
CLINICAL AND VACCINE IMMUNOLOGY, Aug. 2010, p. 1217–1222 Vol. 17, No. 8
1556-6811/10/$12.00 doi:10.1128/CVI.00112-10
Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Resampling Approach for Determination of the Method for Reference
Interval Calculation in Clinical Laboratory Practice�

Igor Y. Pavlov,* Andrew R. Wilson, and Julio C. Delgado
ARUP Institute for Clinical and Experimental Pathology, Department of Pathology,

University of Utah School of Medicine, Salt Lake City, Utah 84102

Received 22 March 2010/Returned for modification 26 April 2010/Accepted 10 June 2010

Reference intervals (RI) play a key role in clinical interpretation of laboratory test results. Numerous
articles are devoted to analyzing and discussing various methods of RI determination. The two most widely
used approaches are the parametric method, which assumes data normality, and a nonparametric,
rank-based procedure. The decision about which method to use is usually made arbitrarily. The goal of
this study was to demonstrate that using a resampling approach for the comparison of RI determination
techniques could help researchers select the right procedure. Three methods of RI calculation—paramet-
ric, transformed parametric, and quantile-based bootstrapping—were applied to multiple random sam-
ples drawn from 81 values of complement factor B observations and from a computer-simulated normally
distributed population. It was shown that differences in RI between legitimate methods could be up to 20%
and even more. The transformed parametric method was found to be the best method for the calculation
of RI of non-normally distributed factor B estimations, producing an unbiased RI and the lowest confi-
dence limits and interquartile ranges. For a simulated Gaussian population, parametric calculations, as
expected, were the best; quantile-based bootstrapping produced biased results at low sample sizes, and the
transformed parametric method generated heavily biased RI. The resampling approach could help com-
pare different RI calculation methods. An algorithm showing a resampling procedure for choosing the
appropriate method for RI calculations is included.

The determination of reference intervals (RI) is a ubiquitous
practice in clinical laboratories. RI are applied to laboratory
data to create intervals that will contain a certain percentage of
test values, e.g., 95% of test values (14). The boundaries for the
RI are point estimates in themselves. However, we may want
an indication of how certain we are in setting these boundaries.
Since our uncertainty in the boundaries can vary depending on
the sample size and method, it is important to have a measure
of that included in the form of confidence limits (CL) for
our RI (10). Traditional methods for RI and CL calculations
include parametric, transformed parametric, and nonpara-
metric quantile determinations. For the transformed para-
metric method, there are several techniques available (e.g.,
log, square root, Box-Cox, and others) (1, 2).

The Clinical and Laboratory Standards Institute (CLSI) has
recommended that the best way to establish an RI is to collect
samples from a sufficient number of qualified reference indi-
viduals to yield a minimum of 120 observations for analysis, by
the nonparametric method, for each partition, e.g., sex or age
range (5). However, for low-throughput clinical tests, the pro-
curement of this large number of specimens is often challeng-
ing. A recent survey by the College of American Pathologists
reported that 75% of the clinical laboratories that run their
own RI studies have usually utilized fewer than 100 observa-
tions for each determination. Furthermore, ca. 50% of labo-

ratories always assume a Gaussian distribution of the data and
establish their RI using only parametric methods (8).

The era of personal computers brought new approaches to
the field of statistics. The bootstrap resampling technique, in-
troduced by Bradley Efron (7), is a statistical method based on
sampling from the original data set. A large number of subsets
of fixed sizes are generated by randomly drawing numbers
(with replacement) from the original data. For each subset, the
estimator of interest (quantile, in our case) is calculated.
With this large number of estimator values, the mean or
median of the estimator, the variance or standard deviation
(SD), and confidence intervals can easily be calculated with-
out any assumptions regarding the original data distribution.
Several types of bootstrapping methods have been described
in the literature, including simple or double bootstrap,
tilted, and bias-corrected accelerated bootstrap (BCa) (3, 4,
6, 7, 9, 11, 12, 13); the last is currently the most widely
accepted method.

Although there are different methods for RI calculation
available and a number of software programs were created for
such calculations (MedCalc, EP Evaluator, and others), the
decision about which of the legitimate methods to apply is still
arbitrary. One possible solution for this problem is described
here.

In the present study, multiple samples were randomly drawn
from the original data. Resampling provided the information
on variability of RI, CL, and interquartile ranges (IQR) for
different RI calculation techniques. The goal was to show that
a resampling approach could help with the decision about
which RI determination method to choose.
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MATERIALS AND METHODS

There are a number of approaches available to estimate normality of the
distributions (Kolmogorov-Smirnov, Anderson-Darling, Pearson, and other
tests). In our study we chose the Shapiro-Wilk test because it is not sensitive to
sample size (overly large and overly small) and because it is widely available in
most statistical software packages.

In our protocol we implemented two resampling procedures. The first one is
the outer circle of resampling (without replacement) to generate randomly
drawn sets on which different RI calculation methods were applied. Another
resampling is in the inner circle; it is utilized during the application of one of
those methods: bootstrap resampling calculations (with replacement).

Eighty-one serum specimens obtained from healthy adults were tested for
levels of complement factor B by using a radial immunodiffusion assay (The
Binding Site, Birmingham, United Kingdom). The study population consisted of
40 males and 41 females, ages 18 to 65 years (median age, 36 years). All patient
specimens included in the present study were de-identified according to the
University of Utah Institutional Review Board approved protocol (protocol
7275) to meet Health Information Portability and Accountability Act patient
confidentiality guidelines.

Another set of data was represented by 5,000 computer-generated, normally
distributed numbers with an average of 150 and an SD of 40.

For those two sets of original data, random sampling was performed. First, 200
samples for each of the sample sizes of 20, 40, 50, 60, and 70 were randomly
drawn without replacement from 81 observations of factor B values. Second,
1,000 samples for each of the sample sizes (from 20, 40, 50, 70, 90, 100, 120, 150,
200, and 300) were randomly drawn without replacement from a computer-
generated normally distributed population of 5,000.

Since elevated levels of complement factor B are irrelevant in clinical practice,
computer simulation data in the present study were only applied for the lower
limit of RI. For each sample, the lower limit of RI was calculated by BCa
bootstrapping (with 1,000 replicas), parametric, or transformed parametric (log
transformation) methods. Parametric-based calculations were performed only
for the samples that passed the Shapiro-Wilk normality test (P � 0.05). Central
95% RI and 90% CL for such sets were calculated by using the following
formulas (14): RI � mean � 1.96 � the SD and CL � lower RI � 2.81 � SD/
�n, where n is the sample size.

The results are presented using “box-and-whisker” plots showing the first,
second (median), and third quartiles, with whiskers extended to the most ex-
treme data point, which is no more than 1.5 times the IQR from the box. Points
exceeding 1.5 times the IQR are shown.

Calculations of the RI and CL using the parametric, transformed parametric,
and bootstrap methods, the Shapiro-Wilk normality test, resampling simulations,
and graphics were performed by using the R package (version 2.9.2; The R
Foundation for Statistical Computing).

Based on our experience, a flow chart of the resampling process has been
designed and is shown in Fig. 1. This flow chart implies random samples drawn
from the original data for the list of sample sizes. This list should range from
relatively low sample sizes up close to the size of the original data. For each size,
some large number of random samples (for example, 500) should be drawn
without replacement (random sampling with replacement diminishes chances to
draw Gaussian-like distribution by potentially repeating the same observed val-
ues). For each sample, different RI calculation methods should be applied: a
bootstrapping, parametric (if the sample distribution passes the normality test),
or some kind of transformed parametric method, including a normality test for
transformed data and backward transformation of the results. If the sample
passes the normality test, no transformation should be performed. Some samples
could miss both parametric and transformed parametric results. Ideally, several
different transformations should be used from the beginning. The choice of the
transformation method is determined by its applicability to the original observed
data. All calculations should be done with the same transformation method (or
set of methods) for all samples, where applicable.

Finally, data on RI with 90% CL should be collected and presented as box plot
graphics for each method and each sample size. The method providing the
minimal sample size bias along with the fastest sample size convergence and the
lowest CL should be chosen to generate an RI and a CL for clinical use. Clinical
considerations must also be taken into account.

The flow chart described above was implemented in the program codes written
with R software. These codes are available to interested researchers upon re-
quest.

RESULTS

Data for resampling drawn from 81 factor B calculations are
presented in Fig. 2 and 3. The distribution of the factor B
observations was not Gaussian (Shapiro-Wilk normality test P
value of �0.001). An analysis of the resampling from that set
showed that the bigger the sample size was, the less the pro-
portion of samples was normally distributed. For instance,
sampling by 20 observations generated 74% normally distrib-
uted sets; sampling by 40 observations generated 36%; sam-
pling by 50 points generated 24%, etc. This observation is
represented by the width of the box plots in Fig. 2 and 3. The
percentage of normally distributed, log-transformed subsets
was 98% for a sample size of 20, 99% for a sample size of 40,
and 100% for larger sample sizes.

The values of the RI and the CL determined by different
statistical methods are shown in Table 1. To illustrate the
variability of the RI, the RI presented in the manual for the
factor B assay kit (The Binding Site, Inc.) and the Associated
Regional and University Pathologists (ARUP) RI values es-
tablished for different platform are also shown. Simple boot-
strap values for the RI are the same as simple quantiles except
that bootstrapping provides evaluation for CL. Bootstrap-de-
rived RI values are biased at low (�50) sample sizes. The
results from the log-transformed parametric calculations were
chosen as the final RI parameters of the assay. This method

FIG. 1. Algorithm of the resampling procedures for the selection of
RI calculation method. (If neither the drawn sample nor the trans-
formed sample passes the normality test, only bootstrap results are
collected for that sample.)
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generated an unbiased RI and the lowest CL and IQR (see Fig.
2 and 3).

In the second part of the study we investigated the effect of
sample size for different RI determination methods using re-
sampling from a large normally distributed computer-gener-
ated data set. Summary statistics are presented in Fig. 4. We

found that the proportion of log-transformed samples that
passed the Shapiro-Wilk normality test diminished with the
sample size: 70% with a sample size of 20, 24% with a sample
size of 50, 1% with a sample size of 200, and 0% with a sample
size of 300 (data not shown). This finding is illustrated by the
width of the box plots, which is proportional to the square root

FIG. 2. Effect of sample size on RI lower bound, complement factor B data. Dotted horizontal lines indicate lower limit of RI for the original
population (81 observations). Box plots show the first, second, and third quartiles, with whiskers extended to the most extreme data point, which
is no more than 1.5 times the IQR from the box. Points exceeding 1.5 times the IQR are shown. The box width is proportional to the square root
of the sample size.

FIG. 3. Effect of sample size on the width of CL for the RI lower bound, complement factor B data. Dotted horizontal lines indicate the width
of the CL for the RI lower bound of the original population (81 observations). Box plots show the first, second, and third quartiles, with whiskers
extended to the most extreme data point, which is no more than 1.5 times the IQR from the box. Points exceeding 1.5 times the IQR are shown.
The box width is proportional to the square root of the sample size.
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of the number of samples in each particular group (see Fig. 4).
The fraction of normally distributed subsets drawn from the
normally distributed population varied between 94 and 96%
for all ranges of sample sizes from 20 to 300.

As expected, the best method of RI calculation for the nor-
mally distributed population was parametric; it was unbiased
and had the lowest IQR. Bootstrapping was biased at a low
sample size, and log-transformed parametric calculations were
heavily biased at all sample sizes.

To emphasize the importance of comparison between legit-
imate methods of RI determination, the resampling data show-
ing the relative differences for RI low limits are presented in
Fig. 5. For each random sample drawn, the absolute difference
between RI low limits for each pair of methods was divided by
the RI low limit value corresponding to the best method for

that data set involved in the comparison. For the factor B data,
as indicated above, the best method was the transformed para-
metric, and the next best method was bootstrapping. For the
Gaussian population, the best method was the parametric, and
the next best one was the bootstrapping.

DISCUSSION

The CLSI recommends collecting at least 120 specimens for
RI determination. After sorting the data, the third extreme
values from both ends can be used as the lower and upper RI
(95% central interval) without any calculations, and 90%
confidence intervals fall within the ranked values (the CL
for the lower RI are values 1 and 7, and the CL for the upper
RI are 114 and 120). According to the corresponding table
in reference 1, for sample sizes from 119 to 187, 90% CL
include extreme values: the minimum and maximum. Obvi-
ously, it makes the determination of 90% CL highly sensitive
for outliers. The simplicity of the CLSI-recommended rank-
based procedure for the RI calculation does have risky as-
pects.

Different approaches to RI calculation produce different
results (as illustrated in Table 1 for the factor B assay, and in
Fig. 5 for the resampling simulations). The use of a single
approach for RI calculation can lead to inaccurate RI deter-
mination. Differences could easily be as high as 20%.

Parametric methods assume ideal symmetrical Gaussian dis-
tribution of data. However, this parametric methodology is not
always applicable because the data are seldom normally dis-
tributed. This was the case of sampling from factor B values in
the present study. Transformed parametric calculation of RI is
often used to overcome this problem. As shown in the present
study, log transformation of factor B observations generated

TABLE 1. Results of complement factor B RI calculation by
different methods

Test
RI in �g/ml (90% CL)

Lower limit Upper limit

The Binding Sitea 205 400
Current ARUPb 200 510
Transformed parametric 196 (179–214) 589 (539–643)
Parametricc 151 (119–184) 555 (523–588)
Quantiles (0.025, 0.975) 213 622
Simple bootstrap 213 (180–230) 622 (509–662)
BCa (bias corrected accelerated)

bootstrap
207 (180–230) 597 (509–662)

a Data were obtained from 29 British blood donors; samples were provided by
the manufacturer for guidance purposes only.

b ARUP Laboratories RI for the Beckman Array instrument.
c Data were not normally distributed; therefore, the method was rejected.

FIG. 4. Effect of sample size on the lower limits of RI of 1,000 resamplings without replacement from 5,000 observations of computer-generated
Gaussian data �N(� � 150, � � 40). The dashed horizontal line indicates the original population lower bound (� 	 1.96*�). Box plots show the
first, second, and third quartiles, with whiskers extended to the most extreme data point, which is no more than 1.5 times the IQR from the box.
Points exceeding 1.5 times the IQR are shown. The box width is proportional to the square root of the sample size.
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Gaussian distributions in almost 100% of all sets. More impor-
tantly, in this particular case, log transformation was not biased
by the sample size, and the spread of the RI lower limits for
different sample sizes was the lowest, compared to parametric
and bootstrapping computations.

The use of data transformation for RI calculation as an
initial approach is also not always recommended. As illustrated
in Fig. 4, when log transformation was applied to the simulated
data taken from a large normally distributed population, it
produced heavily biased lower RI values and did not converge
to the population lower RI limit when sample size increased. In
this case, the use of parametric methods was preferable, with
no sample-size-biased RI determinations and minimal IQR.
Thus, data transformation should not be used as a default
without analyzing the original distribution of the data.

Although once considered computationally intensive, boot-
strapping methods are now ubiquitous in quantitative science.
This is because bootstrapping methods are nearly free of as-
sumptions about data distribution, and they use data-driven
statistics, as opposed to formula-driven methods. These meth-
ods still need special software packages, but as they have been
gaining users, they are becoming increasingly available in stan-
dard quantitative packages. As shown here, the use of boot-
strap methods for RI and CL calculations was not the best
overall method, but in both cases bootstrapping provided
nicely converging determinations that were close to the best
methods. However, it should be noted that when only small
sample sizes are available for RI determination (say, less than
50 observed values), bootstrapping methods should be used
cautiously, because they could produce biased parameter esti-
mates.

The results of the present study support the recommenda-

tion to use and compare a variety of approaches for RI calcu-
lations. We believe that resampling simulations can help re-
searchers make the right choice of the calculation method. The
determination of RI and CL is a critical issue in the clinical
interpretation of laboratory test results. We hope that our
work will attract more attention to this problem. For those who
are able to allocate more time and effort to this issue, our work
could serve as a starting point or could even lead to new
directions in investigation.
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