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Abstract

We use our sense of time to identify temporal relationships between events and to anticipate 

actions. How well we can exploit temporal contingencies depends on the variability of our 

measurements of time. We asked humans to reproduce time intervals drawn from different 

underlying distributions. As expected, production times were more variable for longer intervals. 

Surprisingly however, production times exhibited a systematic regression towards the mean. 

Consequently, estimates for a sample interval differed depending on the distribution from which it 

was drawn. A performance-optimizing Bayesian model that takes the underlying distribution of 

samples into account provided an accurate description of subjects’ performance, variability and 

bias. This finding suggests that the central nervous system incorporates knowledge about temporal 

uncertainty to adapt internal timing mechanisms to the temporal statistics of the environment.

From simple habitual responses to complex sensorimotor skills, our behavioral repertoire 

exhibits a remarkable sensitivity to timing information. To internalize temporal 

contingencies, and to put them to use in the control of conditioned and deliberative behavior, 

our nervous systems must be equipped with central mechanisms to process time.

Among the elementary aspect of temporal processing, and one that has been the focus of 

many psychophysical studies of time perception, is the ability to measure the duration 

between events; i.e., interval timing1. A common feature associated with repeated estimation 

(or production) of a sample interval is that the standard deviation of the estimated (or 

produced) intervals increases linearly with their mean, a property that is termed scalar 

variability2–4. While previous work has demonstrated how suitable forms of internal noise 

might lead to scalar variability5–8, we do not know whether and how the nervous system can 

make use of this lawful relationship to improve timing behavior.

Scalar variability implies that measurements of relatively longer intervals are less reliable 

and thus more uncertain. The question we address is whether subjects have knowledge about 
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this uncertainty, and how they might exploit it to improve estimation and production of time 

intervals. This question is particularly important when one has prior expectations of how 

long an event might last. For instance, if one measures an interval to be ~1.5 s but, based on 

experience, expects it to be closer to 1.2 s, then s/he may conclude that the true interval was 

probably somewhere between 1.2 and 1.5 s. More generally, knowledge about the 

distribution of time intervals one may encounter – which we refer to as temporal context – 

could help reduce uncertainty. The extent to which temporal context should inform temporal 

judgments depends on how unreliable measurements of time are. While a metronome need 

not rely on temporal context to stay on the beat, a piano player may well use the tempo of a 

musical piece to coordinate finger movements in time. Thus, to make use of the oft-present 

temporal context, the brain must have knowledge about the reliability of its own 

measurements of time.

The question of how knowledge about temporal context may improve measurements of 

elapsed time can be posed rigorously in the framework of statistical inference. In this 

framework, to estimate a sample interval, the observer may take advantage of two sources of 

information: (1) the likelihood function, which quantifies the statistics of sample intervals 

consistent with a measurement, and (2) the prior probability distribution function of the 

sample intervals the observer may encounter. One possibility is for the observer to ignore 

the prior distribution, and to choose the most likely value directly from the likelihood 

function, a strategy known as the maximum-likelihood estimation (ML)9. Alternatively, a 

Bayesian observer would combine the likelihood function and the prior, and use some 

statistic to map the resulting posterior probability distribution onto an estimate. Common 

mapping rules are the maximum a posteriori (MAP) and Bayes Least Squares (BLS), which 

correspond to the mode and the mean of the posterior respectively.

To understand how humans evaluate their measurements of elapsed time in the presence of a 

temporal context, we asked subjects to estimate and subsequently reproduce time intervals in 

the sub-second to seconds range that were drawn from three different prior distributions. 

Subjects’ production times showed a clear dependence on both the sample intervals and the 

prior distribution from which they were drawn. We fitted subjects’ responses to various 

observer models such as ML, MAP and BLS and found that a Bayesian observer associated 

with the BLS could account for the bias, variability and overall performance of every subject 

in all three prior conditions. This suggests that subjects have implicit knowledge of the 

reliability of their measurements of time, and can use this information to adjust their timing 

behavior to the temporal regularities of the environment. Furthermore, our observer model 

shows that this sophisticated Bayesian behavior can be accounted for by a nonlinear 

transformation that simply and directly maps noisy measurement of time to optimal 

estimates.

Results

The Ready-Set-Go paradigm

Subjects had to measure, and immediately afterwards reproduce different sample intervals. 

A sample interval, ts, was demarcated by two brief flashes, a “Ready” cue followed by a 

“Set” cue. The corresponding production time, tp, was measured from the time of the “Set” 
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cue to when subjects proactively responded via a manual key press (Fig. 1a). Subjects 

received feedback for sufficiently accurate production times (Fig. 1c).

In each session, sample intervals were drawn from a discrete uniform prior distribution. For 

each subject, three partially overlapping prior distributions (“Short”, “Intermediate” and 

“Long”) were tested (Fig. 1b). The main data for each prior condition were collected after an 

initial learning stage (typically 500 trials) to ensure subjects had time to adapt their 

responses to the range of sample intervals presented.

Subjects’ timing behavior exhibited three characteristic features (Fig. 2). First, production 

times monotonically increased with sample intervals. Second, for each prior condition, 

production times were systematically biased towards the mean of the prior as evident from 

their tendency to deviate from sample intervals (diagonal dashed line) and gravitate towards 

the mean interval (horizontal dashed line)10–12. Consequently, mean production times 

associated with a particular ts were differentially biased for the three prior conditions. Third, 

production time biases were more pronounced in the “Intermediate”, and more so, in the 

“Long” prior conditions, indicating that longer sample intervals were associated with 

progressively stronger prior-dependent biases. Similarly, within each prior condition, the 

magnitude of the bias was larger for the longest sample interval compared to the shortest 

sample interval (Supplementary Fig. S1).

Scalar variability implies that the measurement of longer sample intervals engender more 

uncertainty. According to Bayesian theory, for these more uncertain measurements, 

subjects’ performance would improve if they rely more on their prior expectation 

(Supplementary Fig. S2). This is consistent with the observed increases in prior-dependent 

biases associated with longer sample intervals and suggests that subjects might have adopted 

a Bayesian strategy to reproduce time intervals. We thus developed probabilistic observer 

models to evaluate these observations quantitatively and to understand the computations 

from which they might arise.

The observer model

The observer model is presented with a sample interval, ts. Due to measurement noise, the 

measured interval, tm, may differ from ts. The observer must use tm to compute an estimate, 

te, for the sample interval, ts. To do so, the observer may use an estimator that relies on 

probabilistic sources of information such as the likelihood function and the prior 

distribution. Importantly however, the estimator itself is fully characterized by a 

deterministic function, f, that maps a measurement, tm, to an estimate, te; i.e. te = f(tm). 

Finally additional noise during the production phase may cause the production time, tp, to 

differ from te (Fig. 3a).

To formulate the model mathematically, we need to specify the relationship between the 

sample interval, ts, the measured interval, tm, the estimate, te, and the production time, tp. 

The relationship between tm and ts can be quantified by the conditional probability 

distribution, p(tm|ts), the probability of different measurements for a specific sample interval. 

This distribution also specifies the likelihood function, λtm (ts), a statistical description of the 

different sample intervals associated with a fixed measurement. We modelled p(tm|ts) as a 
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Gaussian distribution centered at ts, and motivated by the scalar variability of timing, 

assumed that the standard deviation of p(tm|ts) grows linearly with its mean (Fig. 3a). The 

distribution of measurement noise was thus fully characterized by the ratio of the standard 

deviation to the mean of p(tm|ts), which we will refer to as the Weber fraction associated 

with the measurement, wm. With the same arguments in mind, we assumed that the 

distribution of tp conditioned on te, p(tp|te) is also Gaussian, is centered at te, and is 

associated with a constant Weber fraction, wp.

Finally, the relationship between tm and te was modelled by a deterministic mapping 

function, f, which we will refer to as the estimator. Different estimators are associated with 

different mapping rules. Among them, we focused on the ML, MAP and BLS because of 

their well-known properties, and because they were most germane to the development of our 

arguments with respect to the psychophysical data. We denote the corresponding estimators 

by fML, fMAP, and fBLS respectively (Fig. 3b–d).

The fML estimator assigns te to the peak of the likelihood function (Fig. 4a). In our model, 

with a Gaussian-distributed measurement noise and a constant Weber fraction, te would be 

proportional to tm (see Methods). The fMAP and fBLS estimators, on the other hand, rely on 

the posterior distribution, which is proportional to the product of the prior distribution and 

the likelihood function. Because the prior distribution we used was uniform, the posterior 

was a scaled replica of the likelihood function within the domain of the prior and zero 

elsewhere. The MAP rule extracts the mode of the posterior, which would correspond to the 

peak of the likelihood function except when the peak falls below/above the prior 

distribution’s shortest/longest sample interval. Thus, fMAP is the same as fML with the 

difference that its range is limited to the domain of the prior (Fig. 4b). For BLS, which is 

associated with the mean of the posterior, the estimator, fBLS, is a sigmoid function of tm 

(Fig. 4c).

Note that since the specification of these estimators does not invoke any additional free 

parameters, the observer model associated with each estimator was fully characterized by 

two free parameters only: wm and wp.

Comparing experimental data with the observer model

Our psychophysical data consisted of pairs of sample intervals and production times (ts and 

tp), but the observer model we created to relate ts to tp relies on two intervening and 

unobservable (hidden) variables, tm and te. We thus expressed these two hidden variables in 

terms of their probabilistic relationship to the observable variables ts and tp (see Methods), 

and derived a direct relationship between production times and sample intervals. This 

formulation was then used to examine which of the three observer models described human 

subjects’ responses best.

To compare human subjects’ responses to those predicted by the observer models, we 

quantified production times with two statistics, their variance (VAR), and their bias (BIAS) 

(Fig. 5a), which together partition the overall root mean squared error (RMSE) as follows:

Jazayeri and Shadlen Page 4

Nat Neurosci. Author manuscript; available in PMC 2011 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This relationship, which highlights the familiar trade off between the VAR and BIAS, when 

written as the sum of squares, becomes the standard equation of a circle:

This geometric description indicates that in a plot of VAR1/2 versus BIAS, a continuum of 

values along a quarter circle would lead to the same RMSE (Fig. 5b). It also provides a 

convenient graphical description for how a larger RMSE represented by a quarter circle with 

a larger radius may arise from increases in VAR1/2, BIAS or both. We used this plot to 

summarize the statistics of production times, and also to evaluate the degree to which 

different observer models could capture those statistics.

We fitted the parameters of the ML, MAP and BLS models (wm and wp) for each subject, 

based on the production times in the three prior conditions (Fig. 6a–c inset). We then 

simulated each subject’s behavior using the fitted observer models, and compared each 

model’s predictions to the actual responses using the BIAS, VAR1/2, and RMSE statistics 

(Fig. 5c,e,g).

The ML model did not exhibit the prior-dependent biases present in production times (Fig. 

5c,d), because the ML estimator does not take the prior into account. This failure cannot be 

attributed to an unsuccessful fitting procedure or a misrepresentation of the likelihood 

function. The fact that subjects’ production times depended on the prior condition would 

render any estimator that neglects the prior (e.g. ML) inadequate, the parametric form of the 

likelihood function notwithstanding. The MAP model was slightly better than the ML model 

at capturing the trade-off between BIAS and VAR (Fig. 5e,f), but it also underestimated the 

bias of the production times and overestimated their variance for all subjects (Fig. 6b). The 

BLS model on the other hand, mimicked the bias and variance of the production times quite 

well (Fig. 5g). It captured the overall RMSE as well as the trade off between the VAR and 

the BIAS (Fig. 5h), and was statistically superior to both ML and MAP estimators across our 

subjects (Fig. 6c).

We evaluated several variants of the BLS model by incorporating different assumptions 

concerning the measurement and production noise. In our main model (Fig. 4c), we fit 

Weber fractions for both sources of noise (wm and wp), consistent with the observation that, 

for all subjects, the standard deviation of the production times was roughly proportional to 

the mean (Supplementary Fig. S4). We also considered the possibility that the standard 

deviation of either the measurement noise or the production noise scales with the base 

interval, whereas the other noise source has constant standard deviation (Supplementary 

Table S2). For all subjects, the original BLS model outperformed the model in which the 

measurement noise had a constant standard deviation, and for 5 out of 6 subjects, it 

outperformed the alternative in which the production noise had a constant standard deviation 

(Akaike Information Criterion, Supplementary Table S1). Moreover, a BLS model in which 
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Weber fractions were assumed identical (wm= wp) was inferior to the original BLS model 

(log likelihood ratio test for nested models; p< 0.03 for one subject and p<1e–7 for others). 

The importance of the measurement and production Weber fractions in accounting for the 

bias and variability of production times was also evident in model simulations 

(Supplementary Fig. S5).

Because our observer models were described by two parameters only (wm and wp), and all 

models used the same number of parameters, we were reasonably confident that the success 

of the BLS rule was not due to over-fitting. Nonetheless, we tested for this possibility by 

fitting the model to data from the “Short” and “Long” prior conditions. The fits captured the 

statistics of the “Intermediate” prior condition equally well. Finally, we note that the fits for 

the BLS and MAP rules did not differ systematically (Fig. 6a–c, insets). Therefore, the 

success of the BLS model cannot be attributed to the constraints inherent to our fitting 

procedure, but rather to its superior description of the estimator subjects adopted in this task.

Discussion

Our central finding is that humans can exploit the uncertainty associated with measurements 

of elapsed time to optimize their timed responses to the statistics of the intervals they 

encounter. This conclusion is based on the success of a Bayesian observer model that 

accurately captured the statistics of subjects’ production times in a simple time reproduction 

task.

A characteristic feature of subjects’ production times was that they were systematically 

biased towards the mean of the distribution of sample intervals. This observation is 

consistent with the ubiquitous central tendency of psychophysical responses in categorical 

judgment and motor production10–14. Previous work, such as the adaptation-level theory14, 

and range-frequency theory13 attributed these so-called range effects to subjects’ tendency 

to evaluate a stimulus based on its relation to the set of stimuli from which it is drawn. These 

theories, however, did not offer an explanation for what gives rise to such range effects in 

the first place, and whether or not they are of any value. In contrast, our work suggests that it 

is subjects’ (implicit) knowledge of their temporal uncertainty that determines the strength 

of the range effect. Moreover, the Bayesian account of range effects suggest that production 

time biases help — not harm — subjects’ overall performance (Supplementary Fig. S2,6). In 

what follows, we explain the novel aspects of our Bayesian model, and then discuss its 

implications for the neurobiology of interval timing.

Bayesian interval timing

Bayesian models have had great success in describing a variety of phenomena in vision and 

sensorimotor control15–18, as well as interval timing19, 20. Symptomatic to these models are 

prior-dependent biases whose magnitude increases for progressively less reliable 

measurements21. Motivated by the observation of such biases in our subjects’ behavior, and 

the success of a previous Bayesian model of coincidence timing19, we set out to formulate a 

Bayesian model for time reproduction.
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The model consisted of three stages. The first stage emulated a noisy measurement process 

that quantified the probabilistic relationship between the sample intervals and the 

corresponding noise-perturbed measurements22. In the second stage, a Bayesian estimator 

computed an estimate of the sample interval from the measurement. Finally, a noisy 

production stage converted estimates to production times23, 24. In line with previous work 

on interval timing, the measurement and production noise exhibited scalar variability2, 3, 5, 
7.

The estimator in the second stage of the model defines a deterministic mapping of 

measurements to estimates, and its functional form is determined precisely from the 

likelihood function, the prior distribution, and the cost (loss) function. The success of a 

Bayesian estimator thus depends on how well the likelihood, the prior and the cost function 

are constrained.

In psychophysical settings, because sensory measurements are not directly accessible, the 

likelihood function must be inferred from behavior and suitable assumptions about the 

distribution of noise. For example, cue combination studies make the reasonable assumption 

that measurements are perturbed by additive zero-mean Gaussian noise, and infer the width 

of the likelihood function from psychophysical thresholds25, 26. Alternatively, it is possible 

to model the likelihood function based on the uncertainty associated with external noise in 

the stimulus16, 27, 28. We modelled the likelihood based on the assumption that the 

distribution of measurements associated with a sample interval was Gaussian, was centered 

on the sample interval and had a standard deviation that scaled with the mean (see Methods).

To tease apart the roles of the likelihood function and the prior, it is important to be able to 

vary them independently. To manipulate likelihoods, one common strategy is to control 

factors that change psychophysical thresholds, such as varying the external noise in the 

stimulus16, 27. In our work, we exploited the scalar variability of timing to manipulate 

likelihoods. This property which arises from internal noise only and is known to hold across 

tasks and species2–4 for the range of times we used10 allowed us to manipulate the 

likelihood function simply by changing the sample interval. To manipulate the prior 

independently, we collected data using three discrete Uniform prior distributions. The priors 

were partially overlapping so that certain sample intervals were tested for two or three 

different priors, which enabled us to evaluate the effect of the prior independent of the 

likelihood function.

To convert the posterior distribution to an estimate, we needed to specify the cost function 

associated with the estimator. We considered two possibilities: (i) a cost function that 

penalizes all erroneous estimates similarly, which corresponds the mode of the posterior 

(MAP), and (ii) a cost function that penalizes errors by the square of their magnitude, which 

corresponds to the mean of the posterior (BLS). We also considered a non-Bayesian ML 

estimator that ignores the prior altogether, and chooses the peak of the likelihood function 

for the estimate. To decide which of these estimators better described subjects’ behavior, it 

proved essential to consider both the bias and the variability of production times. This 

technique, which was originally introduced to estimate internal priors from psychophysical 
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data22, provided a powerful constraint in the specification of the estimator’s mapping 

function.

We used our three-stage model to estimate the measurement and production Weber 

fractions, and to decide which of the three mapping rules (ML, MAP, or BLS) better 

captured production times29. The ML estimator clearly failed to capture the pattern of prior-

dependent biases evident in every subject’s production times, as expected from any 

estimator that neglects the prior. By incorporating the prior, both the MAP and BLS 

estimators exhibited contextual biases, but the BLS consistently outperformed the MAP 

model in explaining the trade off between the trial-to-trial variability and bias across our 

subjects (Fig. 6b,c). It is important to emphasize that, had we ignored the trial-to-trial 

variability, both BLS and MAP as well as a variety of other Bayesian models could have 

accounted for the prior-dependent biases in our data.

We also considered variants of the BLS model in which either the measurement or 

production noise were modelled as Gaussian with a fixed standard deviation (not scalar). 

Overall, our original model outperformed these alternatives (Supplementary Table S1) 

because the measurement and production Weber fractions played relatively independent 

roles in controlling the increasing bias and variance of production times with sample interval 

(Supplementary Fig. 5). The degrading effect of formulating noise with a fixed standard 

deviation was more severe for the measurement stage than it was for the production stage 

(Supplementary Table S1).

Despite the success of our modelling exercise, further validation is required to substantiate 

the role of a BLS mapping in interval timing. Four considerations deserve scrutiny. First, 

formulation of the likelihood function might take into account factors other than scalar 

variability that could alter measurement noise. For example, task difficulty or reinforcement 

schedule (Supplementary Fig. S3) could motivate subjects to pay more attention to certain 

intervals, and to measure them more reliably, which could in turn strengthen the role of the 

likelihood function relative to the prior. Therefore, it is important to consider attention and 

other related cognitive factors as an integral part of how the nervous system could balance 

the relative effects of the likelihood function and the prior. Second, knowledge of the prior is 

itself subject to uncertainty, and the internalized prior distribution may differ from the one 

imposed experimentally. Third, the feedback subjects receive is likely to interact with the 

mapping rule they adopt. Our feedback schedule did not encourage the use of BLS rule, but 

we cannot rule out the possibility that it influenced subjects’ behavior. Fourth, although the 

operation of a Bayesian estimator is formulated deterministically, its neural implementation 

is likely subject to biological noise. These different sources of variability must be parsed out 

before the estimator can be characterized definitively. These considerations, which concern 

all Bayesian models of psychophysical data, highlight the gap between ‘normative’ 

descriptions and their biological implementation.

We referred to our model as a Bayesian observer, and not a Bayesian observer-actor because 

our formulation was only concerned with making optimal estimates. But since the full task 

of the observer was to reproduce those estimated intervals, we can formulate a Bayesian 

observer-actor whose objective is to directly optimize production times, and not the 
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intervening estimates. This model has to take into account both the measurement and 

production uncertainty and integrate them with prior to compute the probability of every 

possible pair of sample and production interval. It would then use this joint posterior to 

minimize the cost of producing erroneous intervals. The derivations associated with the 

Bayesian observer-actor model are more involved and beyond the scope of the present work. 

Yet, we note that under suitable assumptions, the two models would behave similarly (see 

Methods).

Context-dependent central timing

Our finding suggests that the brain takes into account knowledge of temporal uncertainty 

and adapts its time keeping mechanisms to temporal statistics in the environment. What 

neural computations may lead to such sophisticated behavior? One possibility is that the 

brain implements a formal Bayesian algorithm. For example, populations of neurons might 

maintain an internal representation of the prior distribution and the likelihood function, 

multiply them to represent a posterior and produce an estimate by approximating its 

expectation. Related variants of this scheme are also conceivable. For instance, our results 

could be accommodated by an ML strategy if the prior would exert its effect indirectly by 

changing the statistics of noise associated with measurements. Another more attractive 

possibility that obviates the need for explicit representations of the likelihood function and 

the prior is for the brain to learn the sensorimotor transformation that would map 

measurements onto their corresponding Bayesian estimates directly30. This is what our 

observer model exemplifies: it establishes a deterministic nonlinear mapping function to 

directly transform measurements to estimates. Evidently, this form of learning must 

incorporate knowledge about (1) scalar variability, and (2) prior distribution.

Electrophysiological recordings from sensorimotor structures in monkeys have described 

computations akin to those our observer model utilizes. For instance, parietal association 

regions and subcortical neurons in Caudate have been shown to reflect flexible sensorimotor 

associations31, 32. The time course of activity across sensorimotor neurons is believed to 

represent sensory evidence33, its integration with the prior information34, and the 

preparatory signals in anticipation of instructed and self-generated action35–37. The 

importance of sensorimotor structures in time reproduction is further reinforced by their 

consistent activation in human neuroimaging studies that involve time sensitive 

computations38–41.

A variety of models have been proposed to explain the perception and use of an interval of 

time. Information theoretic models attribute the sense of time to the accumulation of tics 

from a central clock11, 42, 43; physiological studies have noted a general role for rising 

neural activity for tracking elapsed time in the brain36, 37, 44–48, and biophysical models 

have been developed that suggest that time may be represented through the dynamics of 

neuronal network49. Our work, which does not commit to a specific neural implementation, 

suggests that the internal sense of elapsed time in the sub-second to seconds range may arise 

from a plastic sensorimotor process that enables us to operate efficiently in different 

temporal contexts.
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Methods

Psychophysical procedures

Six human subjects aged 19 to 40 yr participated in this study after giving informed consent. 

All had normal or corrected-to-normal vision, and all were naïve to the purpose of the 

experiment. Subjects viewed all stimuli binocularly from a distance of 52 cm on an 17-inch 

iiyama AS4311U LCD monitor at a resolution of 1024×768 driven by a Intel Macintosh G5 

computer at a refresh rate of 85 Hz in a dark, quiet room.

In a “Ready-Set-Go” time reproduction task, subjects measured certain sample intervals 

demarcated by a pair of flashed stimuli, and reproduced those intervals by producing time-

sensitive manual responses. Each trial began with the presentation of a central fixation point 

(FP) for 1 s, followed by the presentation of a warning stimulus at a variable distance to the 

left of the FP. After a variable delay ranging from 0.25 to 0.85 s drawn randomly from a 

truncated exponential distribution, two 100 ms flashes separated by the sample interval, ts, 

were presented. The first flash, which signified the “Ready” stimulus, was presented at the 

same distance as the warning stimulus but to the right of the FP. The “Set” stimulus was 

presented ts ms afterwards and 5 deg above the FP (Fig. 1a). Subjects were instructed to 

measure and reproduce the sample interval by pressing the space bar on the keyboard ts ms 

after the presentation of the “Set”. Production times, tp, were measured from the center of 

the “Set” flash (i.e. 50 ms after its onset) to when the key was pressed. When tp was 

sufficiently close to ts, the warning stimulus changed from white to green to provide positive 

feedback and encourage stable performance.

All stimuli were circular in shape and were presented on a dark grey background. Except for 

FP that subtended 0.5 deg of visual angle, all other stimuli were 1.5 deg. To ensure that 

subjects could not use the layout of the stimuli to adopt a spatial strategy for the time 

reproduction task (e.g. track an imaginary moving target), we varied the distance of the 

“Ready” and the warning stimulus from the FP on each trial (range 7.5 to 12.5 deg).

For each subject, three experimental conditions were tested separately. These conditions 

were the same in all respects except that, for each condition, the sample intervals were 

drawn from a different prior probability distribution. All priors were discrete Uniform 

distributions with 11 values, ranging from 494 to 847 ms for the “Short”, 671 to 1023 ms for 

the “Intermediate”, and 847 to 1200 ms for “Long” prior condition. Note that to help tease 

apart the effects of prior condition from sample interval, the priors were chosen to be 

partially overlapping.

For each subject, the order in which the three prior conditions were tested was randomized. 

For each prior condition, subjects were tested after they completed an initial learning stage. 

Learning was considered complete when the variance and bias of the production times had 

stabilized (less than 10% change between sessions). The main data for each prior condition 

were collected in two sessions after leaning for that condition was complete. Learning for 

each subsequent prior condition started after testing for the preceding prior condition was 

completed. For 5 out of 6 subjects, the learning was completed by the end of the first session 

(less than 10% change between first and second sessions). For one subject, learning of the 
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first prior condition was completed after 4 sessions. For this subject, the 5th and 6th sessions 

provided data for the first prior condition. For the other two prior conditions, similar to other 

subjects, responses stabilized after one practice session. All subjects typically participated in 

3 sessions per week, and each sessions lasted ~45 minutes (i.e. nearly 500 trials).

Subjects received positive feedback for responses that fell within a specified window around 

ts (i.e., “correct” trials). To compensate for the increased difficulty associated with longer 

sample intervals – a natural consequence of scalar timing variability2–4 – the width of this 

window was scaled with the sample interval with a constant of proportionality, k. To ensure 

that the performance was comparable across different prior conditions, the value of k was 

controlled by an adaptive one-up one-down procedure which added/subtracted 0.015 to/from 

k for each “miss”/“correct” trial. As such, every subject’s performance for every session 

yielded approximately 50% positively reinforced trials (mean = 51.7%; std=1.33%). For 

each prior condition, the maximum (minimum) number of “correct” trials corresponded to 

the intermediate (extreme) sample intervals (Supplementary Fig. S3).

The Bayesian estimator

The noise distribution associated with the measurement stage of the model, determines the 

distribution of tm for a given ts, p(tm|ts). From the perspective of the observer who makes a 

measurement tm but does not know ts, this relationship becomes a function of ts known as 

the likelihood function, λtm(ts) ≡ p(tm|ts) in which tm is fixed. We modelled p(tm|ts) as a 

Gaussian distribution with mean ts, and standard deviation wmts that scaled linearly with ts 

(scalar variability) with a constant coefficient of variation, wm.

(1)

Similarly, the production noise distribution, p(tp|te), was assumed to be Gaussian with zero 

mean and a constant coefficient of variation, wp:

(2)

To simplify derivations, we modelled the discrete uniform prior distributions used in the 

experiment as continuous. For each prior condition, we specified the domain of sample 

intervals between  and  based to the minimum and maximum values used in the 

experiment.

(3)

The resulting posterior, π(ts|tm), is the product of the prior multiplied by the likelihood 

function and appropriately normalized:
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(4)

The Bayesian estimator computes a single estimate, te, from the posterior by considering an 

objective cost function, l(te, ts), that quantifies the cost of erroneously estimating ts as te. The 

Bayesian estimate minimizes the posterior expected loss, which is the integral of the cost 

function for each ts, weighted by its posterior probability, π(ts|tm):

(5)

Notice that the optimal estimate, te, is a deterministic function of the measured sample, fl(tm) 

in which the subscript l reflects the particular cost/loss function.

For the ML model, the estimator fML(tm ) is associated with the sample interval that 

maximizes the likelihood function, which can be derived from Equation (1):

(6)

The ML estimate is proportional to measurement. For a plausible range of values for wm, the 

constant of proportionality would be less than one, and thus the ML would systematically 

underestimate the sample. For instance, for 0.1< wm < 0.3, the constant of proportionality 

would vary between 0.99 and 0.92.

For the MAP rule, the cost function is −δ(te−ts), where δ(.) denotes the Dirac delta function. 

The corresponding estimator function, fMAP(tm ), is specified by the mode of the posterior as 

follows:

(7)

For the BLS rule, the cost function is the squared error, (te−ts)2, and the estimator function, 

fBLS(tm) corresponds to the mean of the posterior:

(8)

The Bayesian observer model

The Bayesian estimator specifies a deterministic mapping from a measurement, tm to an 

estimate, te. But our psychophysical data consists of pairs of sample interval, ts and 
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production time, tp. Accordingly, we augmented the estimator with a measurement stage and 

a production stage, which together with the estimator, provide a complete characterization of 

the relationship between ts and tp. The model however relies on two intermediate variables 

tm and te that are psychophysically unobservable (i.e. hidden variables). To remove these 

variables from the description of the model, we took advantage of a trick common to 

Bayesian inference, which is to integrate out the hidden variables (i.e. marginalization). 

Specifically, using the chain rule, we decomposed the joint conditional distribution of 

variables tm, te, and tp to three intervening conditional probabilities:

(9)

We used the serial architecture of our model (Fig. 3a) to simplify the dependencies in the 

right hand side of Equation (9). In the first term, because the conditional probability of tp is 

fully specified by te and wp (from Equation (2)), we can safely omit the other conditional 

variables (tm, ts and wm). In the second term, the only relevant conditional variable is tm 

since it specifies te deterministically. And for the third term, wp has no bearing on tm. 

Incorporating these simplifications, the joint conditional distribution can be rewritten as 

follows:

(10)

Moreover, because te is a deterministic function of tm; i.e., te= f(tm), the conditional 

probability p(te|tm ) can be written as a Dirac delta function as follows:

(11)

We can eliminate the dependence on the two hidden variables tm and te by marginalization:

(12)

The integrand is the product of the conditional probability distributions associated with the 

measurement and production stages. By substituting these distributions from Equations (1) 

and (2), and f(tm) from Equation (6), (7), or (8) (depending on the estimator of interest), 

Equation (12) provides the conditional probability of tp for a given ts as a function of the 

model parameters, wm and wp.

The Bayesian observer-actor model

The observer model described in the previous section obtains an estimate that minimizes a 

cost built around the estimate and the actual time interval. It was formulated to minimize the 

expected loss associated with erroneous estimates, not production times. A more elaborate 

Bayesian “observer-actor” model would seek to minimize expected loss with respect to the 

ensuing production times (and not the intervening estimates). This elaboration demands two 
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considerations. First, the uncertainty associated with both the measurement and the 

production phases must be taken in to account. As such, the relevant probability distribution 

would be the joint posterior of the sample interval and production time conditioned on the 

measurement, π(tp, ts|tm). Second, the definition of the cost function should concern the 

sample interval and production time; i.e., l(tp, ts). The appropriate posterior expected loss 

could then be minimized as follows:

(13)

The Delta and least squares cost functions in this optimization problem do not correspond to 

the mode and mean of the joint posterior, and derivation of the optimal solution is more 

involved and beyond the scope of this manuscript. Nonetheless, we note that the 

corresponding estimators for the Bayesian observer-actor are qualitatively similar to those 

we derived for the MAP and BLS mapping rules in our simplified Bayesian observer model.

Fitting the model to the data

We assumed that tp values associated with any ts were independent across trials, and thus 

expressed the joint conditional probability of individual tp values across all N trials, and 

across the three prior conditions, by the product of their individual conditional probabilities:

(14)

The products change to sums by taking the logarithm of both sides:

(15)

Each term in the sum was derived from Equation (12), after substituting f(tm) with the 

appropriate estimator function (Equation (6), (7) or (8)).

We used this equation to maximize the likelihood of model parameters, wm and wp, across 

all ts and tp values measured psychophysically. The maximization was done using 

‘fminsearch’ command in MATLAB software, which incorporates the Nelder-Mead 

downhill simplex optimization method. Integrals of Equations (8) and (12) are not 

analytically solvable and were thus approximated numerically using the trapezoidal rule. We 

evaluated the success of the fitting exercise by repeating the search with different initial 

values; the likelihood function near the fitted parameters was highly concave, and the fitting 

procedure was stable with respect to initial values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Ready-Set-Go time reproduction task. (a) Sequence of events during a trial. Appearance 

of a central spot indicated the start of the trial. Subjects were instructed to fixate the central 

spot and maintain fixation throughout the trial. A white “feedback” spot was visible to the 

left of the fixation point. After a random delay (0.25 to 0.85 s), two briefly flashed cues – 

“Ready” and “Set” – were presented in sequence. Subjects were instructed to estimate the 

sample interval demarcated by the time between the “Ready” and “Set” cues and to 

reproduce it immediately afterwards. The production times were measured from the time of 

“Set” to the time subjects responded via a key-press. When production times were within an 

experimentally adjusted window around the target interval (see Methods), the feedback spot 

turned green to provide positive feedback. (b) Distribution of sample intervals. In each 

session, sample intervals were drawn randomly from one of three partially overlapping 

discrete Uniform prior distributions (i.e., “Short”, “Intermediate”, and “Long”) shown by the 

black, dark red and light red bar charts. Subsequent figures use the same color convention to 

show results associated with these prior conditions. (c) Feedback schedule. The width of the 

window for which production times were positively reinforced (green area) scaled with the 

sample interval (see Methods). No feedback was provided for early and late responses. The 

plot shows an example schedule for the “Intermediate” prior condition.
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Figure 2. 
Time reproduction in different temporal contexts. Individual production times for every trial 

(small dots), and their averages for each sample interval (large circles connected with thick 

lines) are shown for three prior conditions for a typical subject. Average production times 

deviated from the line of equality (diagonal dashed line) towards the mean of the priors 

(horizontal dashed lines). Prior-dependent biases were strongest for the “Long” prior 

condition. Color conventions are the same as in Fig. 1b.
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Figure 3. 
The observer model for time reproduction. (a) The three-stage architecture of the model. In 

the first stage, the sample interval, ts, is measured. The relationship between the measured 

interval, tm, and ts is characterized by measurement noise, p(tm|ts) which was modelled as a 

zero-mean Gaussian function whose standard deviation grows linearly with ts (i.e. scalar 

variability). The second stage is the estimator; i.e., the deterministic function, f(tm), that 

maps measurement tm to estimate te. The third stage uses te to produce interval tp. The 

conditional dependence of tp on te, p(tp|te), was characterized by production noise, which 

was modelled by a zero-mean Gaussian distribution whose standard deviation scales linearly 

with te. (b–d) The deterministic mapping functions associated with the ML, MAP and BLS 

models respectively.
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Figure 4. 
ML, MAP and BLS estimators. The three panels schematically represent how ML, MAP and 

BLS estimates are computed respectively. Upward arrows in black and gray show two 

example sample intervals. Vertical dashed lines represent the noise-perturbed measurements 

associated with those sample intervals. Measured intervals differ from the corresponding 

samples as shown by the misalignment between the upward arrows and their corresponding 

vertical dashed lines. The likelihood functions associated with the two measurements are 

shown on far right of each panel (rotated 90 degree). These likelihood functions are plotted 

with respect to the measurements as shown by the reflection of the measured interval on the 

diagonal (horizontal dashed lines). (a) ML estimator. The peak of the likelihood function 

determines the estimate (filled circles, thick left arrow). The corresponding mapping 

function, fML, for all possible measurements is shown by the solid black line with the two 

example cases superimposed. Because the likelihood function is Gaussian and centered on 

the measurements, this function is the identity function. (b) MAP estimator. On the right 

side of the panel, the posterior distributions (truncated Gaussian functions) for the two 

measurements are computed by multiplying their associated likelihood functions by the prior 

(gray bar chart). MAP estimates are computed from the mode of the posterior (filled circles). 

The corresponding mapping function, fMAP, is the identity function limited by the domain of 

the prior. (c) BLS estimator. Same as panel b except that for BLS, the mean of the posterior 

determines the estimate. The resulting mapping function, fBLS, is sigmoidal in shape.
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Figure 5. 
Time reproduction behavior in humans and model observers. (a) For each sample interval 

(referred to by subscript i) in each prior condition, we computed two statistics: BIASi and 

VARi. BIASi is the average difference between the production times and the sample 

interval, and VARi as the corresponding variance. As an example, the plots shows how the 

BIASi and VARi were computed for the largest sample interval associated with the “Long” 

prior condition for one subject (same format as in Fig. 2). For this distribution of production 

times (histogram), BIASi is the difference between the solid horizontal red line and the 

horizontal dashed line, and VARi is the corresponding variance. For each prior condition, 

we computed two summary statistics: BIAS is the root mean square of BIASi, and VAR as 

the average of VARi across sample intervals. (b) VAR1/2 versus BIAS for three prior 

conditions for the same subject as in panel a. On a plot of VAR1/2 against BIAS, the locus of 

a constant root-mean-square-error (RMSE) value is a quarter circle. Dashed quarter circles 

show the loci of RMSE values associated with the VAR1/2 and BIAS derived from the 

subject’s production times. (c) Simulated production times from the best-fitted ML model to 

the data in a. (d) The scatter of VAR1/2 and BIAS of the best-fitted ML model for three 

prior conditions (small dots) computed from 100 simulations like the one shown in c. The 
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VAR1/2 and BIAS of the subject are plotted for comparison (same as in b). (e,f), and (g,h) 

are in the same format as in (c,d) and show results for the best-fitted MAP and BLS models 

respectively. Color conventions are the same as in Fig. 1b.
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Figure 6. 
Time reproduction behavior in humans and model observers – model comparison. (a) 

Average BIAS (squares) and VAR1/2 (circles) computed from 100 simulations of the best-

fitted ML model as a function of BIAS and VAR1/2 computed directly from psychophysical 

data for all 6 subjects and all 3 prior conditions. The inset shows the Weber fraction of the 

measurement and production noise (wp versus wm) of the best-fitted ML model for the six 

subjects. (b,c) Same as in a for the MAP, and BLS models respectively. In each panel, each 

subject contributed 6 data points; i.e. 3 prior condition (black, dark red, and light red) × 2 

metrics (BIAS and VAR1/2).
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