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Abstract
The drug resistance of various clinically available HIV-1 protease inhibitors has been studied
using a new computational protocol, i.e. computational mutation scanning (CMS), leading to
valuable insights into the resistance mechanisms and structure-resistance correction of the HIV-1
protease inhibitors associated with a variety of active site and non-active site mutations. By using
the CMS method, the calculated mutation-caused shifts of the binding free energies linearly
correlate very well with those derived from the corresponding experimental data, suggesting that
the CMS protocol may be used as a generalized approach to predict drug resistance associated
with amino acid mutations. As it is essentially important for understanding the structure-resistance
correlation and for structure-based drug design to develop an effective computational protocol for
drug resistance prediction, the reasonable and computationally efficient CMS protocol for drug
resistance prediction should be valuable for future structure-based design and discovery of anti-
resistance drugs in various therapeutic areas.

Introduction
As well known, human immunodeficiency virus type 1 (HIV-1) is one of the most
dangerous viruses for humans. The wide and rapid spread of HIV-1 virus causing the
acquired immune deficiency syndrome (AIDs) has evolved into a global health problem
with the infection number increasing at an explosive rate.1,2 HIV-1 protease is essential for
replication and assembly of the virus, and the inhibition of the HIV-1 protease leads to the
production of noninfectious viral particles.3 Therefore, HIV-1 protease inhibitors become
one of the key components in the chemotherapy of HIV-1 infection. Various HIV-1 protease
inhibitors have been approved by FDA, including saquinavir (SQV), ritonavir (RTV),
indinavir (IDV), nelfinavir (NFV), amprenavir (APV), lopinavir (LPV), atazanavir (ATV),
tipranavir (TPV), and darunavir (DRV).4,5 However, despite their great success in the
market, all these inhibitors confront with severe drug resistance problem associated with the
protease mutations. For example, DRV, as the most hopeful anti-resistance HIV-1 protease
inhibitor approved in 2006 by FDA which showed excellent anti-resistance ability to the
existing resistance mutations,6 still suffered from new drug-resistance mutations after its
clinical use for only one year.7 To date, at least 37 mutation sites (residues) including active
site and non-active site residues have been identified within the HIV-1 protease as shown in
Figure 1.8
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The discovery of HIV-1 protease inhibitors has been one of the most exciting stories of
structure-based drug design in history. Structure-based drug design has increasingly become
part of many routine approaches in drug discovery today, due to the technical improvement
in crystallography and the increasing computational power. In most cases, the key point that
researchers have mainly considered is the binding affinity of a ligand with the target protein.
As a consequence, various techniques have been developed and employed to optimize the
non-covalent interactions between the protein and ligand, such as H-bond and π-π stacking
interaction, with the aim to obtain a number of candidates with a nanomolar, or even
picomolar, inhibition potency. However, a lot of clinically available drugs, including those
discovered via structure-based design approach, usually encounter resistance, an intractable
problem for the global public health. Among the known resistance mechanisms,9,10 in
particular, the target mutation which alters the interactions between the drug molecules and
their target protein is the most severe situation, because drugs will become ineffective once a
certain mutation on its target protein occurs. Therefore, it is an interesting task and urgent
demand for structure-based drug discovery to develop effective methods for drug resistance
prediction, which will help to reduce the resistance risk of a new drug discovered by
structure-based design approach.

Three computational methods have been used for the drug resistance prediction. The first
one is the evolutionary simulation model that evaluates the fitness for millions of mutant
strains of enzymes and estimates the binding energies by measuring the volume
complementarities between inhibitors, substrates, and the mutant enzymes.11 The second
one is the machine learning model constructed based on the structural features of enzyme-
drug complexes or the sequence data of various drug-resistant mutants.12,13 Both the first
and second methods can be used only for the systems with lots of experimental data
available. In addition, the purely empirical results given by these methods cannot be used to
explore the drug resistance mechanism. The third one is the molecular structure based drug
resistance prediction, in which molecular docking or molecular dynamics (MD) simulations
are carried out.14-16 Unfortunately, this method also suffers from some problems. For
example, the MD simulations followed by accurate binding free energy calculations on a
large number of mutants are time-consuming. Therefore, it is highly desirable to develop
and test an accurate and rapid computational protocol for drug resistance prediction.

For computational prediction of drug resistance of a compound (ligand) against a target
protein, one first needs to computationally determine the free energies of binding of the
ligand with the wild-type and mutant forms of the target protein. Kollman et al. developed
an approach to evaluate the nucleic acid conformation-dependent free energies.17 After that,
Kollman et al further developed a method, known as Computational Alanine Scanning
(CAS),18 to rapidly estimate the changes of the binding free energies resulted from the
mutations on amino acid residues. Because this method reasonably relies on the resemblance
assumption between the structures of wild-type (WT) and mutant-type (MT) and adequacy
of the conformational sampling, since then, the CAS method has been widely applied in the
noncovalent intermolecular interactions, including receptor-ligand and receptor-receptor
interactions.19,20 Nevertheless, the CAS method also suffers from some difficulties
including evaluation of the entropy change and its large standard deviations. Besides, it is
assumed that the structural perturbations associated with mutations of amino acid residues to
alanine are relatively small and the mutations to alanine can be considered as removing side
chain interactions beyond the β-C atom. So, the CAS method only considers the mutation of
a residue to alanine and, therefore, the CAS method cannot be used to predict the drug
resistance associated with the mutations to other amino acids.

In the present study, we aimed to have a detailed understanding of the drug resistance
mechanisms and the structure-resistance correlation of clinically available HIV-1 protease
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inhibitors by testing a new computational protocol in prediction of the drug resistance
associated with target protein mutations. For this purpose, we have extended the CAS
method to the mutations between any natural amino acids to predict drug resistance by
introducing a rapid geometry refinement and reasonable entropy calculation. The extended
method, which may be called Computational Mutation Scanning (CMS), has been used to
evaluate the binding free energies of representative, clinically available inhibitors binding
with HIV-1 protease and its various mutants. SQV, RTV, IDV, NFV, APV, and LPV, as
shown in Scheme 1, were chosen for the present study because these inhibitors were
discovered by structure-based design and their resistance spectrum associated with HIV-1
protease mutations have been comprehensively studied.21,22 Crystallographic structures of
the complexes (PDB codes: 1HXB (SQV),23 1HXW (RTV),24 1HSG (IDV),25 1OHR
(NFV),26 1HPV (APV),27 and 1MUI (LPV)28 were used as the initial structures for our
computational simulations. We have computationally modeled 25 most frequently occurred
mutants of HIV-1 protease, including single and double mutations, and evaluated the effects
of these mutations on the binding free energies. The computationally determined mutation-
caused shifts of the binding free energies linearly correlate very well with those derived
from the corresponding experimental data, leading to valuable insights into the drug
resistance mechanisms of HIV-1 protease inhibitors. The reasonable correlation between the
computational and experimental data also suggests that the computational protocol tested in
this study might be valuable for predicting drug resistance associated with amino acid
mutations on target proteins in future structure-based drug design.

Methods
The computational protocol used in this study is a combination of MD simulation and free
energy perturbation (FEP)-based mutation scanning. For predicting the mutation-caused
shift of the binding free energy for a MT protein-ligand complex from that of the
corresponding WT, we first performed MD simulation on the unperturbed system (with the
WT protein) to obtain the dynamically stable initial structure required for performing the
FEP-based CMS calculations. Below, we describe how we carried out the MD and CMS
calculations.

1. Molecular dynamics simulation
Prior to MD simulations, geometries of the inhibitors were optimized by performing ab
initio quantum mechanics (QM) calculations at the HF/6-31+G* level using the Gaussian03
program.29 With the optimized geometries, the electrostatic potential and partial atomic
charges were determined by performing the electrostatic potential (ESP) fitting according to
the Merz–Singh–Kollman scheme30,31 so that the calculated electrostatic potential values
surround ligands were well reproduced by using the obtained partial atomic charges.32 The
RESP fitting was carried out by using the standard RESP protocol33,34 implemented in the
Antechamber module of the Amber8 program.35 The determined RESP charges for the
inhibitors were used in the energy minimizations, MD simulations, and binding free energy
calculations described below.

The starting structures of HIV-1 protease-ligand complexes were taken from the protein data
bank (PDB). To carry out the MD simulations, the topology and coordinate files of the
complexes were built with the Leap module of the Amber8 package. Energy minimizations
and MD simulations were performed using the Sander module of the Amber8 program. The
AMBER ff03 force field was used as the parameters for amino acid residues,36 and the
general AMBER force field (gaff)37 was used for ligands. The counter ions (Cl- ions) were
added to the most electropositive areas around the protein to neutralize the system. All
molecules were solvated by a rectangular box of TIP3P waters extended at least 10 Å in
each direction from the solute.38 The cutoff distance for the long-range electrostatic
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interaction which was treated with particle mesh Ewald (PME)39,40 and for the van der
Waals (vdW) energy terms was set at 10.0 Å. SHAKE algorithm was used to constrain all
covalent bonds involving hydrogen atoms.41 The energy minimization was achieved in three
stages. First, movement was allowed only for the water molecules and ions. Next, the
backbone atoms of the protein were fixed and the other atoms were allowed to move.
Finally, all atoms were permitted to move freely. In each stage, the energy minimization was
executed by using the steepest descent method for the first 2000 steps and the conjugated
gradient method for the subsequent 3000 steps. Then, the MD simulation was performed
according to the following steps. First, the solvent molecules were equilibrated for 10 ps to
make sure that the simulated solvent system was in an equilibrated condition. Then the
system was gradually heated from 10 to 300 K over 20 ps. Finally, to make sure that we
obtained a stable MD trajectory for each of the simulated structures, the production MD
simulation was kept run for 3 ns or longer at 1 atm and 300 K with applying periodic
boundary conditions in the NPT ensemble to avoid edge effects. The time step used for the
MD simulations was 2.0 fs. To obtain the best possible binding mode for each ligand, the
key intermolecular hydrogen bonds formed after the energy minimization were restrained
during the heating and the first 500 ps of the MD simulation at 300 K, and then the whole
complex was relaxed to obtain a stable MD trajectory. During the MD simulation, atomic
coordinates were collected every 1 ps.

The protonation states of catalytic aspartates D25 and D25' vary depending on different
binding ligands. Hence, the appropriate protonation states of the catalytic aspartates which
were already determined in previous studies42,43 must be set for all the ligands before the
MD simulations.

2. Computational mutation scanning
A free energy perturbation approach, such as the CAS, can be used to estimate the free
energy shift caused by a small structural change. The CAS method has widely been used to
study protein-protein/ligand interactions, but it can only be applied to the mutation changing
a residue to alanine and the entropy effects have not been taken into consideration. Here, we
describe our CMS protocol which may be regarded as an extension of the CAS method.
Depicted in Figure 2 is the work flow of the CMS calculations in detail: (1) Performing MD
simulation for the WT protein-ligand complex in explicit solvent. (2) Collecting 100
snapshots of the MD trajectory at regular intervals in order to obtain a representative
ensemble of the binding structures. (3) Converting the complex structure of the WT protein
for each snapshot to that of the mutant under consideration. (4) Refining the converted
complex structures of the mutant associated with all of the 100 snapshots. (5) Calculating
the Gibbs binding free energy between the protein and ligand for each snapshot by carrying
out the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) energy analysis
on the enthalpy term along with the entropy calculation using a computer program
developed in our own laboratory.44 The final binding free energy is the average of the
calculated values associated with the 100 snapshots.

For each MD-simulated enzyme-inhibitor complex, the MM-PBSA calculations were
performed on the equally distributed 100 snapshots extracted from the last 1 ns of the stable
MD trajectory with a time interval of 10 ps. The mutation was performed automatically on
each snapshot with a modified version of MMTSB Tool Set package.45 The orientation of
the substituted side chain was determined according to the backbone-dependent side chain
rotamer library and a repulsive steric energy term imbedded in this program. Furthermore, in
order to calculate the binding free energy for inhibitor binding with a mutant, all force field
parameters in the topology files for the residue(s) to be mutated were replaced with the
parameters of the corresponding new residue(s). To refine the structure of the mutant, the
positions of side chain atoms of all residues were energy-minimized in vacuum by using the
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Sander module of Amber8 program via a combined use of the steepest descent/conjugate
gradient algorithms, with a convergence criterion of 0.2 kcal mol-1 Å-1 which was
appropriate for the desirable computational accuracy. We tried to use different energy
minimization methods for the geometry refinement of the snapshot structures and found
little difference for the final energetic results between them (data not shown). Some test
calculations with a higher convergence criterion (0.01 and 0.1 kcal mol-1 Å-1) suggested that
the energy minimizations with the convergence criterion of 0.2 kcal mol-1 Å-1 were
adequate, as further increasing the convergence criterion could no longer really improve the
calculated results.

3. Free energy calculation
In the MM-PBSA method, the free energy of the receptor/protein-inhibitor binding, ΔGbind,
is obtained from the difference between the free energies of the receptor/protein-ligand
complex (Gcpx) and the unbound receptor/protein (Grec) and ligand (Glig) as following:

(1)

The binding free energy (ΔGbind) is evaluated as a sum of the changes in the molecular
mechanical (MM) gas-phase binding energy (ΔEMM), solvation free energy (ΔGsol), and
entropic contribution (-TΔS):

(2)

(3)

ΔEMM is calculated by using the following equation:

(4)

where, ΔEele and ΔEvdw are respective electrostatic and van der Waals (vdW) interaction
energies between a ligand and a protein. These energies are computed using the same
parameters used in the MD simulation.

The solvation free energy ΔGsol consists of two parts:

(5)

The electrostatic contribution to the solvation free energy ( ΔGPB ) is calculated by Poisson-
Boltzmann (PB) method using the MM_PBSA module of Amber8 program. ΔGnp is the
nonelectrostatic contribution to the solvation free energy determined as a function of the
solvent accessible surface area (SASA).46 Further, the entropic contribution to the binding
free energy can be divided into two parts:47

(6)

in which ΔSsol is the solvation entropy change and ΔSconf is the conformational entropy
change. The solvation entropy is gained by the tendency of water molecules to minimize
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their contacts with hydrophobic groups in protein, whereas the conformational entropy
change is related to the change of the number of rotatable bonds during the binding process.
The computational procedure used to evaluate the entropic contribution (-TΔS) to the
binding free energy is the same as that described in our recent publication.44 As we
described previously, the solvation entropy change is calculated by using the standard
parameters that have been documented in literature.48 The contribution to the binding free
energy from the conformational entropy change is proportional to the number (ΔNrot) of the
lost rotatable bonds during the binding:

(7)

in which w is a scaling factor. Thus we have

(8)

This scaling factor, w, was set to be 1 kcal/mol for our MM-PBSA calculations on all the
complexes in the present study. The w value of 1 kcal/mol used in the present study is the
same as that used previously for the HIV-1 protease calculations by other researchers.49 All
of the other parameters used in our MM-PBSA calculations are the standard parameters
reported in literature or the default parameters of the Amber8 program.

The binding free energy difference between the mutant and WT complexes is defined as:

(9)

According to Eq.(9), a positive ΔΔG value means the decrease in the binding affinity,
whereas a negative ΔΔG value indicates favorable improvement of the corresponding
interactions between enzyme and inhibitor. So, a positive ΔΔG value means resistance,
whereas a negative ΔΔG valuemeans no resistance.

The experimental binding free energy changes are derived from the reported resistance ratio,
Ki(MT)/Ki (WT), by using the following equation:

(10)

in which Ki (WT) and Ki(MT) are the dissociation constants for the inhibitor binding with
wild-type HIV-1 protease and its mutant, respectively.

To theoretically estimate the reliability of the calculated ΔΔG values, we evaluated the
standard error (SE) of the CMS-calculated binding free energy shifts. The SE value is
dependent on both the number (N) of snapshots chosen in the CMS calculations and the
root-mean-square fluctuation (RMSF) of the calculated ΔΔG values associated with all
snapshots:50

(11)
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According to Eq.(11), with a given RMSF value, the larger the N, the smaller the SE value
is. In the present study, N = 100 and, thus, we have SE = RMSF/10.

Results and Discussion
1. Computational model construction

First of all, it is essential to ensure that all of the MD simulations were thoroughly
equilibrated. Obtaining a stable MD trajectory is crucial for subsequent analysis. So, the plot
of root-mean-square deviation (RMSD), dRMS, of the protein backbone and inhibitor atoms
in the whole process of the MD simulation must be shown to examine their convergence.
Some detailed data about the MD trajectories are provided in Supporting Information
(Figure S1). Briefly, the dRMS of the protein backbone and inhibitor atoms stabilized around
1 Å and persisted more than 1 ns in all systems. To further validate the equilibrium, we also
analyzed some key hydrogen bond distances during the MD simulations as seen in
Supporting Information (Figure S1). It was found that the six vital hydrogen bonds revealed
by X-ray diffraction analysis were maintained during the equilibration stage. These data
clearly suggest that we obtained a stable MD trajectory for each of the MD simulations.

Secondly, before the computational mutation scanning, we calculated the binding free
energies of the six drug molecules by using a modified MM-PBSA method. For each
protein-ligand binding, the energy calculations were performed based on a single-trajectory
MD simulation which was carried out on the protein-ligand complex.51-54 Further,
computational mutation scanning and mutation-caused shifts of the binding free energies
were evaluated for all of the protein-ligand binding complexes. The calculated binding free
energy shifts are summarized in Table 1 in comparison with those derived from available
experimental resistance data. The detailed energetic results are provided as Supporting
Information (Tables S1 to S9).

Indicated also in Table 1 are the SE values of the CMS binding free energy shift
calculations, ranging from 0.08 to 0.51 kcal/mol; the average SE value is 0.20 kcal/mol. It is
interesting to note that the average SE value of the CMS binding free energy shift
calculations is significantly smaller than the average SE value of the corresponding
individual MM-PBSA binding free energy calculations. For example, the average SE value
of the calculated binding free energies for all of the wild-type HIV-1 protease-inhibitor
complexes examined in this study is 0.41 kcal/mol, and the average SE value of the
calculated binding free energies for all of the mutant protease-inhibitor complexes examined
in this study is 0.45 kcal/mol.

The absolute values of the binding free energies (ΔGbind) obtained from the MM-PBSA
calculations were -33.88, -40.23, -26.26, -18.30, -22.55, and -26.48 kcal/mol for HIV-1
protease binding with SQV, RTV, IDV, NFV, APV, and LPV, respectively. The binding
free energies (ΔGexp) derived from available experimental data are -14.32, -14.92, -13.14,
-12.24, -12.60, and -14.30 kcal/mol for HIV-1 protease with SQV, RTV, IDV, NFV, APV,
and LPV, respectively.55-57 These data show that the MM-PBSA calculations largely
overestimated the absolute values of the binding free energies. Nevertheless, the relative
order of the ΔGbind values is completely consistent with the experimentally-derived binding
free energies (ΔGexp). Both the ΔGbind and ΔGexp values consistently reveal that the relative
order of the binding affinities of the inhibitors is always RTV > SQV > LPV > IDV > APV
> NFV (from the highest binding affinity to the lowest).

2. Drug resistance
Drug resistance mutations can be classified into different categories according to the amino
acid size, polarity, location and so on. First of all, based on the size (the amino acid size may
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be roughly characterized by the number of heavy atoms), mutations can be divided into
several types: from large to small (L-S), from small to large (S-L), and from equivalent to
equivalent (E-E). Secondly, 20 natural amino acids can be divided into nonpolar (NP), polar
(P), acidic (A), and basic (B) groups. Hence, mutations can be divided on the basis of the
polarity. Besides, mutations can also be sorted in terms of its location in the target enzyme:
active site (AS) mutation or non-active site (NAS) mutation. In this work, we collected from
literature most of the single and double mutations, including the mutations between residues
that are different in size, polarity, and location. All of the experimental data were collected
from literatures.58-70 The studies on different types of mutations could also help us to
understand the applicability of the CMS method and common characters of the drug
resistance mechanisms in detail. We only investigated the single and double mutations in
this work due to the huge number of combinations of multiple mutations.

It was assumed that the mutation to any amino acid except for proline71 would only lead to
local changes of the protein structure and would not significantly change the backbone
structure of protein. To verify this assumption, we superimposed the X-ray crystal structures
of the wild-type and all available mutant structures of HIV-1 protease in complex with a
representative inhibitor, i.e. SQV.72-76 As shown in Figure S2 and Table S10 of Supporting
Information, all these complexes had a similar backbone shape with RMSD less than 0.7 Å.
In addition, the L-S and E-E mutations might not change the general binding mode of
inhibitors. However, the S-L mutations or mutations between amino acids of different
polarity might probably change the general binding mode of inhibitors,77 because these
types of mutations often cause local spatial bump or property mismatch with the original
binding mode of the ligand.

Based on the above assumptions, making a mutation scanning between any two amino acids
is reasonable and can be realized through using an appropriately designed computational
procedure. The main challenge is to determine a reasonable conformation of the side chain
of the mutated amino acid residue. This procedure preserves the backbone coordinates and
the side chain coordinates of residues that are not mutated. It only needs to rebuild the
structure of the side chain of the mutated residue starting from the space occupied by the
side chain of the original residue. It may lead to reasonable structures based on the
backbone-dependent side chain rotamer library and a repulsive steric energy term, but
further energy minimization is desirable in order to improve the structure of the mutant.
Technically, using the CMS method for a mutation, one only needs to deal with the topology
and coordinate files of the Amber program. We note that other scanning methods, such as
the CAS and Fluorine Scanning, resulted in correct conformational sampling of protein
mutants.78,79

Generally speaking, the resistance mechanism of the target mutation can be divided into six
groups in the view of thermodynamic rules as shown in Figure 3: decrease in the enthalpy
contribution to the binding affinity (A-type), decrease in the entropic contribution to the
binding affinity (B-type), decrease in both the enthalpy and entropic contributions (C-type),
no significant change in the enthalpy and entropic contribution (D-type), decrease in the
enthalpy contribution compensated with increase in the entropic contribution (E-type),
decrease in the entropic contribution compensated with increase in the enthalpy contribution
(F-type). The first three groups (A-, B-, and C-types) always lead to high level of resistance,
whereas the last three groups (D-, E-, and F-types) always lead to no resistance or low
resistance. Understanding the resistance mechanisms is undoubtedly of great interest for the
anti-resistance drug design.

For convenience, here the drug resistance is defined to have three different levels: low,
middle, and high levels. The low resistance level means less than 10-fold resistance, the
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middle resistance level means less than 100-fold but higher than 10-fold resistance, and the
high resistance level means higher than 100-fold resistance. Equation ΔG = -RTln(1/Ki) can
be used to predict the resistance level of each mutation by the value of ΔΔG = ΔG(WT) −
ΔG(MT). Thus, a positive ΔΔG value of less than 1.37 kcal/mol will result in low level of
resistance, a ΔΔG value between 1.37 and 2.73 kcal/mol will result in middle level of
resistance, and a ΔΔG value of higher than 2.73 kcal/mol will result in high level of
resistance.

Below we discuss the detailed results and insights into the resistance mechanisms for each
of the six drugs, followed by a discussion on the overall performance of the CMS
calculations.

2.1 Resistance to SQV—The 18 mutants examined include six double mutants and 12
single mutants. These mutants involve mutations on a total of 11 residues including six
active site residues (V32, I47, G48, I50, V82, and I84) and five non-active site residues
(L10, M46, I54, A71, and L90). In addition, all of these mutants belong to the mutations
from nonpolar to nonpolar residue except for A71T, a non-active site mutation from
nonpolar to polar residue.

We calculated the binding free energy changes from the WT to the MT for 18 mutant
complexes. As shown in Table 1, the calculated binding free energy shifts (ΔΔGcal) range
from -1.62 to 7.18 kcal/mol. The G48V/L90M and I47V mutants are associated with the
highest and lowest resistance levels, respectively. As shown in Figure 4, the ΔΔGcal values
linearly correlate very well with the ΔΔGexp values with a correlation coefficient of r2 =
0.81. Neglecting the entropic contribution, ΔΔGcal becomes ΔΔEcal (see Supporting
Information for the ΔΔEcal values) and we obtained r2 = 0.65 for the linear correlation
relationship between the ΔΔEcal and ΔΔGexp values. These results indicate that the entropic
effects can significantly affect the accuracy of drug resistance prediction and should not be
neglected.

Further, the excellent linear correlation relationship between the ΔΔGcal and ΔΔGexp values
can be used to more accurately predict the binding free energy shifts. The binding free
energy shift corrected by using the linear relationship between the ΔΔGcal and ΔΔGexp
values is denoted by ΔΔGcorr for convenience. The obtained ΔΔGcorr values are also listed
in Table 1 for comparison with the corresponding experimental data (ΔΔGexp). When we
consider various levels/catagories of drug resistance in terms of the high resistance, middle
resistance, low resistance, and no resistance defined above, the ΔΔGcorr values are
qualitatively consistent with the corresponding ΔΔGexp values for all of the mutants, except
for M46I/I84V and I54V, as one can see in Table 1. The hit rate is ~89% (16 out of 18).
Considering the two exceptions, ΔΔGcorr = 1.59 kcal/mol and ΔΔGexp = 0.89 kcal/mol for
the M46I/I84V mutant, and ΔΔGcorr = 0.47 kcal/mol and ΔΔGexp = 1.56 kcal/mol for the
I54V mutant; the ΔΔGcorr values are also reasonably close to the corresponding ΔΔGexp
values. Sometimes, one may only consider whether the binding free energy shift (ΔΔG) has
a plus or minus sign, because the sign indicates whether there exists the drug resistance
(ΔΔG > 0) or not (ΔΔG ≤ 0). When we only concern with the sign of ΔΔG, the ΔΔGcorr
values are qualitatively consistent with the corresponding ΔΔGexp values for all of the
mutants (100%).

We further analyzed the drug resistance mechanisms associated with the mutations. As seen
in Table 1, all of the mutations, except for M46I and I47V, should result in resistance due to
the positive binding free energy shifts. According to the above definitions of the resistance
levels, two mutants (G48V and G48V/L90M) are associated with the high-resistance
mutations, six mutants (I50V, I54V, I84V, L10F/I50V, L10F/I84V, and V32I/I84V) with the
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middle-resistance mutations, and eight mutants (L10F, V32I, I54M, V82A, V82I, L90M,
M46I/I84V, and A71T/V82A) with the low-resistance mutations. In addition, as shown in
Figure 5, several mutations (G48V, V32I/I84V, and G48V/L90M) leading to the drug
resistance may be attributed to A-type mechanism, because they share a common
characteristic that the decrease in the enthalpy contribution is mainly responsible for the
binding affinity decrease. The V32I, I54M, and V82I mutants are associated with B-type
resistance mechanism. Besides, four mutants (L10F, M46I, I54V, and L90M) are associated
with D-type mechanism, and the I47V, I50V, V82A, I84V, L10F/I50V, L10F/I84V, M46I/
I84V, and A71T/V82A mutants are associated with E-type mechanism.

Kollman et al. demonstrated that the CAS method was capable of reasonable conformational
sampling. In order to examine whether the CMS method is also capable of reasonable
conformational sampling, we randomly selected the I54M mutant for SQV to perform MD
simulation. Some plots for the RMSD and distance analysis are provided in the Supporting
Information (Figure S3). As shown in Table S3, the ΔGbind was estimated to be -33.57 kcal/
mol based on the CMS model and -34.26 kcal/mol using the MD-based computational
model. As shown in Figure 6, the conformational comparison indicates that the CMS
method can produce almost the same conformation as the MD simulation for the I54M for
SQV with RMSD of 0.92 Å. These results clearly indicate that, compared with the MD
simulation, the CMS method is also capable of reasonable conformational sampling with the
characteristic of time-saving.

2.2 Resistance to RTV—The 13 mutants examined for RTV include nine single mutants
and four double mutants. These mutants involve mutations on a total of seven residues,
including four active site residues (V32, G48, V82, and I84) and three non-active site
residues (R8, M46, and L90). In addition, all of these mutants belong to the mutations from
nonpolar to nonpolar residue, except R8Q which is a non-active site mutation from a basic
residue to a neutral polar one.

We calculated the binding free energy changes (ΔΔGcal) from the WT to the MT for 13
mutant complexes. As shown in Table 1, the calculated binding free energy changes
(ΔΔGcal) range from -0.15 to 5.50 kcal/mol. The M46I and V82F/I84V mutants are
associated with the lowest and highest resistance levels, respectively. As shown in Figure 4,
the ΔΔGcal values linearly correlate very well with the ΔΔGexp values, with a correlation
coefficient r2 = 0.88. However, r2 = 0.55 for the linear relationship between the ΔΔEcal and
ΔΔGexp values. So, the linear correlation between the computational and experimental
binding affinity shifts can significantly be improved when the entropic contribution is
accounted for.

As one can see in Table 1, the binding free energy shifts (ΔΔGcorr) predicted by using the
linear relationship between the ΔΔGcal and ΔΔGexp values are qualitatively consistent with
the corresponding ΔΔGexp values for all of the mutants, except for the V82I mutant
discussed above, in terms of the qualitative predictions of the drug resistance levels (high,
middle, low, or no resistance). The hit rate is ~92% (12 out of 13). For the exception (V82I
mutant), the ΔΔGcorr value of 1.59 kcal/mol is actually very close to the corresponding
ΔΔGexp value 1.33 kcal/mol. When we only consider whether there exist the drug resistance
(ΔΔG > 0) or not (ΔΔG ≤ 0), the ΔΔGcorr values are qualitatively consistent with the
corresponding ΔΔGexp values for all of the mutants (100%).

As shown in Table 1, the V82F/I84V mutant is associated with the high-resistance mutation,
eight mutants (R8Q, G48V, V82A, V82F, V82I, I84V, G48V/L90M, and V32I/I84V) are
associated with the middle-resistance mutations, and four other mutants (V32I, M46I,
L90M, and M46I/I84V) with the low-resistance mutations. As shown in Figure 5, among
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these mutations, four mutants (R8Q, V82A, V32I/I84V, and V82F/I84V) leading to
resistance are associated with A-type mechanism because of their significant change in the
enthalpy contribution to the binding affinity (ΔΔEcal > 1.0 kcal/mol), whereas the V32I and
V82I mutants are associated with B-type mechanism due to their relatively larger change in
the entropic contribution to the binding affinity. In addition, three mutants (G48V, V82F,
and G48V/L90M) leading to drug resistance are associated with C-type mechanism, because
of their changes in both the enthalpy and entropic contributions to the binding affinity. The
M46I and L90M mutants leading to low resistance belong to D-type mechanism. Finally, the
I84V and M46I/I84V mutants are associated with E-type mechanism, as the enthalpy change
is compensated by the increase in the entropic contribution.

2.3 Resistance to IDV—The 18 mutants examined for IDV include 12 single mutants and
six double mutants. These mutants involve the mutations on six active site residues (V32,
I47, G48, I50, V82, and I84) and five non-active site residues (R8, L10, M46, A71, and
L90). In addition, most of these mutants belong to the mutations from nonpolar to nonpolar
residue, except R8Q (a non-active site mutation from a basic to a neutral polar residue) and
A71T (a non-active site mutation from a nonpolar to a neutral polar residue).

As shown in Table 1, the calculated binding free energy shifts (ΔΔGcal) from the WT to the
MT for the 18 mutant complexes range from -0.82 kcal/mol to 4.08 kcal/mol. The V82F/
I84V and I47V mutants are associated with the highest and lowest resistance, respectively.
We obtained r2 = 0.59 for the linear correlation between the ΔΔGcal and ΔΔGexp values and
r2 = 0.36 (figure not shown) for the linear relationship between the ΔΔEcal and ΔΔGexp
values. The linear correlation between the ΔΔGcal and ΔΔGexp values for IDV is still
reasonable, but is not as good as the aforementioned linear correlation relationships obtained
for SQV and RTV. In order to understand why this is the case, we carefully checked the data
and found that the CMS calculations overestimated the resistance level associated with the
R8Q mutation. Compared with the experimental data, the ΔΔGcal value for the R8Q mutant
overestimated the binding free energy shift by ~2.66 kcal/mol, suggesting that the R8Q
mutant might result in a significant conformational change of the IDV in the binding pocket
or, in other words, the change in the binding mode of IDV (see below). After discarding the
R8Q mutant from the data set, as shown in Figure 4, the linear correlation between the
ΔΔGcal and ΔΔGexp values was significantly improved to r2 = 0.75, whereas the linear
relationship between the ΔΔEcal and ΔΔGexp was improved to r2 = 0.49.

As seen in Table 1, the binding free energy shifts (ΔΔGcorr) predicted by using the linear
relationship between the ΔΔGcal and ΔΔGexp values are qualitatively consistent with the
corresponding ΔΔGexp values for most of the mutants (13 out of 18) in terms of the
qualitative predictions of the drug resistance levels (high, middle, low, or no resistance). The
hit rate is ~72%. Concerning the five exceptions, ΔΔGcorr = 2.78 kcal/mol and ΔΔGexp =
1.25 kcal/mol for the R8Q mutant, ΔΔGcorr = 1.25 kcal/mol and ΔΔGexp = 1.89 kcal/mol for
the L10F/I84V mutant, ΔΔGcorr = 1.73 kcal/mol and ΔΔGexp = 1.23 kcal/mol for the V32I
mutant, ΔΔGcorr = 1.10 kcal/mol and ΔΔGexp = 1.82 kcal/mol for the M46I/I84V mutant,
and ΔΔGcorr = 1.77 kcal/mol and ΔΔGexp = 1.15 kcal/mol for the V82I mutant. Even the
differences between the ΔΔGcal and ΔΔGexp values for these exceptions are not really very
large. When we only consider whether there exist the drug resistance (ΔΔG > 0) or not
(ΔΔG ≤ 0), the ΔΔGcorr values are qualitatively consistent with the corresponding ΔΔGexp
values for all of the mutants (100%).

As shown in Table 1, of the 18 mutants, only the V82F/I84V belongs to the high resistance
mutation, five mutants (I50V, V82F, L10F/I84V, V32I/I84V, and M46I/I84V) belong to the
middle resistance, and 12 mutants (R8Q, L10F, V32I, M46I, I47V, G48V, V82A, V82I,
I84V, L90M, G48V/L90M, and A71T/V82A) belong to the low resistance. Data obtained
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from the resistance mechanism analysis for these 18 mutants are depicted in Figure 5.
According to the computational data, the V32I/I84V and V82F/I84V mutants are associated
with A-type mechanism, the V32I and V82I mutants with B-type mechanism, the V82F
mutant with C-type mechanism, the L10F, M46I, and L90M mutants with D-type
mechanism, the I47V, I50V, V82A, I84V, L10F/I84V, M46I/I84V, and A71T/V82A
mutants with E-type mechanism, and the G48V and G48V/L90M mutants with F-type
mechanism. Because the R8Q mutation likely results in the binding mode change of IDV,
the mechanism of the drug resistance associated with the R8Q mutant for IDV will be
discussed later (see below) with some further simulation.

2.4 Resistance to NFV—The eight mutants examined for NFV include six single mutants
and two double mutants. These involve mutations on three active site residues (G48, V82,
and I84) and one non-active site residue (L90). All of the mutations belong to those from
nonpolar to nonpolar residue.

As one can see in Table 1, the calculated binding free energy changes (ΔΔGcal) from the WT
to the mutants range from -0.03 to 5.20 kcal/mol. The highest and lowest resistance levels
are associated with the V82F/I84V and L90M mutants, respectively. As shown in Figure 4,
an excellent linear correlation (r2 = 0.93) was found between the ΔΔGcal and ΔΔGexp
values. The linear correlation would reduce to r2 = 0.67 when the entropy contributions were
ignored. As seen in Table 1, the binding free energy shifts (ΔΔGcorr) predicted by using the
linear relationship between the ΔΔGcal and ΔΔGexp are qualitatively consistent with the
corresponding ΔΔGexp values for all of the mutants in terms of the qualitative predictions of
the drug resistance levels (high, middle, low, or no resistance). The hit rate is 100% for
NFV.

As shown in Table 1, all of these mutations result in the middle or low resistances. The
V82F, V82I, and V82F/I84V mutations lead to the middle resistance, whereas the G48V,
V82A, I84V, L90M, and G48V/L90M mutations lead to the low resistance. As seen in
Figure 5, the V82F and V82F/I84V mutants are associated with A-type mechanism due to a
large change in the enthalpy with a small change in the entropic contribution. In addition,
the G48V and G48V/L90M mutants are associated with B-type mechanism, and the V82I
mutant with C-type mechanism. Of the other three mutants with the low resistance, only the
L90M mutant is associated with D-type mechanism, whereas the V82A and I84V mutants
are associated with E-type mechanism.

2.5 Resistance to APV—The 14 mutants examined for APV include 10 single mutants
and four double mutants. These mutants involve mutations on five active site residues (I47,
G48, I50, V82, and I84) and three non-active site residues (L10, M46, and L90). All of these
belong to the mutations from nonpolar to nonpolar residue.

As shown in Table 1, the calculated binding free energy shifts range from -0.70 to 4.40 kcal/
mol. The highest and lowest resistance levels were observed with the V82F/I84V and I47V
mutants, respectively. Abnormally, the linear correlation (r2 = 0.59) between the ΔΔEcal and
ΔΔGexp was a little higher than that (r2 = 0.43) between the ΔΔGcal and ΔΔGexp. Through a
detailed analysis of the energetic data, the V82F mutant was identified as an outliner with
the binding free energy change overestimated by ~3.12 kcal/mol. This implies that the V82F
mutant might cause an unusually large conformational change of APV in the binding pocket
or a significant change of the binding mode (see below for further discussion). After
discarding the V82F mutant from the data set, as shown in Figure 4, the linear correlation
between the ΔΔGcal and ΔΔGexp values was significantly improved to r2 = 0.71, and the
linear relationship between the ΔΔEcal and ΔΔGexp was also improved to r2 = 0.66.
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As one can see in Table 1, the binding free energy shifts (ΔΔGcorr) predicted by using the
linear relationship between the ΔΔGcal and ΔΔGexp values are qualitatively consistent with
the corresponding ΔΔGexp values for most of the mutants (8 out of 13 mutants other than
V82F) in terms of the qualitative predictions of the drug resistance levels (high, middle, low,
or no resistance). The hit rate is ~62% for APV. The five mutants with the incorrect
qualitative predictions are the L10F (ΔΔGcorr = 0.24 kcal/mol and ΔΔGexp = -0.11 kcal/
mol), M46I (ΔΔGcorr = 0.17 kcal/mol and ΔΔGexp = -0.41 kcal/mol), G48V/L90M (ΔΔGcorr
= 1.30 kcal/mol and ΔΔGexp = 1.42 kcal/mol), V82I (ΔΔGcorr = 1.64 kcal/mol and ΔΔGexp
= 0.71 kcal/mol), and I84V (ΔΔGcorr = 1.36 kcal/mol and ΔΔGexp = 1.86 kcal/mol). When
we only consider whether there exist the drug resistance (ΔΔG > 0) or not (ΔΔG ≤ 0), the
ΔΔGcorr values are qualitatively consistent with the corresponding ΔΔGexp values for 11
mutants (~85%, or ~79% if the aforementioned V82F mutant is also counted in).

Of the 14 mutants, eight are associated with the low or no resistance mutations (L10F,
M46I, I47V, G48V, V82A, V82F, V82I, and L90M), five with the middle resistance
mutations (I50V, I84V, L10F/I50V, L10F/I84V, and G48V/L90M), and one with the high
resistance mutation (V82F/I84V). As shown in Figure 5, only V82F/I84V mutant is
associated with A-type mechanism. The G48V, V82I, and G48V/L90M mutants are
associated with B-type mechanism. For the low resistance mutations, the L10F, M46I, and
L90M are associated with D-type mechanism. The I47V, I50V, V82A, I84V, L10F/I50V,
and L10F/I84V mutants are associated with E-type mechanism. The resistance mechanism
of the V82F mutant will be discussed with further MD simulation and calculations (see
below).

2.6 Resistance to LPV—Only six mutants, including three single and three double
mutants, were examined for LPV, as we have found experimental drug resistance data only
for these six mutants. These mutants involve mutations on two active site residues (V82 and
I84) and four non-active site residues (L10, M46, I54, and L90). All of the mutations belong
to those from nonpolar to nonpolar residue, except the V82T which is a mutation from a
nonpolar residue to a neutral polar one.

As seen in Table 1, the calculated binding free energy shifts (ΔΔGcal) from the WT to MT
for the six mutant complexes range from -0.19 to 3.02 kcal/mol. The highest and lowest
resistances are associated with the V82A/I84V and L10I/L90M mutants, respectively. As
shown in Figure 4, ΔΔGexp linearly correlates with both ΔΔGcal and ΔΔEcal very well. We
obtained r2 = 0.81 for the linear correlation between the ΔΔGcal and ΔΔGexp values, and r2

= 0.86 for the linear correlation between the ΔΔEcal and ΔΔGexp values. These results show
that the entropic effects are not important for the relative order of the drug resistances of this
particular inhibitor although the entropic effects are important for the aforementioned other
inhibitors.

As seen in Table 1, the binding free energy shifts (ΔΔGcorr) predicted by using the linear
relationship between the ΔΔGcal and ΔΔGexp values are qualitatively consistent with the
corresponding ΔΔGexp values for all of the mutants in terms of the qualitative predictions of
the drug resistance levels (high, middle, low, or no resistance). The hit rate is ~100% for
LPV.

As shown in Figure 5, the V82F and V82T mutants are associated with A-type mechanism,
the L10I/L90M and M46I/I54V mutants with D-type mechanism, and the V82A and V82A/
I84V mutants with E-type mechanism.

2.7 Overall performance of the CMS method—The above discussion indicates that
the CMS method can reasonably predict the relative drug resistance levels for each of the six
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drugs associated with a variety of mutations on the target protein. Overall, six clinically
available drugs with various mutants of HIV-1 protease have been examined, giving a total
of 77 drug-mutant combinations (including all of the exceptions discussed above). The
binding free energy shifts (ΔΔGcorr) predicted by using the linear correlation relationships
between the ΔΔGcal and ΔΔGexp values obtained for individual drugs are qualitatively
consistent with the corresponding ΔΔGexp values for 63 drug-mutant combinations in terms
of the qualitative predictions of the drug resistance levels (high, middle, low, or no
resistance). The overall hit rate is ~82% (63 out of 77). When we only consider whether
there exist the drug resistance (ΔΔG > 0) or not (ΔΔG ≤ 0), the ΔΔGcorr values are
qualitatively consistent with the corresponding ΔΔGexp values for 74 mutants (~96%).

To better assess the predictability of the CMS method, we also examined the overall linear
correlation between the calculated and experimental binding free energy shifts for all of the
six drugs associated with all of the examined mutants of the target protein, except for the
R8Q mutant with IDV and V82F mutant with APV (see below for discussion on these
exceptions). Depicted in Figure 7 is the linear correlation. We have r2 = 0.75 for the linear
correlation between the ΔΔGcal and ΔΔGexp values and r2 = 0.57 for the linear correlation
between the ΔΔEcal and ΔΔGexp values. These data further suggest that the overall linear
correlation between the ΔΔGcal and ΔΔGexp values for all of these drugs is also satisfactory
and that the entropy effects are significant for the drug resistance prediction. The binding
free energy shifts (ΔΔGcorr) predicted by using the overall linear relationship between the
ΔΔGcal and ΔΔGexp values are qualitatively consistent with the corresponding ΔΔGexp
values for 57 drug-mutant combinations in terms of the qualitative predictions of the drug
resistance levels (high, middle, low, or no resistance). The hit rate is ~74% (57 out of 77,
including the aforementioned R8Q mutant with IDV and V82F mutant with APV). When we
only consider whether there exist the drug resistance (ΔΔG > 0) or not (ΔΔG ≤ 0), the
ΔΔGcorr values predicted by using the overall linear relationship between the ΔΔGcal and
ΔΔGexp values are qualitatively consistent with the corresponding ΔΔGexp values for 73
mutants (~95%).

It should be pointed out that the CMS method can be considered as an extension of the CAS
method. But the CMS method is not perfect because it also has a limitation because the
binding structure between the mutant and ligand might have not been relaxed fully during
the energy minimization process. It could significantly overestimate the binding free energy
shift for an inhibitor binding with a mutant when the mutation causes a considerable change
in the binding mode. Such cases include the R8Q mutant with IDV and the V82F mutant
with APV, in which the calculated binding free energy shifts are considerably larger than the
corresponding experimental shifts. R8Q belongs to the mutation from basic to neutral polar
residue, and V82F belongs to the mutation from small to large residue. Just like the
precondition for using the CAS method, a precondition for using the CMS method is that the
mutation does not considerably change the binding mode of the drug molecule. Therefore, in
order to check whether the R8Q or V82F mutation significantly changes the binding mode
of drug molecule, we carried out additional MD simulations on these two complexes. Some
plots for the RMSD and distance analysis are provided in the Supporting Information
(Figure S3). As expected, IDV took a large conformational change in the binding pocket
after the R8Q mutation (Figure 6). The calculated binding free energy for the MD-simulated
R8Q mutant complex, as shown in Table S9, was -26.35 kcal/mol, about 4.01 kcal/mol
lower than that (-22.34 kcal/mol) obtained from the CMS calculation. The calculated
binding free energy shift based on the MD simulation is closer to the experimental value.
Thus, after the R8Q mutation, the original mode of inhibitor IDV binding with the enzyme
becomes very unfavorable. But inhibitor IDV can significantly change its binding mode in
the binding pocket of the mutant to compensate the binding. Based on the data summarized
in Table S9, the binding mode change does not significantly influence the entropy change,
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but the new binding mode helps to decrease the desolvation penalty and improve the
electrostatic interaction. As a result, the overall binding affinity is improved with the binding
mode change. Thus, without appropriately simulating the unusually large change of the
binding mode, the CMS calculations significantly overestimated the binding free energy
shift for IDV binding with the R8Q mutant. According to the MD simulation and the
corresponding energetic results, the resistance for IDV with the R8Q mutant should be
associated with E-type mechanism. Similarly, the V82F mutation also causes a considerable
conformational change of APV in the binding pocket of the enzyme as shown in Figure 6.
However, unlike the R8Q mutant with IDV, the change in the enthalpic contribution for the
V82F mutant complex was underestimated by only ~0.95 kcal/mol with the CMS method,
while its entropic contribution was overestimated by ~3.68 kcal/mol with the CMS method.
Overall, the calculated binding free energy for the MD-simulated V82F mutant complex was
-22.78 kcal/mol (see Table S9), about 2.73 kcal/mol lower than that (-20.05 kcal/mol)
obtained from the CMS calculation. Therefore, without appropriately simulating the
unusually large change in the binding mode, the CMS method also overestimated the
binding free energy change for APV with the V82F mutant. Hence, the resistance of APV
with the V82F mutation should be associated with the E-type, rather than C-type,
mechanism, according to the MD simulation and the corresponding energetic results.

Further, in light of the computational results for IDV with the R8Q mutant and APV with
the V82F mutant, one might expect that a better, anti-resistance inhibitor could have a good
conformational flexibility to adapt the conformational change of the binding pocket upon
amino acid mutations, because a conformationally flexible inhibitor could adjust its own
conformation and thus reach the best possible mode of interaction with the amino acid
residues in the binding pocket to compensate the binding free energy.

Conclusion
Drug resistance problems of various clinically available HIV-1 protease inhibitors
associated with a variety of active site and non-active site mutations on the protease have
been studied by using a new computational protocol, i.e. the computational mutation
scanning (CMS). The computational studies using the CMS protocol have led to a detailed
understanding of the drug resistance mechanisms and the structure-resistance correction of
the clinically available HIV-1 protease inhibitors associated with the active site and non-
active site mutations on the target protein. The computationally determined mutation-caused
shifts of the binding free energies are reflected by various resistance mechanisms (A- to F-
types). The drug resistance mechanisms are remarkably different for different inhibitors and
for different mutations on the target protein (HIV-1 protease).

The CMS method tested in this study may be considered as a reasonable and
computationally efficient protocol for evaluating the effects of amino acid mutations of
protein on protein-inhibitor interactions. The CMS protocol requires the MD equilibration of
wild-type protein-inhibitor complex, followed by performing site-mutation for each
snapshot sampling from the MD trajectory at regular time intervals. As an extension of the
well-known computational alanine scanning (CAS) method, the CMS protocol includes a
fast geometry refinement process and, thus, may be used to deal with both mutations from
large residues to smaller ones and those from small residues to the ones with a larger or
similar size, so long as the mutations do not cause considerable changes on the orientation of
the ligand in the binding pocket of the protein. For another remarkable difference between
the CMS and CAS methods, the CMS accounts for entropic contributions in the MM-PBSA
binding free energy calculations such that the CMS can be used to reasonably predict the
binding free energy changes caused by the mutations on the protein. By using the CMS
protocol, the computationally determined mutation-caused shifts of the binding free energies
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linearly correlate very well with those derived from the corresponding experimental data.
Based on the linear correlation, the calculated binding free energy shifts caused by the
mutations can reasonably reproduce the experimental data concerning the drug resistance.

Further, the reasonable linear correlation between the computational and experimental shifts
of the binding free energies also suggests that the CMS protocol may be used as a
generalized computational approach to predict drug resistance associated with amino acid
mutations on target proteins. It is essentially important for understanding drug resistance
mechanisms and for structure-based drug design to develop an effective computational
protocol for drug resistance prediction. Previously used methods suffer from various
drawbacks, such as time-consuming, low accuracy, and neglect of entropy contribution. The
reasonable and efficient CMS protocol for drug resistance prediction should be valuable for
future structure-based design and discovery of anti-resistance drugs in various therapeutic
areas. For an ideal drug molecule, in addition to the desirable high potency, high selectivity,
and good adsorption, distribution, metabolism, and excretion (ADME) profile, a lower drug
resistance risk should also be one of the fundamental characteristics. It is very important to
take drug resistance risk into full account during the process of structure-based drug design,
as drug resistance has become one of the most serious problems in current drug discovery
and development. Therefore, it is essentially important for structure-based drug discovery to
have a reasonable computational protocol like the CMS for drug resistance prediction.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Molecular structures of HIV-1 protease inhibitors used in the present study
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Figure 1.
Structural distribution of the identified mutation sites (residues) of the HIV-1 protease
(active site residues in red and non-active site residues in blue).
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Figure 2.
Workflow of the computational mutation scanning.
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Figure 3.
Six possible mechanisms for drug resistance: decrease in the enthalpy contribution to the
binding affinity (A-type), decrease in the entropic contribution to the binding affinity (B-
type), decrease in both the enthalpy and entropic contributions (C-type), no significant
change in the enthalpy and entropic contribution (D-type), decrease in the enthalpy
contribution compensated with increase in the entropic contribution (E-type), decrease in the
entropic contribution compensated with increase in the enthalpy contribution (F-type).
Enthalpy and entropy changes reflect different types of interactions. Thus these signals
provide valuable clues for the rational design of anti-resistance drugs.
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Figure 4.
Linear correlation between the calculated and experimental binding free energy shifts for
each of the six drugs in clinical use.
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Figure 5.
Thermodynamic representation of the drug resistance mechanism for each drug associated
with each mutant of HIV-1 protease.
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Figure 6.
Superimposition of the MD-simulated molecular structures of APV, IDV, and SQV with the
corresponding structures obtained from the CMS calculations. The superimposition was
carried out on the backbone atoms of the protein. The structures obtained from the MD
simulations are shown as colored sticks, whereas those from the CMS calculations are
shown in deep blue. The color shown in the bottom bar refers to the magnitude of the
RMSD.
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Figure 7.
The overall linear correlation between the calculated and experimental binding free energy
shifts for all of the six clinical available drugs with various mutants of the HIV-1 protease.
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