10 screening mammograms
within a 10 year period was 29.2%[20]. We contrast this to our empirical cumulative FP risk
of 44.5% among women receiving 10 or more screening exams. There are several reasons why
we might expect the estimate based on the BCSC data to be higher than that in previous studies.
First, our sample excluded women who reported previous screening mammograms prior to the
first exam captured by the BCSC. Including women who had undergone previous screening
would tend to underestimate the FP risk because the risk is highest at the first mammogram.
Additionally, our follow-up period spanned more than 10 years allowing for longer intervals
between screening exams, which is associated with an increased FP risk[21,22,13]. Other
differences may exist between our study population and that used in previous studies. We
believe that the FP risk among BCSC women, a nationally inclusive cross-section of women
participating in screening mammography in a community setting, is likely to most closely
reflect the FP experience of women in the United States.

To more fully understand the risk of a FP after multiple rounds of screening, additional
extensions of existing models are needed. First, it is important to consider how the cumulative
risk of a FP depends on baseline and time-varying covariates – and to account for the wide
variability that has been observed in radiologist interpretive performance[30,31,32,33,19]. Our
analysis of the BCSC data has not accounted for these sources of variability. In an extension
of the work of Elmore et al.[6], Christiansen et al.[8] addressed the role of possible confounders
and between-radiologist variability in performance using the Harvard Pilgrim population. The
predicted risk of a FP after 9 mammograms varied across radiologists and as a function of
woman-level risk factors from 5% to 100%. Between-radiologist variability in performance
was found to be very large, with radiologist effects swamping the impact of all other covariates
included in the model. Analogous extensions are needed for the marginal model. To more fully
understand the FP risk in the BCSC population we will undertake analyses incorporating
woman-level risk factors and between-radiologist variability in future studies. Second,
marginal methods for estimating the cumulative probability of a FP result that allow for greater
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flexibility in patterns of FP probabilities across screening rounds are needed. We have proposed
a simple extension of the marginal method that makes assumptions about FP rates among
censored women that are likely to be more appropriate in the context of screening
mammography. However, more general extensions that would be appropriate to other
screening tests are needed.

In this analysis of the BCSC data, we have focused on the FP recall rate for mammography.
FP recalls represent the most prevalent harm of mammography. However, the actual impact
of a FP recall is much smaller than the impact of other types of FP events such as biopsies.
Appropriate evaluation of a screening program should take into account both the probability
of a given harm and its cost. The FP recall risk discussed in this paper represents a common
though non-invasive cost of mammography. Previous research on the impact of FP
mammograms suggest that women receiving a FP recall experience elevated anxiety and
distress[5]. While the evidence indicates that FP screening results are stressful, for most women
the adverse effects are transitory. Moreover, a survey by Schwartz et al.[34] revealed that
women were highly aware of FP results and highly accepting of FPs as a necessary cost of
breast cancer screening, although the women surveyed significantly underestimated the
likelihood of experiencing a FP finding over a 10-year period. In addition to the FP recall risk,
statistical methods discussed in this paper can be used to estimate the risk of other FP events
associated with screening tests. In future research we plan to apply statistical methods discussed
here to estimation of other potential harms of mammography such as the FP biopsy risk.

To date, international studies have shown highly variable risk of a FP result for women
receiving routine mammography in regular screening programs. The cumulative risk observed
in this analysis of women in the BCSC is substantial, and considerably higher than previously
projected rates for U.S. women[6]. Despite the high FP risk estimated in the BCSC population,
this number should not be used in isolation to question the balance of benefits and harms of
mammography screening programs. The estimates of the cumulative risk of a FP estimated for
the BCSC women are average estimates for the BCSC population that do not account for
starting ages, screening intervals, differential risk, and other factors that may influence the FP
rate. While we believe that women should be informed that their risk of one or more FP
mammograms is relatively likely over a decade or more of regular screening, the estimated
rate in our analysis is an overall rate that does not account for individual risk or other influencing
factors, and thus is not easily tailored to an individual woman.

Insofar as screening exams are not diagnostic exams, a certain rate of FPs must be anticipated
and accepted given the limitations of the current technology and the goal of detecting small
breast cancers. Thus, the relative harm of an FP recall must be weighed against both the
frequency and benefit of early cancer detection. The possibility should not be overlooked that
women may experience greater anticipatory concerns about FP results if experts overly
emphasize the harms, or present pros and cons as if they were of equal importance. Moreover,
the inconvenience and anxiety associated with a FP mammogram is likely to be highly variable.

Accurate estimation of the FP risk under various common conditions is an important part of
program evaluation, goal setting, and identification of strategies that might be used to reduce
the FP rate without compromising test sensitivity. FP risk estimates also allow us to best inform
women undergoing screening what they should expect during their participation in an early
detection program. Finally, as with most performance indicators in screening, an observed or
estimated rate is hardly immutable. With targeted interventions the FP rate could be reduced
without also reducing sensitivity
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Figure 1.
Empirical estimates of probability of a first FP screening exam (left) and cumulative probability
of a first FP screening exam (right) estimated separately by total number of screening rounds
attended. Estimates for “10” screens include women receiving 10 or more screening exams.
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Figure 2.
Conditional (solid), marginal (dashed), and adjusted marginal (dotted) estimates of the
cumulative probability of a FP screening exam.
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Table 1

Summary of characteristics of women in the BCSC population.

Number of women %

Age at first mammogram

 40 - 44 95,768 60.0

 45 - 49 31,619 19.8

 50 - 54 20,689 13.0

 55 - 59 11,498 7.2

Average time between screens

 9 - 18 mos 31,298 39.2

 19 - 30 mos 30,085 37.7

 30 - 42 mos 10,252 12.8

 >42 mos 8,254 10.3

Number of screening exams

 1 79,684 49.9

 2 33,101 20.7

 3 19,139 12.0

 4 11,677 7.3

 5 7,318 4.6

 6 4,220 2.6

 7 2,417 1.5

 8 1,249 0.8

 9 515 0.3

 10+ 254 0.2

Stat Methods Med Res. Author manuscript; available in PMC 2011 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hubbard et al. Page 21

Table 2

Empirical probability of a first FP and empirical cumulative probability of a first FP by screening round.

Screen Number Number Exams First FP (%) Cumulative FP (%)

1 159,574 16.2 16.2

2 67,419 9.3 23.5

3 36,161 8.2 29.1

4 19,873 8.1 34.0

5 10,702 7.5 38.0

6 5,517 7.2 40.9

7 2,688 6.8 43.5

8 1,207 7.1 44.4

9 429 7.2 48.2

10 149 5.4 44.5
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Table 4

Cumulative probability of a FP screening exam result (95% confidence interval (CI)) after the first, fifth, and
tenth screening exams.

First Round Fifth Round Tenth Round

Conditional 16.2 (16.0, 16.4) 40.7 (40.3, 41.2) 58.2 (56.1, 60.4)

Marginal 16.2 (16.0, 16.4) 52.8 (52.5, 53.2) 77.0 (76.7, 77.3)

Adjusted marginal 16.2 (16.1, 16.3) 43.1 (43.0, 43.1) 63.3 (63.2, 63.3)
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