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Abstract
The objective was to test GEographic Object-based Image Analysis (GEOBIA) techniques for
delineating neighborhoods of Accra, Ghana using QuickBird multispectral imagery. Two
approaches to aggregating census enumeration areas (EAs) based on image-derived measures of
vegetation objects were tested: (1) merging adjacent EAs according to vegetation measures and (2)
image segmentation. Both approaches exploit readily available functions within commercial
GEOBIA software. Image-derived neighborhood maps were compared to a reference map derived
by spatial clustering of slum index values (from census data), to provide a relative assessment of
potential map utility. A size-constrained iterative segmentation approach to aggregation was more
successful than standard image segmentation or feature merge techniques. The segmentation
approaches account for size and shape characteristics, enabling more realistic neighborhood
boundaries to be delineated. The percentage of vegetation patches within each EA yielded more
realistic delineation of potential neighborhoods than mean vegetation patch size per EA.

Introduction and Background
Neighborhood is a term that is common in both academic and lay vernaculars, but it may
have many different meanings or usages (Sampson et al., 2002; Talen, 1999, Warren, 1978).
Normally, a neighborhood is considered to be a spatial unit within a city or urban area. But
in reality, neighborhoods are social constructs and there are no precise definitions or
delineations for them in physical space. Here we define neighborhoods to be a spatial unit
within which urban residents share common social-cultural behaviors and identities. Overall,
our interest in delineating neighborhoods is two-fold. First, we are interested in the manner
in which neighborhood dwellers share information about health practices and outcomes, and
are similarly exposed to environmental factors that may influence the health of an individual
living within the neighborhood. Second, we are interested in delineating spatial units at the
neighborhood scale for which disparate socio-economic, health, and environmental data can
be optimally summarized to support spatial statistical analyses. The emphasis here is on the
second objective.
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Recent studies suggest that intra-city variations in poverty and health in developing
countries, such as most of Africa, may be greater than differences between urban and rural
populations (Montgomery and Hewett, 2005; Weeks et al., 2006). Accra, Ghana is an
excellent city to study neighborhood effects on health and poverty because of its disparate
socio-economic and health conditions, and because relatively recent and rich census and
women’s health data sets are available (Weeks et al., 2006; Weeks et al., 2007). As is
generally the case for these types of urban data sets, the census and health data are
summarized and reported by spatial units that vary in size and shape. This leads to the
modifiable areal unit problem or ecological fallacy (Oppenshaw, 1983), when attempts to
draw statistical inferences from and between these data sets are compromised or biased by
the irregular reporting units. Thus, delineating neighborhoods in Accra may be a useful
means for deriving analytical units for subsequent statistical analyses, and enable an
evaluation of possible neighborhood effects on health practice and outcomes.

A means for delineating neighborhoods is through a regionalization process applied to geo-
spatial data that are recorded at finer spatial scales than potential neighborhoods and that
have attributes that are relatively homogenous within neighborhoods. By a potential
neighborhood, we are referring to a spatial urban unit that is delineated through a
regionalization process, which may or may not conform to an actual neighborhood in terms
of its residents sharing common behaviors and identities. For instance, potential
neighborhoods could be delineated through spatial aggregation of socio-economic measures
from census data that are recorded for census reporting units. In Accra, the finest level of
census reporting unit is called an Enumeration Area (EA). EA-level census data can be
aggregated to a coarser level to delineate potential neighborhoods. However, census data are
expensive to capture and organize, are not available for most cities in developing countries,
and can become rapidly out of date, such as is the case for Accra. Also, if census data were
to be aggregated to form analytical units for subsequent statistical analysis, a less biased
approach to delineating these analytical units would be to use an alternative source of data
for regionalization.

Remote sensing provides a primary source of geo-spatial data for regionalization (Tian et al.,
2005) and/or delineation of potential neighborhoods. Remotely sensed images have been
used for regionalization purposes in the field of hydrology (Boulet et al., 2000; Brunner et
al, 2004), but apparently, in a very limited manner for intra-urban studies or delineating
neighborhoods per se (Zhou 2006). However, several previous studies have evaluated urban
socio-economic conditions using high spatial resolution satellite image data (Bjorgo, 2000;
Giada et al., 2003; Stow et al., 2007). For remotely sensed images to be useful for urban
regionalization and neighborhood delineation, some physical environmental and/or urban
infrastructural characteristics of neighborhoods must be identifiable and unique (Rashed, in
press). The urban vegetation-impervious-soil (V-I-S) model of Ridd (1995) provides a
potentially useful remote sensing approach to deriving geo-spatial measures that may be
used for regionalization purposes. By combining the V-I-S model with GEographic Object-
based Image Analysis (GEOBIA; Casilla and Hay, 2008), proportions, sizes, and shapes of
basic urban materials and structures may provide the link between the biophysical urban
landscape and neighborhoods (Stow et al., 2007).

Accra is a city of around two million people that has grown rapidly in the last decade
(Ghana Statistical Services, 2002). While a majority of Accra’s inhabitants are poor and live
in low socio-economic status (SES) neighborhoods, most of the slums of Accra consist of
formal, high density housing settlements, and few informal slums or camps exist currently.
In many cases moderate to high SES neighborhoods are juxtaposed with slums, and tend to
be located at higher elevations where in-flooding from tropical rains is less common. While
size of house structures and properties tend to indicate differences in SES of residential
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areas (e.g., larger houses and properties indicate higher SES), structures in slum areas often
consist of large networks (e.g., compounds) of connected or closely separated single story
dwellings that can appear on high spatial resolution imagery to be large buildings.

The most striking and revealing difference between residential areas of varying SES is the
relative abundance of vegetation cover. High SES areas have a high proportion of landscape
vegetation cover while low SES areas have little (Lo and Faber, 1997). Thus, the proportion
or size of vegetation objects may be effective criterion for delineating Accra neighborhoods.
The greatest potential confusion occurs between High SES residential areas and institutional
land use such as the national government building complexes, that both contain large
amounts of landscape vegetation. Another complication is that land use is often “mixed
use”, such that buildings may be used both for residential and commercial purposes.

The objective of this study was to test approaches to delineating neighborhoods of Accra
based on high spatial resolution multispectral image data from the QuickBird satellite
system and GEOBIA. Specifically, we evaluate two parsimonious approaches to
regionalizing EAs by using quantitative measures of vegetation objects as the aggregation
metrics and constraining the aggregation/segmentation process using EA boundary data.
Both approaches exploit readily available functions within the commercial GEOBIA
software called Definiens (Version 5); one by merging EAs according to similarity of
vegetation objects and the other by image segmentation.

Data and Methods
We test the two parsimonious approaches to delineating neighborhood units based on
QuickBird satellite image data and GEOBIA. EAs were used as the basic spatial unit of
analysis and were aggregated in an attempt to form neighborhood units, based on similarity
in vegetation patch proportions or mean patch size derived from GEOBIA. Digitized EA
boundaries were initially georeferenced only approximately, so the georeferenced QuickBird
image was used as a base for fine-tuning the georeferencing of the EA boundaries and
ensuring high registration precision between the two data sets. Two approaches to spatial
aggregation were tested: (1) polygon merging and (2) image segmentation. Image-derived
neighborhood maps were compared with the reference map derived using the slum index
(Weeks et al., 2007) and a spatial data aggregation procedure (Duque, 2007a) described
below, to provide a relative assessment of potential map utility. A flow chart portraying the
data processing and analysis steps is shown in Figure 1.

A cloud-free QuickBird satellite multispectral with a 2.4 m nominal ground sampling
distance (GSD) captured on 12 April 2002 was utilized. The full image covers an 18 km (E-
W) × 13 km (N-S) area, which is approximately 80% of the Accra Metropolitan Area
(AMA). For this study we used a 6 km (E-W) × 5 km (N-S) subset of the QuickBird image
(shown in Figure 2) that contained most of the neighborhood and land use types found
within Accra. The imagery had been georeferenced to the Universal Transverse Mercator
map projection by DigitalGlobe at the Standard processing level (CE90 = 23 m; RMSE = 14
m). Ocean and inland waters were masked prior to image analyses.

A map that had been generated through GIS and spatial aggregation modeling of census data
was utilized as reference data for a relative assessment of the utility of image-derived
neighborhood maps. Figure 2 contains a map of EA boundaries and the reference map is
displayed in Figure 4f. The reference map was based on a slum index that was calculated for
each EA by summing five census variables for each housing unit based on UN-Habitat
(2006) definitions of slums as representing place that have one or more of the following
characteristics: (1) no running water inside the house, (2) no toilet connected to sewer
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system, (3) three or more persons per room, (4) roof of non-durable material, and (5)
insecure tenure (e.g., squatting) (Weeks et al., 2007). Each housing unit was scaled from 0 to
5, where zero indicates no slum characteristics and five indicates all slum characteristics.
The average score for housing units in an EA is the slum index for that EA.

The EA-level map of slum index was subjected to a polygon spatial aggregation procedure
called the Max-P-Region (Duque et al., 2007a), to produce 277 “analytical regions.” In this
method, the problem of aggregation of spatial data is conceptualized as a special case of
clustering in which the geographical contiguity between the elements to be grouped are
considered. This particular case of clustering methods is usually known as contiguity-
constrained clustering or simply the regionalization problem (Duque et al., 2007b). Each EA
is compared to its neighbors to see if the neighbors are more like the “kernel” EA than
would be expected by chance alone. If so, the neighbor is attached to the kernel EA, and
then this new agglomerated EA is compared with neighbors. The process is iterative,
working toward a stable solution in which all agglomerations (analytical regions) represent
the maximum homogeneity within neighborhoods, and the maximum heterogeneity between
neighborhoods.

Of particular importance is that the method is multivariate, taking into account several
different variables at a time and thus, it is an improvement on an earlier agglomeration
method using similar data. In this instance, each of the five slum characteristics of the
housing units in an EA was evaluated against the values for neighboring EAs in order to
make a decision about agglomerating one EA with another. A series of random permutations
was run to confirm that the results were significantly different from results that could be
obtained by chance alone.

A bottom-up, hierarchical segmentation strategy with two levels of image objects (Stow et
al., 2007) was implemented for the image-based derivation of potential neighborhoods.
Definiens uses a region-based local mutual segmentation routine, a type of region growing
approach, to generate image objects (Baatz et al., 2000; Benz et al., 2004; Yu et al., 2006).
We controlled segmentation by both scale (size of segment) and shape (compactness and
smoothness characteristics of segments) parameters in an interactive, trial-and-error fashion.

The first and finest segmentation (Level 1) consisted of potential V-I-S patches, where our
primary interest was to delineate vegetation patch objects. Image inputs (i.e., spectral
features) for the Level 1 segmentation were the four QuickBird multi-spectral wavebands,
NIR, red, green, blue (in order of input) (Stow et al., 2007). Level 1 segmentation was
optimized based on visual inspection of training objects (e.g., trees and buildings) on
segmentation products generated iteratively by altering segmentation parameters. We used a
supervised classification of V-I-S classes based on a standard nearest neighbor (a.k.a.
minimum distance to mean) classifier. Input features were selected using a statistical
separability measure embedded in the Definiens routine known as Feature Space
Optimization. The selected “optimal” features are listed and described in Table 1.

Vegetation objects from the Level 1 segmentation and classification were used to derive
vegetation metrics at the EA level. Values for the proportion of vegetation patches and mean
size of vegetation patches were derived for each EA and are depicted in Figure 3.

The second segmentation was at a coarser level (i.e., larger objects) at which EAs were
grouped in an attempt to form neighborhood units. For Level 2 segmentation, feature inputs
were either vegetation patch fraction or vegetation patch size features. To allow
segmentation of the Level 1 summary results directly, it was necessary export the Level 1
objects into an ArcGIS shapefile (*.shp), convert them to a raster layer, and import them
back into Definiens as if they were a spectral layer. To constrain the Level 2 segmentation,
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the EA boundary file was imported in vector format and was an input to the segmentation
routine as a thematic layer (along with the vegetation patch features). A large scale
parameter was used to generate objects that were only limited in size by the EA boundaries.
This ensured that aggregated segments conformed to EA boundaries and that resultant
segmentation products directly represented maps depicting potential neighborhood
boundaries.

To limit the generation of unrealistically large neighborhood objects, a size-constrained
iterative segmentation procedure was also tested. After initial segmentation using a scale
factor of 15 (Shape = 0.3, Compactness = 1.0), objects smaller than an empirically defined
threshold (200,000 m2) were allowed to aggregate further in subsequent segmentations. The
scale factor was increased sequentially from 100 to 1000 in increments of 100.

A simpler and more direct approach to aggregating EAs was also tested using the Merge
function of Definiens software. This function employs topological and feature similarity
criteria to group adjacent image segments. The topological criterion is simply that only
objects sharing a common boundary can be merged and the spectral criterion is a simple
linear distance measure for input features. In this case, the features were vegetation patch
proportion and mean patch size for each EA. As with the selection of segmentation
parameters, the merge distance factor was optimized through interactive modification
according to visual examination of aggregated EA boundaries. The objective was to
minimize the number of newly formed neighborhood objects, while avoiding elongated or
low compactness objects.

Spatial correspondence of the five image-derived neighborhood maps was compared with
the reference map that had been derived from the spatially aggregated slum index (census-
based) data. This provided a relative assessment of the potential utility of the image-derived
maps for representing actual neighborhoods in Accra, given that there is no absolute
definition or delineation of neighborhoods at this time. We assessed spatial correspondence
by comparing summary statistics and through spatial correspondence overlay analysis.
Summary statistics included number, mean size, and range of sizes of neighborhood units.
Spatial correspondence analysis was challenging to perform since the image-derived and
reference maps represent polygons that delineate possible neighborhoods, but have no
attributes or labels associated with them. With the census-derived map as the reference, the
mean number of image-derived neighborhood polygons contained within each reference
map polygons was tabulated by determining centroids for image-derived polygon and
counting centroids contained within each reference polygon. A smaller average number of
contained centroids indicates greater correspondence with the reference map, since the
image-derived maps tended to represent a greater number of neighborhood polygons (i.e.,
fewer EAs were aggregated).

Results
The five image-derived maps representing potential neighborhood boundaries are shown
relative to the reference map in Figure 4f. It is apparent in Figure 4 that more neighborhoods
are portrayed on the image-derived maps than the reference map, except for the map derived
by size-constrained iterative segmentation. Stated differently, fewer EA aggregations
resulted from the merging or segmentation of the QuickBird generated vegetation patch
objects than for the aggregation of the Slum Index. The map generated from the size-
constrained iterative segmentation procedure applied to QuickBird-estimated vegetation
proportions is visually most similar to the reference map. This is the case because the
procedure aggregated more EAs than those used to generate the other image-based maps. In
general, maps derived using segmentation were more similar to the reference map than those
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generated with the merge approach, and maps based on vegetation proportion inputs were
more similar to the reference map than those based vegetation size feature inputs.

The size-constrained iterative segmentation map and the reference map appear to represent
similar size units that have different shape configurations, but neither map appears to better
represent actual neighborhoods. The size-constrained iterative segmentation approach better
identified EAs that mostly consisted of government and other institutional land use from
residential areas, whereas the slum index map tended to group these units with EAs
composed of high SES residential areas. Low SES neighborhoods seem to be more
fragmented on all maps than our ground reconnaissance suggests is realistic, as a
consequence of incomplete aggregation of numerous small EAs in these densely populated
areas. The shape representation criteria of the image segmentation approach to aggregation
yielded neighborhood units that have more smoothly varying boundaries than those depicted
on the reference map or the spectral merge products.

Table 2 lists summary statistics and Table 3 spatial correspondence analysis results from the
comparison of the five image-derived maps of neighborhood units with the reference map.
Both tables substantiate the findings from the visual analysis of map products. The map
based on size-constrained iterative segmentation of vegetation proportions was more similar
to the reference map in terms of the number and size of potential neighborhoods, while the
other four image-derived maps depicted many more, smaller units. Spatial correspondence
analysis results show that the map derived with size-constrained iterative segmentation was
similar in terms of number and size of units, and on average, 1.1 image-derived units were
contained within a reference map unit, which implies a high level of agreement. However,
the only exact, one-toone matches were larger EAs that had not been aggregated.

Conclusions
Our evaluation of approaches to delineating neighborhoods of a large city in a developing
country is a unique application of GEOBIA. In fact, few attempts at delineating
neighborhoods based on remotely sensed imagery (Zhou, 2006) and none pertaining to intra-
urban regionalization studies are evident in the remote sensing literature. Such an
application is particularly challenging given the vagueness associated with the meaning and
definitions of neighborhoods and therefore, the difficulty in assessing the validity and utility
of image-derived maps of neighborhoods. Even the map evaluation phase of this study
required development of novel methods for comparing maps of neighborhood boundaries.

We tested two approaches to aggregating census units (EAs) to form potential
neighborhoods, based on commercial GEOBIA software. An EA-constrained image
segmentation approach to aggregation was more successful than a simple polygon merge
technique that was based solely on the similarity of image-derived features between
contiguous EAs. The segmentation approach is capable of accounting for size and shape
characteristics, which enables more realistic neighborhood boundaries to be delineated.
Further refinement of the EA-constrained segmentation procedure was required to achieve a
reasonable map of neighborhood boundaries that more closely approximated a reference
map. The refinement entailed constraining or limiting the size of EAs that were aggregated
through segmentation, and sequentially increasing the size constraint in an iterative fashion.
The reference map was derived from census data by calculating a slum index and then
spatially aggregating EAs using spatial clustering routine.

While many image-derived feature inputs were explored initially, two vegetation features
based on patch-level segmentation of urban objects showed the most promise and were
tested. The percentage of vegetation patches within each EA was a better discriminant for
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delineating potential neighborhoods than mean vegetation patch size per EA. Vegetation
proportions within residential neighborhoods tend to be greater for higher SES residential
areas and can be readily estimated and mapped using QuickBird or other visible/NIR optical
image data.

This study is a first step towards semi-automated, image-based delineation of urban
neighborhoods based on high spatial resolution image data. While it is appropriate to start
with a parsimonious approach that is based on aggregation of EAs, particularly when the
primary available reference data were derived in a similar manner, the ultimate objective is
to delineate neighborhoods from the pixel up, based on GEOBIA techniques. Until such
objectives are realized, visual image interpretation of high spatial resolution imagery
provides an immediately available and likely successful means for delineating
neighborhoods, particularly when conducted by interpreters who are generally familiar with
the neighborhoods of a city. As neighborhood definitions become more specific and train/
test data are available through field surveys and resident interviews, the ability to more
automatically delineate neighborhoods will likely be realized.
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Figure 1.
Flow chart portraying the data processing and analysis steps.
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Figure 2.
Maps of (a) mean vegetation size and (b) vegetation proportion and for EAs within the
Accra, Ghana study area. Vegetation proportions and size data were estimated from patch-
level segmentation and classification of QuickBird multi-spectral image data.
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Figure 3.
Maps of (a) mean vegetation size and (b) vegetation proportion and for EAs within the
Accra, Ghana study area. Vegetation proportions and size data were estimated from patch-
level segmentation and classification of QuickBird multi-spectral image data.
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Figure 4.
QuickBird image-derived and census-derived maps of potential neighborhood units based on
aggregation of enumeration areas (EAs) for the Accra study area. a. feature distance merge
approach based on vegetation patch proportions; b. feature distance merge approach based
on mean vegetation patch sizes; c. segmentation approach based on vegetation patch
proportions; d. segmentation approach based on mean vegetation patch sizes; e. size-
constrained iterative segmentation approach based on vegetation patch proportions; and f.
reference map derived with EA Slum Index values (based on census data) and aggregation
using the Duque (2006) spatial clustering technique.
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Table 1

Input features used in Level 1 segment classification

Feature Description

Brightness Sum of digital numbers of all bands

Compactness Length*width/number of pixels

Shape Index Border length/4*object area1/2

Mean Red Band Mean red band value

Mean NIR Band Mean NIR band value

Std. Dev. Blue Band Standard deviation of blue band

Std. Dev. NIR Band Standard deviation of NIR band

Length/Width Object length divided by object width
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Table 2

Summary statistics for polygon units in neighborhood maps.

Aggregation approach—feature input No. Mean Size (m2) Std. Dev. Size (m2)

Reference 79 273,827 429,728

Spectral merge—veg % 286 115,441 234,821

Spectral merge—veg size 432 68,892 152,561

Segmentation—veg % 184 116,701 240,995

Segmentation—veg size 309 69,565 159,124

Size-constrained iterative segmentation—veg % 69 314,068 330,642
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Table 3

Spatial overlay correspondence of image-derived neighborhood maps relative to the reference map. Values
represent number of image-derived polygon centroids within reference polygons. Smaller values imply greater
spatial correspondence.

Aggregation approach—feature input Mean Standard Deviation Maximum

Spectral merge—veg % 2.53 2.64 16

Spectral merge—veg size 4.14 3.82 23

Segmentation—veg % 2.47 2.27 9

Segmentation—veg size 4.08 3.38 11

Size-constrained iterative segmentation—veg % 1.01 1.42 8
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